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On the Crossing Number of Almost Planar Graphs
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If G is a plane graph and x, y ∈ V (G), then the dual distance of x and y is equal to the minimum number
of crossings of G with a closed curve in the plane joining x and y. Riskin [7] proved that if G0 is a 3-
connected cubic planar graph, and x, y are its vertices at dual distance d, then the crossing number of the
graph G0 + xy is equal to d. Riskin asked if his result holds for arbitrary 3-connected planar graphs. In
this paper it is proved that this is not the case (not even for every 5-connected planar graph G0).

Povzetek: Analizirana je Riskinova teza o planarnih grafih.

1 Introduction
Crossing number minimization is one of the fundamental
optimization problems in the sense that it is related to vari-
ous other widely used notions. Besides its mathematical in-
terest, there are numerous applications, most notably those
in VLSI design [1, 2, 3] and in combinatorial geometry [9].
We refer to [4, 8] and to [10] for more details about such
applications.

A drawing of a graph G is a representation of G in the
Euclidean plane R2 where vertices are represented as dis-
tinct points and edges by simple polygonal arcs joining
points that correspond to their endvertices. A drawing is
clean if the interior of every arc representing an edge con-
tains no points representing the vertices of G. If interiors
of two arcs intersect or if an arc contains a vertex of G in
its interior we speak about crossings of the drawing. More
precisely, a crossing of D is a pair ({e, f}, p), where e and
f are distinct edges and p ∈ R2 is a point that belongs
to interiors of both arcs representing e and f in D. If the
drawing is not clean, then the arc of an edge e may contain
in its interior a point p ∈ R2 that represents a vertex v of
G. In such a case, the pair ({v, e}, p) is also referred to as
a crossing of D.

The number of crossings of D is denoted by cr(D) and
is called the crossing number of the drawing D. The cross-
ing number cr(G) of a graph G is the minimum cr(D)
taken over all clean drawings D of G.

A clean drawing D with cr(D) = 0 is also called an
embedding of G. By a plane graph we refer to a planar
graph together with an embedding in the Euclidean plane.
We shall identify a plane graph with its image in the plane.

A nonplanar graph G is almost planar if it contains an
edge e such that G− e is planar. Such an edge e is called a

planarizing edge. It is easy to see that almost planar graphs
can have arbitrarily large crossing number. In the sequel,
we will consider almost planar graphs with a fixed planariz-
ing edge e = xy, and will denote by G0 = G − e the cor-
responding planar subgraph. By a plane graph we mean a
planar graph together with its embedding in the plane.

Let G0 be a plane graph and let x, y be two of its vertices.
A simple (polygonal) arc γ : [0, 1] → R2 is an (x, y)-arc
if γ(0) = x and γ(1) = y. If γ(t) is not a vertex of G0

for every t, 0 < t < 1, then we say that γ is clean. For an
(x, y)-arc γ we define the crossing number of γ with G0 as

cr(γ,G0) = |{t | γ(t) ∈ G0 and 0 < t < 1}|.
Using this notation, we define the dual distance

d∗(x, y) = min{cr(γ, G0) | γ is a clean (x, y)-arc}
and the facial distance between x and y,

d′(x, y) = min{cr(γ, G0) | γ is an (x, y)-arc}.
Clearly, d′(x, y) ≤ d∗(x, y).

Let G∗x,y be the geometric dual graph of the plane graph
G0 − x− y. Then d∗(x, y) is equal to the distance in G∗x,y

between the two vertices corresponding to the faces of G0−
x − y containing x and y. This shows that d∗(x, y) can
be computed in linear time. Similarly, one can compute
d′(x, y) in linear time by using the vertex-face incidence
graph (see [6]).

Proposition 1.1. If G0 is a planar graph and x, y ∈
V (G0), then for every embedding of G0 in the plane, we
have cr(G0 + xy) ≤ d∗(x, y).

Proposition 1.1 is clear from the definition of d∗. It
shows that it is of interest to determine the minimum
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d∗(x, y) taken over all embeddings of G0 in the plane. We
refer to [5] for more details and some further extensions.

Riskin [7] proved the following strengthening of Propo-
sition 1.1 in a special case when G0 is 3-connected and
cubic:

Theorem 1.2. If G0 is a 3-connected cubic planar graph,
then

cr(G0 + xy) = d′(x, y).

Let us observe that d′(x, y) = d∗(x, y) if G0 is a cubic
graph.

Riskin asked in [7] if Theorem 1.2 holds for arbitrary 3-
connected planar graphs. In this paper we show that this is
not the case (not even for every 5-connected planar graph
G0).

2 Strange examples
In this section we provide a negative answer to the afore-
mentioned question of Riskin [7] who asked if it is true
that for every 3-connected plane graph G0 and any two of
its vertices x, y, the crossing number of G0 + xy equals
d∗(x, y).

Theorem 2.1. For every integer k, there exists a 5-conn-
ected planar graph G0 and two vertices x, y ∈ V (G0) such
that cr(G0 + xy) ≤ 11 and d∗(x, y) ≥ k.

Figure 1: Part of the triangular lattice with side length 8

Proof. Let Hk be the planar graph that is obtained from
the icosahedron by replacing all of its triangles, except one,
with the dissection of the equilateral triangle with side of
length k into equilateral triangles with sides of unit length
(as shown in Figure 1 for k = 8). This graph is a near
triangulation, all its faces are triangles, except one, whose
length is 3k. We may assume that this is the outer face
in a plane embedding of Hk. Its boundary is composed
of three paths A,B, C of length k joining the original ver-
tices a′, b′, c′ of the icosahedron we started with. Now we
add three new vertices, a, b, c and join a with all vertices
on A, b with B, and c with C. This gives rise to a 5-
connected near triangulation Gk whose outer face is the

x

y

Figure 2: The graph Qk

6-gon aa′bb′cc′. Let us take 5 copies of the graph Gk and
let ai, a

′
i, bi, b

′
i, ci, c

′
i be copies of the corresponding ver-

tices on the outer face of the ith copy of Gk, i = 1, . . . , 5.
Let Qk be the planar graph obtained from these copies by
cyclically identifying bi with ai+1, adding edges b′ic

′
i+1

(i = 1, . . . , 5, indices modulo 5), and adding two vertices
x and y such that x is joined to a1, . . . , a5 and y is joined to
c1, . . . , c5. See Figure 2. The obtained graph Qk is planar
and it is not difficult to verify that it is 5-connected.

It is easy to see that d∗(x, y) = k + 2 in Qk. By putting
the vertex x close to y, so that we can draw the edge xy
without introducing crossings with other edges, and then
redrawing the edges from x to its neighbors as shown in
Figure 2, a drawing of Qk +xy is obtained whose crossing
number is 11.

B

A

Figure 3: A planar graph for which two flips are needed

The construction of Theorem 2.1 can be generalized
such that a similar redrawing as made above for x is nec-
essary also for y (in order to bring these two vertices close
together). Such an example is shown in Figure 3, where x
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and y are vertices in the centers of the small circular grids
on the picture, and where the bold lines represent a “thick”
barrier similar to the one used in the graph Qk in Figure
2. In Figure 4, an optimum drawing of G0 + xy is shown,
where the edge xy is represented by the broken line. In this
drawing, neighborhoods of x and y, are redrawn inside the
faces denoted by A and B (respectively) in Figure 3.

At the first sight the redrawing described in the above
example seems like the worst possibility which may hap-
pen – to “flip” a part of the graph containing x and to “flip”
a part containing y. If this would be the only possibility
of making the crossing number smaller than the one com-
ing from the planar drawing of G0, this would most likely
give rise to a polynomial time algorithm for computing the
crossing number of graphs that are just one edge away from
a 3-connected planar graph.

Figure 4: An optimum drawing of G0 + xy

Unfortunately, some more complicated examples show
that there are other ways for shortcutting the dual distance
from x to y. (Such an example was produced in a discus-
sion with Thomas Böhme and Neil Robertson whose help
is greatly acknowledged.) Despite such examples, the fol-
lowing question may still have a positive answer:

Problem 2.2. Is there a polynomial time algorithm which
would determine the crossing number of G0 + xy if G0 is
planar.

Acknowledgement
Supported in part by the Ministry of Higher Education, Sci-
ence and Technology of Slovenia, Research Program P1–
0507–0101 and Research Project L1–5014–0101.

References

[1] S.N. Bhatt, F.T. Leighton, A framework for solving
VLSI graph layout problems, J. Comput. System Sci.
28 (1984) 300–343.

[2] F. T. Leighton, Complexity Issues in VLSI, MIT Press,
Cambridge, Mass., 1983.

[3] F. T. Leighton, New lower bound techniques for VLSI,
Math. Systems Theory 17 (1984) 47–70.

[4] A. Liebers, Planarizing graphs—a survey and anno-
tated bibliography, J. Graph Algorithms Appl. 5 (2001)
74 pp.

[5] B. Mohar, Crossing number of almost planar graphs,
preprint, 2005.

[6] B. Mohar and C. Thomassen, Graphs on Surfaces,
Johns Hopkins University Press, Baltimore, 2001.

[7] A. Riskin, The crossing number of a cubic plane poly-
hedral map plus an edge, Studia Sci. Math. Hungar. 31
(1996) 405–413.

[8] F. Shahrokhi, O. Sýkora, L.A. Székely, I. Vrt’o, Cross-
ing numbers: bounds and applications. Intuitive geom-
etry (Budapest, 1995), 179–206, J. Bolyai Math. Soc.,
Budapest, 1997.

[9] L.A. Székely, A successful concept for measuring non-
planarity of graphs: the crossing number, Discrete
Math. 276 (2004) 331–352.

[10] I. Vrt’o, Crossing number of graphs: A bibliography.
ftp://ftp.ifi.savba.sk/
pub/imrich/crobib.pdf




