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Abstract

A general method is described which gives rise to highly symmetric
tessellations of the Cantor sphere, i.e., the 2-sphere with the Cantor
set removed and endowed with the hyperbolic geometry with constant
negative curvature. These tessellations correspond to almost vertex-
transitive planar graphs with infinitely many ends. Their isometry
groups have infinitely many ends and are free products with amalga-
mation of other planar groups, possibly one or two-ended or finite. It is
conjectured that all vertex-transitive tessellations of the Cantor sphere
can be obtained in this way.

Although our amalgamation construction is rather simple, it gives
rise to some extraordinary examples with properties that are far be-
yond expected. For example, for every integer k, there exists a k-
connected vertex-transitive planar graph such that each vertex of this
graph lies on at least k infinite faces. These examples disprove a con-
jecture of Bonnington and Watkins [2] that there are no 5-connected
vertex-transitive planar graphs with infinite faces. This also disproves
another conjecture that in a 4-connected vertex-transitive planar graph
each vertex lies on the boundary of at most one infinite face. Further
examples give rise to counterexamples of some other conjectures of
similar flavor.

∗Supported in part by the Ministry of Science and Technology of Slovenia, Research
Program P1–0297 and Research Project J1–6150.
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1 Introduction

In the 1980’s, Mark Watkins [20] asked if there exists a 3-connected vertex-
transitive planar graph with infinitely many ends. The author found an
example [15] which gave rise to a general construction yielding a variety of
such graphs of arbitrarily large connectivity. This construction, which we
shall call the tree amalgamation of graphs, is closely related to the free prod-
uct with amalgamation known from the theory of groups, cf., e.g., [12, 13].
In fact, in the most interesting examples, the automorphism group of the
constructed graphs would be isomorphic to the free product with amalga-
mation of automorphism groups of the graphs used in the construction.

Stallings [19] proved that every finitely presented group with infinitely
many ends is either a free product with amalgamation or an HNN-product
of “smaller” groups. Later, Dunwoody [7] (see also [6]) proved that every
finitely presented group can be obtained from a finite number of at most
one-ended groups by means of these two operations.

In 1988, the author expected that the tree amalgamation operation
would be powerful enough to yield a classification of (3-connected) vertex-
transitive planar graphs, or at least planar Cayley graphs, with infinitely
many ends in terms of finite and one-ended infinite planar vertex-transitive
graphs which are well understood. However, more than 16 years after first
thoughts, such a classification has not been made, although many people
have been aware of this question. Therefore, we have decided to present our
tree amalgamation construction and to show some extraordinary examples
of tessellations obtained in this way.

Bonnington and Watkins [2] investigated planar vertex-transitive graphs
with infinite faces. In the first version of their paper, they conjectured that
such graphs cannot be 5-connected. They also conjectured that in a 4-
connected vertex-transitive planar graph each vertex lies on the boundary
of at most one infinite face. We disprove both conjectures by constructing,
for every positive integer k, a k-connected vertex-transitive planar graph
such that each vertex of this graph lies on at least k infinite faces. In
the printed version of [2] it is also conjectured that a precisely 3-connected
vertex-transitive planar graph cannot have infinite faces. We also disprove
this conjecture by proving that such graphs can have arbitrarily many infi-
nite faces incident with each vertex. See Theorems 5.1 and 5.2.

We also give examples of 2-connected arc-transitive plane graphs in
which all faces are infinite (Theorem 5.5).

The underlying surface of tessellations corresponding to tree amalgama-
tions is homeomorphic and isometric to the 2-sphere with the Cantor set
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removed and endowed with the hyperbolic geometry so that it has constant
negative curvature. We shall use the term Cantor sphere to refer to this
space. It should be mentioned that all Cantor spheres are homeomorphic to
each other, but unlike the simply connected planar surfaces, there are infi-
nitely many nonisometric realizations of the Cantor sphere, even when the
curvature is −1 everywhere. Tessellations of Cantor spheres can be made
particularly nice by using circle packing theorems [3, 4, 17, 1].

Since the fundamental work of Gromov [9], there has been an increased
interest in hyperbolic groups. Free products with amalgamation are, ex-
cept in some trivial cases, obviously hyperbolic in nature. Our tessellation
representation of tree amalgamations of planar graphs (and their isometry
groups) gives yet another view of hyperbolic groups.

All graphs in this paper are locally finite. They may be finite or infinite.
We shall use standard graph theory terminology and established notation.

The group of all automorphisms of a graph G is the automorphism group
of G and is denoted by Aut(G). A graph G is vertex-transitive if Aut(G)
acts transitively on V (G). It is edge-transitive if Aut(G) acts transitively
on E(G), and it is arc-transitive if Aut(G) acts transitively on pairs (v, e) ∈
V (G)×E(G) where v and e are incident. If G is embedded in some surface
and F (G) is the set of faces, then G is said to be flag-transitive if Aut(G)
acts transitively on the set of all flags, i.e., the triples (v, e, f) ∈ V (G) ×
E(G)×F (G) such that v is incident with e, and e is incident with f (where
double incidences give rise to different flags).

2 Tree amalgamation of graphs

Let p1, p2 ∈ {1, 2, 3, . . . } ∪ {∞}, and let T be the (p1, p2)-semiregular tree,
i.e., if V (T ) = V1 ∪ V2 is the bipartition of T , then every vertex in Vi has
degree pi, i = 1, 2. If pi = ∞, the degree is countably infinite. In particular,
T is infinite if p1 ≥ 2 and p2 ≥ 2.

Suppose that there is a mapping c which assigns to each edge of T a pair
(k, l), 0 ≤ k < p1, 0 ≤ l < p2, such that for every vertex v ∈ V1, all first
coordinates of the pairs in {c(e) | v is incident with e} are distinct and take
all values in the set {k | 0 ≤ k < p1}, and for every vertex in V2, all second
coordinates are distinct and exhaust all values in the set {l | 0 ≤ l < p2}.

Let G1 and G2 be graphs. Suppose that {Sk | 0 ≤ k < p1} is a family
of subsets of V (G1), and {Tl | 0 ≤ l < p2} is a family of subsets of V (G2).
We shall assume that all sets Sk and Tl have the same cardinality, and we
let ϕkl : Sk → Tl be a bijection. The maps ϕkl are called identifying maps.
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For each vertex v ∈ Vi, take a copy Gv
i of the graph Gi, i = 1, 2. Denote

by Sv
k (if i = 1) and T v

l (if i = 2) the corresponding copies of Sk or Tl in
V (Gv

i ). Let us take the disjoint union of graphs Gv
i , v ∈ Vi, i = 1, 2. For

every edge st ∈ E(T ) (s ∈ V1, t ∈ V2) with c(st) = (k, l), we identify each
vertex x ∈ Ss

k with the vertex y = ϕkl(x) in T t
l . The resulting graph Y

is called the tree amalgamation of graphs G1 and G2 over the connecting
tree T .

For a vertex v ∈ V (Gi), we define the degree of identification, denoted
by μ(v), as the number of sets Sk (if i = 1) or Tl (if i = 2) that contain v.
To prevent identifications of vertices in graphs Gs

i and Gt
j , where s ∈ Vi and

t ∈ Vj are far apart in T , we shall impose the following requirement:

(A1) For every st ∈ E(T ) (s ∈ V1, t ∈ V2) with c(st) = (k, l), and for every
x ∈ Sk, either μ(x) = 1 or μ(ϕkl(x))) = 1.

Having (A1), every vertex x ∈ Ss
k ⊆ V (Gs

1) with μ(x) > 1 is identified with
precisely μ(x) other vertices which belong to distinct neighboring graphs Gt

2.
If μ(x) = 1 and st ∈ E(T ) is the edge with c(st) = (k, l), then x is identified
with precisely μ(ϕkl(x)) other vertices. Apart from ϕkl(x) ∈ V (Gt

2), they
belong to distinct neighboring graphs Gr

1 of Gt
2. Similar conclusion holds

for vertices in Gt
2.

Proposition 2.1 Suppose that Y is a tree amalgamation of G1 and G2

with respect to identifying families C1 = {Sk | 0 ≤ k < p1} and C2 =
{Tl | 0 ≤ l < p2}, such that every vertex of G2 is contained in precisely one
element of C2. Suppose that G1 is k-connected and that for every C,C ′ ∈ C2,
we have |C| ≥ k and for every k-set X of vertices in C, there are k disjoint
paths from X to C ′. Then Y is k-connected.

Proof. Choose an infinite path v1v2v3 . . . in T . Let x be a vertex in Y that
belongs to V (Gv

1). Let u1u2u3 . . . be a path in T such that u1 = v and there
are integers p, q such that up+i = vq+i for every i > min{p, q}. By using the
assumptions on k-connectivity of G1 and the linkage property of G2, it is
easy to see that there exists a collection of k internally disjoint rays (one-way
infinite paths) starting at x and passing through Gu1

1 , Gu2
2 , Gu3

1 , Gu4
2 , . . . .

Suppose that S is a vertex set of cardinality at most k−1 that separates
vertices x and y in Y . Consider k internally disjoint rays starting at x.
At least one of them, call it Rx, does not intersect S. Similarly, there is a
ray Ry starting at y that is disjoint from S and passes through the same
sequence of graphs Gvi

1 and G
vj

2 as Rx. In particular, Rx and Ry belong to
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the same end in Y . Consequently, there are k disjoint paths from Rx to Ry.
At least one of them is disjoint from S. This contradicts the assumption
that S separates x and y.

If γ is a simple closed curve in the 2-sphere, then γ separates the sphere
into two discs. If γ is oriented, then we call the disc which is on the right
hand side of γ the interior of γ. The other disc is called the exterior of γ.

Suppose that G1 is a plane graph, i.e., G1 is considered together with
some fixed embedding in the 2-sphere. Let C1 = {Sk | 0 ≤ k < p1} and
C2 = {Tl | 0 ≤ l < p2} be the families of all identifying sets in G1 and G2

(viewed as multisets). We say that C1 is facial if for every Sk ∈ C1, there
is a simple closed curve γ(Sk) in the sphere such that γ(Sk) ∩ G1 = Sk,
the interior of γ(Sk) contains neither vertices nor edges of G1, and for any
distinct members Sk, Sl, the interiors of γ(Sk) and γ(Sl) are disjoint. The
same definition applies to C2. The identifying map ϕkl is facial if it maps
the set Sk onto Tl in such a way that the cyclic order of vertices of Sk on
γ(Sk) corresponds to the cyclic order (in either direction) of the image on
γ(Tl).

The following proposition is not a surprise, see [15].

Proposition 2.2 Suppose that G1 and G2 are plane graphs and that C1, C2

are facial. If all identifying maps are facial, then the tree amalgamation Y
has an embedding in the plane such that the induced embedding of each copy
of G1 or G2 is homeomorphic to its given plane embedding (possibly with
reverse orientation).

Proof. Let t0, t1, t2, . . . be an enumeration of vertices of T such that for
every i > 1, ti has a neighbor t′i ∈ {t0, . . . , ti−1}.

For i = 1, 2, . . . , we shall define a planar mapMi whose graph is obtained
from the disjoint union of copies of graphs G1 and G2 corresponding to
vertices t0, t1, . . . , ti and making all identifications used in the amalgamation
corresponding to the edges among these vertices in T .

We may assume that t0 ∈ V1. Then M0 is G1 embedded in the 2-sphere.
Assuming that we have the map Mi−1, we define Mi as follows. The map
Mi−1 has disks with pairwise disjoint interiors and bounded by curves γ(Ss

k)
and γ(T t

l ), where s ∈ {t0, . . . , ti−1}∩V1, t ∈ {t0, . . . , ti−1}∩V2, and where k
(and l) are such that there exists a neighbor u /∈ {t0, . . . , ti−1} of s (of t) such
that c(su) = (k, l′) (or c(tu) = (k′, l)). (This is easily seen by induction.)
To simplify notation, we shall assume that ti ∈ V2. Let us consider the
embedding of the graph G = Gti

2 corresponding to the vertex ti of T and
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suppose that c(t′iti) = (k, l). Delete the interior of γ(T ti
l ) to get a disk D.

Now replace the disk bounded by γ(St′i
k ) in Mi−1 by D in such a way that

the vertices of St′i
k are identified with T ti

l as required by the identifying map
ϕkl. Since the identification maps are facial, this is possible (maybe after
reversing the orientation of D), and we get the map Mi in the 2-sphere.

Since the map Mi extends the embedding of Mi−1, the limiting map
for i → ∞ exists. It is obvious that this map is an embedding of the
amalgamation Y in the 2-sphere and that it has the property stated in the
proposition.

It is worth remarking that (A1) is not needed for the conclusion of Propo-
sition 2.2.

We say that a family C of vertex sets is a cover of G if ∪C = V (G). Let
G be a plane graph and let C be a facial cover of G. Denote by Aut(G, C) the
group of all automorphisms of G which preserve C and its facial structure,
i.e., every such automorphism φ induces a permutation of C, and for every
C ∈ C, the cyclic order of C on γ(C) induces the cyclic order of φ(C) which
is the same or opposite to the cyclic order of φ(C) on γ(φ(C)). The pairs
(v,C) ∈ V (G) × C for which v ∈ C are called C-flags. Clearly, Aut(G, C)
acts on C-flags; if this action is transitive, then we say that C is a strongly
transitive cover in G.

Proposition 2.3 Suppose that G1 and G2 are plane graphs with strongly
transitive facial covers C1 and C2, respectively. Let Y be a tree amalgama-
tion of G1 and G2 with respect to C1 and C2. If all identifying maps are
facial, then Y is a vertex-transitive graph.

If Aut(G, C) has two orbits on C-flags, then we say that C is semitransi-
tive. Suppose that G1 = G2 = G and C1 = C2 = C. An identifying map ϕkl

is symmetry increasing if for every x ∈ Sk, its image ϕkl(x) and x belong to
distinct orbits of the action of Aut(G, C) on C-flags.

Proposition 2.4 Suppose that G is a plane graph with a semitransitive
facial cover C. Let Y be a tree amalgamation of G with itself with respect
to C. If all identifying maps are facial and symmetry increasing, then Y is
a vertex-transitive graph.

We will also make use of another, less obvious criterion of vertex-transi-
tivity.
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Proposition 2.5 Suppose that G1 and G2 are plane graphs with facial cov-
ers C1 and C2, respectively. Suppose that the action of Aut(G1, C1) on the
C1-flags has r orbits Ω1

1, . . . ,Ω
1
r and that the action of Aut(G2, C2) on the

C2-flags has s orbits Ω2
1, . . . ,Ω

2
s. Let Y be a tree amalgamation of G1 and

G2 with respect to C1 and C2. For a vertex v ∈ V (Y ), consider the multiset
Πv of all pairs (i, j), for which there exists a C1-flag in Ω1

i and a C2-flag in
Ω2

j that are identified into v with some identification map. If the identifying
maps are such that Πv is independent of v, then Y is a vertex-transitive
graph.

There is also a “bipartite version” of Proposition 2.5 that is similar to
that of Proposition 2.4.

Proofs of Propositions 2.3–2.5 are left to the reader. Vertex-transitivity
of tree amalgamations is not surprising, but explicit description of automor-
phisms is rather tedious. One can show even more than stated. It follows
that the tree amalgamation Y is uniquely determined up to graph isomor-
phism and is independent of the choice of identifying maps (as long as they
satisfy the necessary properties stated in the propositions).

Propositions 2.3–2.5 can be easily generalized. For example, the con-
dition on planarity is not really needed. However, we shall only need the
planar case. Because of planarity, it is easier to formulate the sufficient con-
dition on how the identifying maps and the action of Aut(G, C) are related
in order to achieve transitivity (it suffices that identifying maps are facial).

A A A A

B

B

B

B

B

B

B

B

Figure 1: Vertex-transitive amalgamation with identifications of degree 2

The action of Aut(G, C) on V (G) preserves identification degrees μ(x)
of vertices with respect to the cover C. An example with identifications of
degree 1 and 2 yielding a vertex-transitive tree amalgamation is shown in
Figure 1. Here, Proposition 2.4 is applied to the graph G shown in the figure
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and its cover consisting of four shaded quadrangles. The vertices labeled A
have identification degree 2. Identifying maps satisfying (A1) interchange
vertices labeled A and B, so they are symmetry increasing.

3 Planar Cayley maps

In this section we give some examples of planar Cayley graphs and relate
the tree amalgamation with the amalgamated free product of groups.

Let Γ1 and Γ2 be groups. Suppose that C is a subgroup in both of
them. The free product with amalgamation over C is the group denoted by
Γ1 ∗C Γ2, which is obtained from the free product Γ1 ∗ Γ2 of Γ1 and Γ2 by
identifying (amalgamating) subsets which correspond to cosets of C in Γ1

and Γ2. The free product with amalgamation occurs, for example, in the
Seifert and van Kampen theorem (see, e.g., [14]), and is treated in many
text books on group theory, e.g. [13, Chapter 4].

Suppose that for i = 1, 2, Gi is a Cayley graph of Γi (with respect to
some finite generating set) and that Ci is the cover of Gi consisting of all
cosets of C in Γi. For each coset we fix a representative g such that the
coset is equal to gC. Let pi = [Γi : C], and let T be the (p1, p2)-semiregular
tree. Then we define the identifying maps such that the coset gC ⊆ V (G1)
is identified with a coset hC ⊆ V (G2) pointwise such that gc �→ hc for every
c ∈ C. In this case, the tree amalgamation of Cayley graphs G1 and G2

is isomorphic to the Cayley graph of the free product of Γ1 and Γ2 with
amalgamation over C.

Let us consider, for example, the n-prism graph as the Cayley graph of
the direct product Γ1 = Zn × Z2 corresponding to the presentation

Γ1 = 〈a, b | a2 = bn = 1, ab = ba〉.

Let Γ2 be the group isomorphic to Γ1 with presentation

Γ2 = 〈c, b | c2 = bn = 1, cb = bc〉.

The cosets of the common subgroup C = Zn×0 = 〈b | bn = 1〉 determine
a facial cover consisting of two n-cycles. The tree amalgamation is the
Cayley graph of the group

Γ1 ∗C Γ2 = 〈a, b, c | a2 = bn = c2 = 1, ab = ba, cb = bc〉 ∼= Zn × (Z2 ∗ Z2)

and is shown in Figure 2 for the case n = 6. This group has two ends.
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Figure 2: The amalgamation of two 6-prisms

An example with infinitely many ends is obtained, for instance, by taking
the octahedron O and the icosahedron I, which are Cayley graphs of the
following groups:

Γ1 = 〈a, b, c | a2 = b3 = c2 = abc = 1〉 ∼= S3

and
Γ2 = 〈a′, b, c′ | a′2 = b3 = c′3 = abc = 1〉 ∼= A4.

The generator b determines a subgroup of order 3, and its cosets form facial
covers in I and O, respectively.

(a) (b) (c)

Figure 3: Strongly transitive facial covers of the integer lattice

An even more interesting example is obtained by starting with the group
Γ2 = (Z2 ∗ Z2)2 with the following presentation

Γ = 〈a1, a2, b1, b2 | a2
i , b

2
j , (aibj)2, i, j = 1, 2〉.
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Its Cayley graph G with respect to the above presentation is isomorphic
to the integer lattice graph. Then C = {0, a1, b1, a1b1} is a subgroup of Γ
of infinite index whose cosets form a facial cover of G. It is represented
in Figure 3(a) by shaded faces. The amalgamation of G with itself is the
Cayley graph for the free product with amalgamation over C of two copies
of Γ. It is represented in Figure 4. This graph is an example of a vertex-
transitive planar graph with infinitely many thick ends. (Recall that an end
is thick if it contains infinitely many pairwise disjoint rays.) This is also an
example of the amalgamation construction where the degrees p1, p2 of the
underlying tree T are infinite.

Figure 4: The amalgamation Γ ∗C Γ

The integer lattice graph admits other strongly transitive facial covers.
Besides the three strongly transitive covers shown in Figure 3, there are
two others (up to symmetries of the plane): the first one contains all facial
4-cycles, while the second one consists of horizontal strips in every second
row. There are several semitransitive facial covers which are not strongly
transitive. Some of them are shown in Figure 5. These examples can be
used to get further examples of infinite vertex-transitive planar graphs with
thick ends.

Stallings [19] proved that every finitely generated group with infinitely
many ends is either an amalgamation or an HNN-extension. Cayley graphs
of HNN-extensions can also be expressed as tree amalgamations (with the
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Figure 5: Some semitransitive facial covers of the integer lattice

degree of identification equal to 2). One example that is very close to HNN-
extension structure is given in Figure 6. On the other hand, expressing
the group as an amalgamation of two other groups does not guarantee that
these groups are “simpler”. However, Dunwoody [7, 6] proved that repeated
application of Stallings’ result leads to groups with at most one end in a
finite number of steps if the group is finitely presented. This leads us to

Conjecture 3.1 Let G be a planar Cayley graph. Then G can be obtained
as the amalgamation of (one or more) Cayley planar graphs, each of which
is either finite or infinite with one end only.

In a conversation with Tomaž Pisanski, Tom Tucker, and Mark Watkins
in 1988, we developed some arguments in support of this conjecture.

If G is a planar graph with at most one end, then its group of automor-
phisms acts either on the sphere (in which case G is finite), the Euclidean
plane, or the hyperbolic plane. Groups acting on the Euclidean plane are
known as crystallographic groups. They are easy to classify and well under-
stood. Also, the groups acting on the hyperbolic plane are well understood.
They are known as the triangular groups and have presentations of the form

T (r, s, t) = 〈x, y, z | xr = ys = zt = xyz = 1〉
∼= 〈x, y | xr = ys = (xy)t = 1〉.
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See, e.g., [5]. Now, Conjecture 3.1 is related to the following

Conjecture 3.2 Let Γ be a (finitely generated) group of isometries of a sur-
face that is homeomorphic to a subset of the 2-sphere. Then Γ is isomorphic
to a free product with amalgamation and/or HNN-extension of finitely many
groups, each of which is either finite or a subgroup of some crystallographic
or some triangular group with one end.

4 Tessellations of the Cantor sphere

By a Cantor sphere we mean any surface S that is homeomorphic to the
2-sphere with a copy of the Cantor set removed, endowed with the hyper-
bolic geometry with constant negative curvature, and such that the group
of isometries Aut(S) is cocompact in S, i.e., S/Aut(S) is compact. All such
surfaces are homeomorphic [18], but not always isometric to each other.

The set of ends of a Cantor sphere S is homeomorphic to the Cantor
set. If G is any graph that is 2-cell embedded in S with finite faces, then
its set of ends is also homeomorphic to the Cantor set [16], and if a group
of automorphisms Γ ≤ Aut(G) of G acts regularly on V (G) and has only
finitely many orbits, then Γ has the same set of ends. Hence, the isometry
groups of Cantor spheres are infinitely ended.

Suppose that for i = 1, 2, Gi is a map realized as a metric space and
let Γi be the group of isometries of the corresponding surface. Suppose
that Aut(Gi, Ci) ∩ Γi acts transitively on the Ci-angles. Suppose, moreover,
that C1 and C2 are facial covers in G1 and G2, respectively, and that the
corresponding curves γ(S) (S ∈ C1) and γ(T ) (T ∈ C2) are all pairwise
isometric, so that identifications can be made without changing the local
metric. Then the tree amalgamation Y of G1 and G2 can be realized as
a map whose group of isometries acts transitively on V (Y ). Most of the
examples presented in this paper can be realized in this way.

Particularly nice examples are obtained if the maps G1 and G2 have
constant Gaussian curvature. Such representations of maps can be obtained,
for example, by using circle packing representations; see, e.g., [1, 3, 4, 17].

5 Tessellations with infinite faces

3-connected planar graphs have essentially unique embeddings in the plane
in the sense that facial walks are uniquely determined. This was proved for
finite graphs by Whitney [21] and extended to infinite locally finite graphs
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by Hotz [10]; see also Imrich [11] whose proof does not need local finiteness.
In particular, in a 3-connected vertex-transitive graph G embedded in the
plane, the set of the lengths of faces that are incident with a particular
vertex are the same for all vertices. If G has infinite faces, then every vertex
is incident with an infinite face.

Bonnington and Watkins [2] presented a 4-connected vertex-transitive
planar graph with infinite faces. This example whose discovery is attributed
to Grünbaum, can be obtained as the tree amalgamation of a cycle C4n of
length 4n (where n ≥ 2) with the (4 × 2)-grid graph and with facial covers
and identification maps as shown in Figure 6. The reason that infinite faces
arise is in the fact that at least two identifications arise in each facial walk
of both graphs used in the amalgamation.

a

a

a

b

b

b

c

cc

d

d

d

' ' ' '

Figure 6: An amalgamation with infinite faces

In this section we exhibit additional vertex-transitive graphs with infinite
faces.

Theorem 5.1 For every integer k there exists a k-connected vertex-transitive
planar graph such that every vertex is incident with at least k infinite faces.

In the preprint version of [2], it was conjectured that a vertex-transitive
planar graph with infinite faces cannot be 5-connected. It was also con-
jectured that in a 4-connected vertex-transitive planar graph each vertex
lies on the boundary of at most one infinite face. Graphs of Theorem 5.1
disprove both of these conjectures. Another conjecture claiming that a pre-
cisely 3-connected vertex-transitive planar graph cannot have infinite faces
appeared in [2]. We also disprove this conjecture by showing:

Theorem 5.2 For every integer k there exists a vertex-transitive planar
graph that is precisely 3-connected and such that every vertex is incident
with at least k infinite faces.
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Proofs of Theorems 5.1 and 5.2 are deferred to the end of this section.
A tessellation of the plane is said to by of type {q1q2 . . . qt} if every vertex

is of degree t and face lengths around every vertex in the clockwise order
are equal to q1, . . . , qt.

Lemma 5.3 Let k ≥ 3, q1 ≥ 3, and q2 ≥ 3 be integers. Then there exists
a tessellation of Euclidean or hyperbolic plane of type {(q1q2)k}. Its graph
Gk(q1, q2) is 2k-connected. The automorphism group of Gk(q1, q2) acts tran-
sitively on flags corresponding to the faces of length q1 and acts transitively
on flags corresponding to the faces of length q2. In particular, Gk(q1, q2) is
arc-transitive.

Proof. Existence, uniqueness and transitivity properties of G = Gk(q1, q2)
are well-known. To prove the claim about connectivity, suppose that S is a
vertex set of cardinality at most 2k − 1 that separates two vertices x and y
of G. Consider the 2k straight-ahead walks starting at x. They are pairwise
disjoint and each of them gives rise to a ray (one-way infinite path) starting
at x. So, at least one of them, call it Rx, does not intersect S. Similarly,
there is a ray Ry starting at y that is disjoint from S. Since G has only
one end, there are 2k disjoint paths from Rx to Ry. At least one of them is
disjoint from S. However, this contradicts the assumption that S separates
x and y.

Graphs Gk(q1, q2) usually tesselate hyperbolic plane. The only one that
is Euclidean is G3(3, 3), the tessellation of the plane with equilateral tri-
angles. Two further Euclidean examples are obtained for k = 2, namely
G2(3, 6) and G2(4, 4). Other examples exist for k = 2 but they are finite;
G2(3, 3) is the octahedron, G2(3, 4) is the line graph of the 3-cube, and
G2(3, 5) is the line graph of the dodecahedron.

The dual map of Gk = Gk(q1, q2) is bipartite; the corresponding bipar-
tition F1,F2 of the faces has all faces of length qi in F i (i = 1, 2). If v is
a vertex of Gk and F ∈ F i is a face incident with v, then the pair (v, F ) is
called an F i-angle. The collection of all F i-angles will be denoted by Ai.

Lemma 5.4 Suppose that k and q1 are both multiples of an integer s ≥ 1,
q1 = r1s, k = rs. Then there exists a mapping ϕ : A1 → {1, . . . , s} such
that the following holds:

(a) If F ∈ F1 and the facial walk of F in the clockwise direction is
v1v2 . . . vq1v1, then the cyclic order of ϕ(v1, F ), ϕ(v2, F ), . . . , ϕ(vq1 , F )
is equal to (12 . . . s)r1 .
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(b) If v is a vertex and the faces incident to v are F1, . . . , F2k in the clock-
wise cyclic order around v, where F1 ∈ F1, then the cyclic order of
ϕ(v, F1), ϕ(v, F3), . . . , ϕ(v, F2k−1) is equal to (s(s − 1) . . . 1)r.

Proof. The mapping ϕ can be constructed as follows. Let a0 = (v0, F0)
be an angle in A1 and set ϕ(a0) = 1. Let W be a walk in Gk starting at
v0. If W is a path, then by following W and applying conditions (a)–(b),
we see that ϕ can be extended to all F1-angles incident with vertices on W .
In this way we can extend ϕ to A1 in a unique way. However, an extension
exists if and only if it is independent of the path chosen. This is equivalent
to asking that for any closed walk W starting at v0, after we return back to
v0, the forced values at the angles at v0 match their initial values.

To prove this, let W = v0v1 . . . vnv0 be a closed walk. Suppose that after
following W and returning back to v0, application of rules (a)–(b) along W
yields the value t at the angle (v0, F0). Then we write ψ(W ) = t.

If vi+2 = vi for some i ∈ {0, . . . , n− 1}, let W ′ = v0 . . . vi−1vi+2 . . . vnv0.
Then it is clear that ψ(W ′) = ψ(W ). Suppose now that the edge vivi+1

belongs to a facial walk F = vivi+1u1 . . . umvi. LetW ′′ = v0 . . . viumum−1 . . .
u1vi+1 . . . vnv0. If F ∈ F1, then (a) implies that ψ(W ′′) = ψ(W ). On the
other hand, if F ∈ F2, then following W ′′ around F yields only two values
at angles in A1 that are adjacent to F . This implies that ψ(W ′′) = ψ(W )
in this case, too.

The plane is simply connected. Therefore, every closed walk W can
be reduced to a trivial walk W0 = v0 by using the two types of changes
(W �→ W ′, W �→ W ′′, and their inverses) that we have described above.
Consequently, ψ(W ) = ψ(W0) = 1, which we were to prove.

Proof of Theorems 5.1 and 5.2. The graphs satisfying conclusions of
both theorems are amalgamations. For the first amalgamation factor we
take G1 = Gk(q1, q2), where k = rs is the value from the theorems, q1 = r1s
and q2 ≥ 3. We also assume that r ≥ k/2, r1 ≥ 2, and s ≥ 3. Let ϕ be a
mapping from Lemma 5.4. The facial cover C1 of G1 consists of segments of
faces in F1 with consecutive angles A1A2 . . . As such that ϕ(Aj) = j for all
j ∈ {1, . . . , s}. Let us observe that Γ1 = Aut(G1, C1) has s orbits on C1-flags
(v,C) (v ∈ V (G1), C ∈ C1).

As the second factor G2 we take the (s×2)-grid graph Ps�K2 with facial
cover C2 consisting of two sets, each containing the vertices of a copy of Ps

in the grid.
By Proposition 2.5, the amalgamation Y of (G1, C1) with (G2, C2), us-

ing the obvious facial identification maps, is a vertex-transitive graph. By
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Proposition 2.2, Y is planar, and by Proposition 2.1 and Lemma 5.3 it is
l-connected, where l = min{2k, s}.

It can also be seen that every vertex of Y is incident with precisely 2r ≥ k
infinite faces. We leave the details to the reader.

The above construction gives an example satisfying the conclusion of
Theorem 5.1 if s ≥ k. If we take s = 3, then we obtain examples for
Theorem 5.2.

Edge-transitive planar graphs are treated in [8]. Here we present inter-
esting examples of some arc-transitive planar graphs with infinite faces.

Let Tr (r ≥ 3) be the infinite r-regular tree. The Cartesian productNr =
Tr�K2 is planar and 2-connected. It can be obtained as a tree amalgamation
of the 4-cycle, G1 = C4 (with consecutive vertices 0, 1, 2, 3), and the 2-path,
G2 = K2 (with vertices 0 and 1), by taking the covers C1 = {{0, 1}, {2, 3}}
and C2 = {{0, 1}, . . . , {0, 1}} (the multiset consisting of r copies of the pair
{0, 1}). The graph Nr is vertex-transitive and its automorphism group has
two orbits on the edges. The first orbit E1 contains all edges that correspond
to the factor K2 in the Cartesian product. The second orbit E2 corresponds
to all edges in both copies of Tr in the Cartesian product.

Figure 7: T3�K2 with infinite faces

For i = 1, 2, let Di be the facial cover of Nr consisting of all pairs of
vertices corresponding to edges in Ei. Finally, let Mr be the tree amalga-
mation of Nr (with cover D1) with itself (but this time taken with the cover
D2). Let us observe that the degrees of identification are equal to 1 and r,
respectively, so that (A1) is satisfied.

Theorem 5.5 The graph Mr is a 2-connected (r2−r)-regular arc-transitive
planar graph that admits an embedding in the plane under which all faces
are infinite.

Proof. It is easy to see that Mr is 2-connected, (r2 − r)-regular, arc-
transitive and planar. Bonnington and Watkins [2] studied embeddings
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of Nr in the plane. They proved that Nr admits an embedding in which
all faces are infinite, see also Figure 7. By taking such embeddings when
making identifications in the process of constructing the amalgamation and
its planar embedding as presented in the proof of Proposition 2.2, all faces
of the resulting limiting map Mr are clearly infinite.

6 Conclusion

The purpose of this paper is two-fold. First, exhibiting various examples
of “unusual” amalgamations, we obtain a variety of planar vertex-transitive
graphs with infinitely many ends and with rather odd properties. Secondly,
we show that amalgamations of plane graphs lead to nice tessellations of
Cantor spheres – objects that would deserve to receive further attention
because of their natural appearance in differential geometry, combinatorial
group theory, graph theory and several other related fields.
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