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Abstract

At the CCCG 2001 open-problem session [2], J. O’Rourke asked
which polyhedra can be represented by bars and magnets. This prob-
lem can be phrased as follows: which 3-connected planar graphs may
have their edges directed so that the directions “alternate” around each
vertex (with one exception of non-alternation if the degree is odd). In
this note we solve O’Rourke’s problem and generalize it to arbitrary
maps on general surfaces. Obstructions to existence of such orienta-
tions can be expressed algebraically by a new homology invariant of
perfect matchings in the related graph of cofacial odd vertices.

1 Bar-magnet polyhedra

A toy called “Roger’s Connection” provides a collection of magnetic bars and
steel balls that can be used to construct polyhedra. The structures are most
stable when around each vertex (a steel ball), the North and South poles of
magnetic bars meeting at that vertex are alternating. This toy motivated
the definition of bar-magnet polyhedra as those 3-connected plane graphs
whose edges can be directed so that the directions “alternate” around each
vertex, where one non-alternation is allowed if the degree of the vertex is
odd.

Let G be a map, i.e., a graph that is 2-cell embedded in some surface.
We refer to [4] for basic definitions concerning graphs on surfaces. An NS-
orientation of G is an orientation of the edges so that in the clockwise order
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around every vertex v, the incoming and outgoing edges alternate, except
when deg(v) is odd when one violation of this condition is allowed. We say
that the pair of consecutive edges in the clockwise order around v where
non-alternation occurs is the exceptional transition at v. We say that G is
NS-orientable if it admits an NS-orientation.

At the open-problem session at the 13th Canadian Conference on Com-
putational Geometry in 2001 [2], O’Rourke asked which 3-connected planar
maps are NS-orientable. At the corresponding web page of open problems,
maintained by Demaine, Mitchell, and O’Rourke [1], it is noted that after
the presentation of the problem, Therese Biedl proved that the polyhedron
formed by gluing together two tetrahedra with congruent bases is not NS-
orientable. Erik Demaine proved that a polyhedron all of whose vertices
have even degree is NS-orientable: the graph has a face 2-coloring, and the
edges of the faces of color 1 can be oriented counterclockwise, which then
orients each face of color 2 clockwise. Demaine also observed that every
cubic graph with a perfect matching admits an NS-orientation: orient every
cycle in the complement of the perfect matching cyclically and orient the
edges of the perfect matching arbitrarily.

In this note we obtain a complete solution to O’Rourke’s problem by
providing a simple characterization of NS-orientability of planar maps (see
Corollary 2.3). We also obtain a generalization of this result to arbitrary
maps on general surfaces. Obstructions to existence of NS-orientations de-
pend on certain perfect matchings in an associated graph of cofacial odd
vertices and give rise to a new homology invariant of perfect matchings.

By a map we mean a graph together with a 2-cell embedding in some
closed surface. Underlying graphs of maps are allowed to have loops and
multiple edges. They are necessarily connected. If Σ is a surface, the number
g = 2 − χ(Σ) is called the Euler genus of Σ, where χ(Σ) denotes the Euler
characteristic of the surface.

2 NS-orientations and matchings

A graph (or a map) is Eulerian if all its vertices have even degree.
Let G be an Eulerian map on a surface S and let G∗ be its dual map.

Suppose that the embedding of G∗ is represented by means of local rotations
and signatures (cf. [4] for details). We say that G is orientably partitionable
if the faces of G can be partitioned into two classes F ′ ∪ F ′′ such that two
adjacent faces are in the same class if and only if the corresponding edge in
G∗ has negative signature. It is easy to see that G is orientably partitionable
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if and only if for every cycle C in the dual G∗, the number of edges on C with
positive signature is even, i.e., the number of edges with negative signature
has the same parity as the length of C. Alternatively, every even cycle of
G∗ is orientation preserving and every odd cycle is orientation reversing on
the surface. This implies that being orientably partitionable is independent
of the choice of the rotation-signature representation of G∗. In particular,
if the surface S is orientable, then all signatures can be taken positive, and
being orientably partitionable is equivalent to being face 2-colorable.

Proposition 2.1 Let G be an Eulerian map. Then G is NS-orientable if
and only if it is orientably partitionable.

Proof. Under any NS-orientation, facial walks are directed closed walks.
Adjacent facial walks are oppositely oriented when compared with respect
to a common edge. In an orientable surface, this means that faces are either
positively or negatively oriented, and this yields a bipartition of the faces.
If the surface is nonorientable, then cycles of G∗ of even length behave
similarly as on orientable surfaces and they must be orientation preserving,
while cycles of odd length in G∗ must be orientation reversing. These facts
easily yield the stated equivalence.

Theorem 2.2 Let G be a map. Define a new graph R whose nodes are the
vertices of odd degree in G, with two nodes of R adjacent if they are cofacial
in G (i.e., they lie on a common facial walk). Then G has an NS-orientation
if and only if R has a perfect matching M such that G can be extended to an
orientably partitionable map in the same surface, whose underlying graph of
is G + M .

Proof. Suppose that we have an NS-orientation of G. Let F be a facial
walk. When we traverse the facial walk F , the edges all head in the same
direction until an exceptional transition is met. From that point on, all
edges head in the other direction until the next exceptional transition is
reached, when the direction changes again. This implies

Claim 1 Every facial walk has an even number of exceptional transitions.

Let G′ be the map obtained from G by adding a new vertex vF in every
face F with at least one exceptional transition and joining vF to all vertices
in F corresponding to exceptional transitions.
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Claim 2 G′ is an Eulerian graph and the NS-orientation of G uniquely
extends to an NS-orientation of G′. Under this orientation, all faces of G′

are directed closed walks, and hence G′ is orientably partitionable.

Let us consider a facial walk F = v1e1v2e2 . . . vkekv1 where vi and ei

are consecutive vertices and edges (respectively) on F . If the edges ei−1

and ei form an exceptional transition at the vertex vi, then G′ has the edge
e′i = vF vi that is inserted between ei−1 and ei in the local clockwise rotation
around vi on the surface. Clearly, there is a unique way of orienting e′i so
that none of the transitions ei−1, e

′

i and e′i, ei is exceptional. It is also clear if
the exceptional transition of G in F that immediately follows the transition
at vi occurs at vj , then the orientation (at vF ) of the inserted edge e′j = vF vj

is opposite to that of e′i. This shows that all exceptional transitions of G

disappear in G′ and that no exceptional transitions arise at new vertices vF .
In particular, all vertices of G′ have even degree, i.e. G′ is Eulerian. By
Proposition 2.1, G′ is orientably partitionable. This completes the proof of
Claim 2.

Let us now consider a vertex vF of G′. Suppose that its neighbors
on F in the clockwise order are u1, . . . , u2k. Let MF be the set of edges
u1u2, . . . , u2k−1u2k. Finally, let M be the union of all MF , where F is any
face of G. Since each odd vertex of G has precisely one exceptional tran-
sition (and vertices of even degree have none), M is a perfect matching in
R. Since G′ is orientably partitionable, it is clear that the map G̃ obtained
from G by adding all edges of every MF in F (following the boundary of F )
is also orientable partitionable. This completes the first part of the proof.

The proof of the converse implication is essentially the reverse of the
above proof, so we omit it.

Corollary 2.3 Let G be a graph that is 2-cell embedded in the plane or the
2-sphere. Define a new graph R whose nodes are the vertices of odd degree
in G, with two nodes of R adjacent if they are cofacial in G. Then G has
an NS-orientation if and only if R has a perfect matching.

Proof. Suppose that R has a perfect matching M . If e = uv ∈ M ,
there is a face in which u and v bot appear. For every e ∈ M choose one
such face. For a given face F of G, let MF be all edges in M that have
selected F as their face of cofaciality. Let u1, . . . , u2k be the endvertices of
the edges in MF in the order as they appear on the facial walk of F . Let
M ′

F = {u1u2, . . . , u2k−1u2k} and let M ′ be the union of all M ′

F . Clearly, M ′
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is a matching of R and the embedding of G can be extended to an embedding
of G̃ = G + M ′, yielding an Eulerian map. A well known consequence of
simple connectivity is that every Eulerian map in a simply connected surface
is face 2-colorable. So it is G̃, and we are done by Theorem 2.2.

Since the existence of a perfect matching is polynomially checkable,
Corollary 2.3 provides a good characterization in the sense of Edmonds.
This is the best one can hope for.

For instance, if we have a planar map with precisely two vertices of odd
degree, then an NS-orientation exists if and only if the two odd vertices are
cofacial.

3 Maps on general surfaces

An example, the Petersen graph on the projective plane, is shown in Figure
1. The dotted edges form a perfect matching of R and it is easy to check
that the extended map is orientably partitionable.

Figure 1: An orientably partitionable extension of the Petersen graph in the
projective plane

As mentioned above, existence of a perfect matching is polynomially solv-
able, but perfect matchings satisfying additional conditions may be harder
to detect. Nevertheless, since some kind of parity is involved, we believe
that Theorem 2.2 yields a good characterization also for more general maps.
This belief is partially supported by our subsequent results (cf. Corollary
3.3), at least if we consider maps on a fixed surface.

It is worthwhile to note that a vertex may appear more than once on
a facial walk. In such a case we can get loops and multiple edges in R.
Since loops never occur in a matching, they may as well be eliminated from
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Figure 2: A toroidal map with two extensions

R. However, multiple edges may be kept in R since their inclusion in G̃

corresponding to distinct possibilities of the cofaciality may give rise to
different partiteness behavior of G̃. See Figure 2 for an example of a map
on the torus, where the choice of the edge xy drawn inside the face F1 gives
rise to an orientably partitionable map, while its inclusion in one of the faces
F2 or F3 does not give that. Of course, in the case of planar maps, such a
distinction is not necessary since all possibilities are equally good as shown
by Corollary 2.3.

The above example shows that it may be helpful to introduce a graph
R̃ = R̃(G) that will capture not only the combinatorial but also geometric
information about cofaciality of odd vertices. The vertices of R̃ are the
vertices of odd degree in G. Suppose that u, v are distinct vertices of R̃. If
u appears in a facial walk F and v appears in the same facial walk, then we
have an edge joining u and v in R̃ for every such pair of common appearances.
Observe that a vertex can appear more than once in a facial walk. We say
that this edge corresponds to the face F and to appropriate appearances of
u, v in F . Let vF be a point on the surface in the interior of the face F ,
and let S1, . . . , Sr be internally disjoint simple arcs joining occurrences of
vertices in F with vF . If Si and Sj correspond to the appearances of u and
v which determine an edge e of R̃, then we say that Si ∪Sj is a drawing of e

in F . If M ⊆ E(R̃) is a matching, the drawings of edges in M determine an
Eulerian map whose graph consists of G together with edges (and vertices
vF ) corresponding to those segments Si that correspond to edges in M . We
denote this map by G ∔ M .

Let B be a map in a surface Σ such that all faces are of even length.
Then we say that B is locally bipartite. Let H1 = H1(B;GF (2)) be the
first homology group of the map B with coefficients in the group GF (2).
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The elements of H1 can be identified with subsets of E(B) such that every
vertex is incident with an even number of edges in the subset. Two such set
C1, C2 are equivalent (and they correspond to the same element of H1) if
there is a collection of facial walks such that C2 is the symmetric difference
of C1 with the boundaries of these facial walks, cf. [3]. For C ⊆ E(B), let
σ(C) be equal to the parity of the number of edges in C whose signature is
positive. Since σ(C) = 0 for the edge set C of any facial walk, σ induces a
homomorphism

σ0 : H1 → GF (2).

To relate this homomorphism to our previous thoughts, let us observe that an
Eulerian map G is orientably partitionable if and only if the homomorphism
σ0 corresponding to the dual map G∗ is trivial, i.e. σ0(H1) = {0}.

If G is a map and M is a perfect matching in R̃(G), the map GM = G∔M

is Eulerian. Let B = G∗

M be its dual map, and let σM : H1(B;GF (2)) →
GF (2) be the corresponding homomorphism. We call σM the characteristic
mapping of M . These definitions yield a reformulation of Theorem 2.2:

Theorem 3.1 A map G is NS-orientable if and only if its cofaciality graph
R̃(G) contains a perfect matching whose characteristic map is trivial.

If M1,M2 are perfect matchings of R̃, we may consider their symmetric
difference L = M1 + M2. In R̃, L is a collection of disjoint cycles. Drawings
of these cycles (as defined above) give rise to a collection of closed curves
in Σ. We say that M1 and M2 are homologous if the collection of these
curves is 0-homologous on the surface (with respect to GF (2)-homology). If
L = M1 + M2 and L′ = M2 + M3 are both 0-homologous on the surface, so
is L + L′ = M1 + M3. This implies that the homology of perfect matchings
is an equivalence relation.

Lemma 3.2 Perfect matchings M1,M2 of R̃(G) are homologous if and only
if their characteristic mappings are the same.

Proof. If M1 and M2 are homologous, then L = M1 + M2 is 0-homologous
on the surface. Therefore, every simple closed curve crosses edges of L an
even number of times. In particular, this holds for cycles in dual maps G∗

M1
,

G∗

M2
and, consequently, σM1

= σM2
.

On the other hand, if L is not 0-homologous, then there is a cycle in the
dual map that intersects L an odd number of times. If γ is the homology
class of that cycle, then σM1

(γ) 6= σM2
(γ). This completes the proof.
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At this point it is clear why the cofaciality graph R̃(G) did not need
geometric information when considering maps in simply connected surfaces.
This is because all perfect matchings are homologous and since every homo-
morphism {0} → GF (2) is trivial.

If Σ is a surface of Euler genus g, then H1 is isomorphic to GF (2)g . This
gives

Corollary 3.3 A map on a surface of Euler genus g has at most 2g distinct
homology classes of perfect matchings for cofacial odd vertices.

Sometimes, checking if extensions are orientably partitionable can be
overridden. For instance, if the graph G of the map is cubic (all vertices
have degree 3), then NS-orientability is independent of the embedding of G

since NS-orientations correspond to orientations of edges such that no vertex
is a sink (all edges incoming) or a source (all edges outgoing). Therefore,
it makes sense to speak of NS-orientability of the graph. The same holds
for subcubic graphs in which all vertices have degree at most three. Let us
recall that we allow loops and multiple edges.

Proposition 3.4 Every subcubic graph is NS-orientable.

Proof. The proof is by induction on the number of edges. If G has a vertex
v of degree 1, let u be its neighbor and let G1 = G − v. By the induction
hypothesis, G1 has an NS-orientation. If u has at least one incoming edge
under such an orientation, then we orient the edge uv in the direction from
u to v; otherwise from v to u. Clearly, this gives rise to an NS-orientation
of G. If G has a vertex v of degree 2, and uv, vw are its incident edges, then
we apply induction to the graph G1 = (G − v) + uw. An NS-orientation of
G1 clearly gives rise to one in G.

Otherwise, G is a cubic graph. If G has a cutedge uv, we apply induction
to G − uv and orient the edge uv arbitrarily. Finally, suppose that G has
no cutedges. Then G has a perfect matching M by a well-known theorem
of Petersen. The graph G−M consists of a collection of disjoint cycles. By
orienting the edges of each such cycle consistently with a chosen direction
on the cycle, and orienting edges in M arbitrarily, an NS-orientation is
obtained. This completes the proof.

When considering embedded cubic graphs, we can say much more.

Theorem 3.5 Let G be a map in a surface Σ of Euler genus g. If every
vertex of G has degree at most 3 and G is not a cycle that is 2-cell embedded
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in the projective plane, then for every homomorphism σ : H1(Σ;GF (2)) →
GF (2) there exists a perfect matching in R̃(G) whose characteristic map is
equal to σ. In other words, perfect matchings of all possible 2g homology
classes exist.

The proof of Theorem 3.5 is deferred until the end of this section.
Let us observe that the map whose graph is the cycle in the projective

plane has only one matching of R̃ (the empty matching) and its characteristic
map is the trivial homomorphism.

(a) (b) (c)

Figure 3: Three maps with a Θ-graph

A graph is called a Θ-graph if it consists of three internally disjoint paths
joining two vertices.

Lemma 3.6 If the graph of G is a Θ-graph, then G satisfies the conclusion
of Theorem 3.5.

00 01 10 11

Figure 4: Four nonhomologous extensions

Proof. Θ-graphs admit precisely four nonequivalent embeddings, one in
the plane, projective plane, Klein bottle and the torus; see Figure 3 for the
last three of these cases.

Let us consider the Θ-graph map on the torus. As the generators for the
fundamental group (and consequently for H1), we select the horizontal and
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the vertical simple closed curves α and β (respectively) with respect to the
presentation in Figure 3(c). By taking the four possible matching edges of
R̃(G) which are shown in Figure 4, the resulting values of their characteristic
maps on α and β are 00, 01, 10, and 11, respectively. This proves the claim
in the case of the toroidal map. The proof for the Klein bottle is essentially
the same, while the planar and the projective planar cases are obvious. The
details are left to the reader.

Lemma 3.7 The dumbbell map on the Klein bottle shown in Figure 5(a)
satisfies the conclusion of Theorem 3.5.

(b)(a)

Figure 5: The dumbbell map on the Klein bottle

Proof. Four extensions with distinct characteristic maps are shown by
dotted edges in Figure 5(b).

We are ready for the proof of Theorem 3.5.

Proof (of Theorem 3.5). The proof is by induction on the number of edges
of G. If G has a vertex of degree 2, the reduction is exactly the same as
in the proof of Proposition 3.4. The same proof can be followed if G has
a vertex v of degree 1 and G − v is not the cycle in the projective plane.
However, in the latter case it is easy to check that the theorem holds.

Suppose now that all vertices of G have degree 3. If G is not 2-connected,
it contains a cutedge e = uv. The embedding of G gives rise to two maps
G1, G2 whose graphs are the two components of G − e. Vertices u ∈ V (G1)
and v ∈ V (G2) become vertices of degree 2. If none of G1, G2 is just the
cycle in the projective plane, then we apply the induction hypothesis for
G1 and G2. For every perfect matching M1 in R̃(G1) and M2 of R̃(G2), let
M be the perfect matching of R̃(G) consisting of M1,M2 and the edge uv
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(embedded so that it is homotopic to the edge e in G). By the induction
hypothesis, perfect matchings of R̃(Gi) give rise to all possible 2gi charac-
teristic mappings (where gi is the Euler genus of Gi), i = 1, 2. Since the
Euler genus of G is g = g1 + g2, it is now easy to see that all combinations
of M1 and M2 give rise to 2g distinct characteristic maps corresponding to
perfect matchings of R̃(G).

If G1 and G2 are both cycles in the projective plane, then G is the
dumbbell map in the Klein bottle, and we apply Lemma 3.7. If G1 is the
cycle in the projective plane but G2 is not, we proceed in a similar way as
above, except that we combine every perfect matching M2 of R̃(G2) first
with the edge uv embedded homotopic to e in G, and secondly with the
edge uv embedded so that it first follows e from v towards u and then goes
across the crosscap, following the cycle G1. The resulting matchings give
rise to 2 · 2g2 = 2g distinct characteristic maps.

From now on we may assume that G is 2-connected. Let e = uv be an
edge of G and consider the induced map G′ = G − e. If G is a Θ-graph, we
are done by Lemma 3.6. So, we may assume that G′ is not a cycle, and we
can apply the induction hypothesis to G′. Observe that vertices u, v are of
degree 2 in G′.

We will distinguish three subcases outlined below. Since the choice of e

is arbitrary, we may assume (in (2) and (3)) that no edge of G can be chosen
so that one of the previous cases would be obtained.

(1) The edge uv belongs to two distinct facial walks in G. In this case the
Euler genus of G′ is the same as that of G. Let F be the facial walk
of G′ that is the combination of the two facial walks of G containing
uv. To every perfect matching M ′ of R̃(G′), we associate a perfect
matching M of R̃(G) as follows. If e′ ∈ M ′ corresponds to a face
different from F , then we include e′ in M . Let e′1, . . . , e

′

t be the edges in
M ′ that correspond to F . The problem is that these edges may not be
edges of R̃(G). Consider the occurrences of the endpoints of e′1, . . . , e

′

t

on F ; denote them by v1, . . . , v2t in order in which they appear in F

and such that v appears between v2t and v1 and that u appears between
vj and vj+1, where the considered appearances of u and v correspond
to the removed edge uv. If j is even, then we add to M the following
edges of R̃(G): vv1, . . . , vju and vj+1vj+2, . . . , v2t−1v2t. If j is odd,
then we add to M the edges vv1, . . . , vj−1vj and uvj+1, . . . , v2t−1v2t.

(2) The edge uv belongs to a single facial walk F in G and is traversed
on F twice in the same direction. In this case, the Euler genus of
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G′ decreases by 1. Excluding the possibility of (1), F is the only
facial walk of G and hence G′ also has only one facial walk, which we
denote by F ′. To every perfect matching M ′ of R̃(G′), we associate
two perfect matchings M1,M2 of R̃(G). For M1, we just combine M ′

with the edge uv embedded in G homotopic to the removed edge. In
M2 we add uv embedded across the face F (joining the appearance
of u at the first traversal of e and the appearance of v at the second
traversal of e in F ).

(3) The edge uv belongs to a single facial walk F in G and is traversed
twice in the different direction. In this case, the Euler genus of G′

decreases by 2 and F gives rise to two new facial walks F1, F2. To
every perfect matching M ′ of R̃(G′), we now associate four perfect
matchings M1,M2,M3,M4 of R̃(G). For each of them we add to M ′

the edge uv embedded in G within the face F in a different manner,
similarly as shown in the example in Figure 4. More precisely, let vα

and uα be the appearances of v and u in F at the first traversal of e,
and let vβ and uβ be the their appearances at the second traversal of
e. Since F is the only face, there exists the third appearance vγ of v

and another appearance uγ of u. Then we take M1 = M ′ ∪ {uα, vα},
M2 = M ′ ∪ {uα, vβ}, M3 = M ′ ∪ {uα, vγ}, and M4 = M ′ ∪ {uγ , vα}.

By applying the induction hypothesis to G′, it is easy to see that in
every one of the above possibilities (1)–(3), the obtained perfect matchings
of R̃(G) give rise to 2g distinct characteristic maps.
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