THE MINOR CROSSING NUMBER*

DRAGO BOKAL[†], GAŠPER FIJAVŽ[‡], AND BOJAN MOHAR[§]

Abstract. The minor crossing number of a graph G is defined as the minimum crossing number of all graphs that contain G as a minor. Basic properties of this new invariant are presented. We study topological structure of graphs with bounded minor crossing number and obtain a new strong version of a lower bound based on the genus. We also give a generalization of an inequality of Moreno and Salazar crossing numbers of a graph and its minors.

Key words. crossing number, graph minor

AMS subject classifications. 05C10, 05C83

DOI. 10.1137/05062706X

1. Preliminaries. Crossing numbers of graphs have been thoroughly studied [20], yet only a few exact results are known, and new ideas seem to be needed. Crossing numbers in general give a measure of nonplanarity of graphs. Unfortunately, they are not monotone with respect to graph minors. Seymour (see Archdeacon [1]) asked "How to define a crossing number that would work well with minors?" In this paper we propose two possible answers to this question and study one of them in greater detail. Our approach is based on general principles of how a graph invariant can be transformed into a minor-monotone graph invariant [4].

Crossing numbers of graphs are believed to have applications in VLSI design where one wants a design of a (huge) electrical network such that the number of crossing edges (wires) is minimized [3, 10, 11]. However, today's chip manufacturers replace vertices of high degree by binary trees. The minor crossing number treated in this paper does precisely this—each vertex is expanded into a cubic tree in such a way that the resulting graph can be realized with as few crossings as possible. It turns out that this interpretation of crossing numbers has rich mathematical structure, whose basics are uncovered in this work.

Let $G = (V_G, E_G)$ be a graph and Σ a closed surface. If Σ has Euler characteristics χ , then the number $g = 2 - \chi$ is called the *Euler genus* of Σ . The nonorientable surface of Euler genus $g \ge 1$ is denoted by \mathbb{N}_g , and the orientable surface of Euler genus 2g $(g \ge 0)$ is denoted by \mathbb{S}_g .

A drawing $D = (\varphi, \varepsilon)$ of G in (PL) surface Σ consists of a one-to-one mapping $\varphi: V_G \to \Sigma$ and a mapping $\varepsilon: E_G \to \Omega(\Sigma)$ that maps edges of G to simple (polygonal) curves in Σ such that endpoints of $\varepsilon(uv)$ are $\varphi(u)$ and $\varphi(v)$, $\varphi(V_G)$ does not intersect interiors of images of edges, and the intersection of interiors of ε -images of any two distinct edges contains at most one point.

^{*}Received by the editors March 17, 2005; accepted for publication (in revised form) November 28, 2005; published electronically April 21, 2006. This work was supported in part by the Ministry of Higher Education, Science and Technology of Slovenia, Research Project L1-5014 and Research Program P1-0297.

http://www.siam.org/journals/sidma/20-2/62706.html

[†]Department of Mathematics, IMFM, SI-1000 Ljubljana, Slovenia (drago.bokal@imfm.uni-lj.si).

[‡]Faculty of Computer and Information Science, University of Ljubljana, SI-1000 Ljubljana, Slovenia (gasper.fijavz@fri.uni-lj.si).

[§]Department of Mathematics, University of Ljubljana, SI-1000 Ljubljana, Slovenia (bojan. mohar@uni-lj.si). Current address: Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada.

Let e and f be distinct edges of G, let r and s be their images in Σ , and suppose that $x \in r \cap s$. Let U be a neighborhood of x so that for each disk neighborhood $B \subseteq U$ of x both $B \cap r \cap s = \{x\}$ and $|\partial B \cap (r \cup s)| = 4$. We say that e and f or that r and s cross at x (and call x a crossing) if points of r and s interlace along ∂B for every such B, and say that r and s touch otherwise. In the latter case we call x a touching of r and s (or of e and f).

A drawing D is *normal* if it has no touchings and for each crossing x there are precisely two edges of G whose crossing is x.

Crossing number of a graph G in Σ , $\operatorname{cr}(G, \Sigma)$, is defined as the minimum number of crossings in any normal drawing of G in Σ , and with $\operatorname{cr}(G)$ we denote the crossing number of G in the sphere. For a drawing $D = (\varphi, \varepsilon)$ of G in Σ , connected regions of $\Sigma \setminus \varepsilon(E_G)$ are called faces of D. By our standards, a drawing of G in the plane \mathbb{R}^2 is a drawing of G in the sphere \mathbb{S}_0 , equipped with an *infinite point* ∞ avoiding the image of G. The *infinite face* of a drawing of G in the plane is the face containing ∞ . Further, an *embedding* is a drawing without crossings. Besides this terminology, the reader is referred to [15] for other notions related to graph embeddings.

For a given graph G, the *minor crossing number* is defined as the minimum crossing number of all graphs that contain G as a minor:

(1.1)
$$\operatorname{mcr}(G, \Sigma) := \min\{\operatorname{cr}(H, \Sigma) \mid G \leq_m H\}.$$

By mcr(G) we denote $mcr(G, \mathbb{S}_0)$.

Similarly, the *major crossing number* of G is the maximum crossing number taken over all minors of G:

(1.2)
$$\operatorname{Mcr}(G, \Sigma) := \max\{\operatorname{cr}(H, \Sigma) \mid H \leq_m G\}$$

The following two lemmas follow directly from the definitions. LEMMA 1.1. For every graph G and every surface Σ ,

$$\operatorname{mcr}(G, \Sigma) \le \operatorname{cr}(G, \Sigma) \le \operatorname{Mcr}(G, \Sigma)$$

LEMMA 1.2. If G is a minor of H, then for every surface Σ ,

$$\operatorname{mcr}(G, \Sigma) \leq \operatorname{mcr}(H, \Sigma)$$
 and $\operatorname{Mcr}(G, \Sigma) \leq \operatorname{Mcr}(H, \Sigma)$.

Lemma 1.2 immediately yields the following.

COROLLARY 1.3. Let $k \ge 0$ be an integer and Σ a surface. The families of graphs $\omega(k, \Sigma) := \{G \mid \operatorname{mcr}(G, \Sigma) \le k\}$ and $\Omega(k, \Sigma) := \{G \mid \operatorname{Mcr}(G, \Sigma) \le k\}$ are minor-closed.

For each graph G there exists a graph \overline{G} such that $G \leq_m \overline{G}$ and $\operatorname{mcr}(G, \Sigma) = \operatorname{cr}(\overline{G}, \Sigma)$. We call such a graph \overline{G} a *realizing graph of* G, and an optimal drawing of \overline{G} in Σ is called a *realizing drawing of* G (with respect to Σ). By no means are a realizing graph or drawing uniquely determined, but we shall always assume that G and \overline{G} have the same number of connected components.

As G is a minor of its realizing graph \overline{G} , G can be obtained as a contraction of a subgraph of \overline{G} . In other words, $G = (\overline{G} - R)/C$ for suitable edge sets $R, C \subseteq E_{\overline{G}}$. The edges of R are called *removed edges*, and those in C are *contracted edges*. Note that the edge-set C is acyclic and that $E_G = E_{\overline{G}} \setminus (R \cup C)$ are the original edges of G. It is clear that every graph G has a realizing graph \overline{G} such that $R = \emptyset$.

FIG. 1. mcr as an extension of cr.

For each vertex $v \in V_G$ there is a unique maximal tree $T_v \subseteq \overline{G}[C]$ which is contracted to v. In the figures, the original edges will be drawn as thin lines and the contracted edges as thick lines.

The minor crossing number can be considered a natural extension of the usual crossing number. Clearly, if $e, f \in E_{\overline{G}}$ cross in a realizing drawing of G, then $e, f \in C \cup E_G$. If both belong to C, then their crossing is a *vertex-vertex* crossing; if both belong to E_G , then they cross in an *edge-edge* crossing; and otherwise they cross in an *edge-vertex* crossing. This point of view is illustrated in Figure 1. Note that by subdividing the original edges appropriately, all the crossings in the realizing drawing can be forced to be vertex-vertex crossings.

If G is a cubic graph, then clearly $mcr(G, \Sigma) = cr(G, \Sigma)$. Hliněný proved in [6] that computing the planar crossing number of cubic graphs is NP-hard and has remarked that this implies that the same holds for computing mcr(G) for any graph G. Crossing numbers of cubic graphs were also studied by McQuillan and Richter [13] and Richter [17].

PROPOSITION 1.4. For every graph G and every surface Σ there exists a cubic realizing graph H. Moreover, if $\delta(G) \geq 3$, then G can be obtained from H by contracting edges only.

Proof. Let H_0 be a realizing graph of G without removed edges, and let $D_0 = (\varphi, \varepsilon)$ be an optimal drawing of H_0 . We shall describe H in terms of its drawing D obtained from D_0 . For each vertex v of H_0 of degree $d := d_{H_0}(v) \neq 3$ let U_v be a closed disk containing $\varphi(v)$ in its interior, so that a small neighborhood of U_v contains no crossings, U_v is disjoint from U_u for $u \in V_{H_0} \setminus \{v\}$, and $U_v \cap \varphi(E_{H_0})$ is connected.

For each of the cases d > 3, d = 2, and d = 1, we modify D_0 in U_v as indicated in Figure 2. Let D be this new drawing and H the graph defined by D.

Clearly $G \leq_m H$, and so $\operatorname{cr}(H, \Sigma) \geq \operatorname{mcr}(G, \Sigma)$. As D contains no new crossings, we have $\operatorname{mcr}(G, \Sigma) = \operatorname{cr}(H_0, \Sigma) = \operatorname{cr}(D, \Sigma) \geq \operatorname{cr}(H, \Sigma)$. A combination of these two inequalities proves that $\operatorname{cr}(H, \Sigma) = \operatorname{mcr}(G, \Sigma)$.

If $\delta(G) \geq 3$, then we can assume $\delta(H_0) \geq 3$, which implies $|E_H| - |V_H| = |E_{H_0}| - |V_{H_0}|$. As $H_0 \leq_m H$, we can obtain G from H by contracting edges only. \Box

2. Minor crossing number and maximum degree. In this section we present a generalization of the following result (cf. also section 6).

THEOREM 2.1 (see Moreno and Salazar [16]). Let G be a minor of a graph H with $\Delta(G) \leq 4$. Then $\frac{1}{4}\operatorname{cr}(G, \Sigma) \leq \operatorname{cr}(H, \Sigma)$ for every surface Σ .

Suppose that G = H/e for $e = v_1v_2 \in E_H$. For i = 1, 2, let $d_i = \deg_H(v_i) - 1$ be the number of edges incident with v_i and distinct from e. We may assume that

FIG. 2. Drawing a cubic realizing graph; cf. Proposition 1.4.

FIG. 3. Contracting edges on a drawing.

 $d_1 \leq d_2$. As shown in Figure 3, any given drawing of H can be changed into a drawing of G such that every crossing involving e is replaced by d_1 new crossings.

More generally, let G be a minor of H. We assume that G = (H - R)/C. Then $E_G = E_H \setminus (R \cup C)$. Let $D_H = (\varphi_H, \varepsilon_H)$ be a normal drawing of H. Then D_H determines a normal drawing of H - R in Σ in which no new crossings arise. On the other hand, by contracting the edges in C, the number of crossings can increase. If we perform edge-contractions one by one, and every time apply the redrawing procedure as described above, then we can control the number of new crossings. To do the counting properly, we need some additional notation.

Let us define $w(G, H) : E_H \to \mathbb{N}$ by setting w(G, H, e) = 0 if $e \in R$ and w(G, H, e) = 1 if $e \in E_G$. If $e \in C$, let T_v be the maximal tree induced by C containing e (which contracts to the vertex v in G). Let T_1, T_2 be the components of $T_v - e$, and let d_i (i = 1, 2) denote the number of edges in E_G that are incident with T_i . Then we set $w(G, H, e) = \min\{d_1, d_2\}$. For $e \in E_H$ we call w(G, H, e) the weight of the edge e.

Let $G \leq_m H_1 \leq_m H$, so that $G = (H_1 - R_1)/C_1$, $H_1 = (H - R')/C'$, and G = (H - R)/C, where $R = R_1 \cup R'$ and $C = C_1 \cup C'$. Let D_H be a normal drawing of H. Further, let D_1 be a drawing of H_1 obtained from D_H by removing the edges of R' and applying the described contractions of the edges in C' one after another. When doing these contractions, we proceed much as shown in Figure 3 except that the criterion for whether to contract towards v_1 or v_2 is not the degree of v_1 or v_2 but the quantities d_1 or d_2 introduced in the previous paragraph. Similarly, let D_G

be obtained from D_1 by using R_1 and C_1 . If D is a drawing, let X(D) be the set of crossings of D, and for $x \in X(D)$ let e_x and f_x be the edges that cross at x.

LEMMA 2.2. Let G, H, H_1 and their drawings D_G , D_H , D_1 be as defined in the previous paragraph. Then

(2.1)
$$\sum_{x \in X(D_1)} w(G, H_1, e_x) w(G, H_1, f_x) \le \sum_{x \in X(D_H)} w(G, H, e_x) w(G, H, f_x).$$

Proof. It is enough to prove this for the case when H_1 and H differ only in a single minor operation with respect to G, i.e., $R' \cup C' = \{e\}$. If $H_1 = H - e$, then w(G, H, e) = 0 and the sums are equal.

Suppose now that $H_1 = H/e$. As simplifying the image of e decreases the righthand sum, we may assume that $\varepsilon_H(e)$ is a simple arc. We adopt the notation introduced above. The edge e is contracted, and thus $e \in C$. After the contraction of e, all weights remain the same; i.e., $w(G, H_1, f) = w(G, H, f)$ for every $f \in E_H - e$. Hence, the difference between the left- and the right-hand sides in (2.1) is that the crossings of e in D_H are replaced by newly introduced crossings in D_1 (as shown in Figure 3). Let $x \in X(D_H)$ with $e_x = e = v_1v_2$, and let E_1 be the set of edges incident with v_1 . Since $\sum_{f \in E_1 - e} w(G, H_1, f) = \sum_{f \in E_1 - e} w(G, H, f) = w(G, H, e)$ and to each crossing x of e with some e' in D_1 there correspond exactly the crossings of $E_1 - e$ with the edge e', the inequality (2.1) follows. \Box

THEOREM 2.3. Let G be a minor of a graph H, Σ be a surface, and $\tau := \lfloor \frac{1}{2}\Delta(G) \rfloor$. Then

$$\operatorname{cr}(G, \Sigma) \leq \tau^2 \operatorname{cr}(H, \Sigma).$$

Proof. Let D_H be an optimal drawing of H, and let D_G be the drawing of G, obtained from D_H as described before Lemma 2.2. We apply Lemma 2.2 with $H_1 = G$. Obviously, $\operatorname{cr}(G, \Sigma) \leq \operatorname{cr}(D_G, \Sigma)$. As all edges in G have weight w(G, G, e) = 1, the left-hand side of inequality (2.1) equals the number of crossings in D_G . Since the weights w(G, H, e) of edges in H are bounded from above by τ , the theorem follows. \Box

By using Theorem 2.3 together with definition (1.1) and Lemma 1.2, we obtain the following corollary.

COROLLARY 2.4. Let G be a graph, Σ a surface, and $\tau := \left| \frac{1}{2} \Delta(G) \right|$. Then

$$\operatorname{mcr}(G, \Sigma) \leq \operatorname{cr}(G, \Sigma) \leq \tau^2 \operatorname{mcr}(G, \Sigma).$$

3. Minor crossing number and genus. In this section we derive some genusrelated lower bounds for minor crossing number of graphs. For additional terminology, we refer the reader to [15].

THEOREM 3.1. Let G be a graph with genus g(G) and nonorientable genus $\tilde{g}(G)$. If Σ is an orientable surface of genus $g(\Sigma)$, then $mcr(G, \Sigma) \geq g(G) - g(\Sigma)$ and $mcr(G, \Sigma) \geq \tilde{g}(G) - 2g(\Sigma)$.

If Σ is a nonorientable surface with nonorientable genus $g(\Sigma)$, then $mcr(G, \Sigma) \geq \tilde{g}(G) - g(\Sigma)$.

Proof. Let D be an optimal drawing of a realizing graph \overline{G} in an orientable surface Σ . For each crossing in D we add a handle to Σ and obtain an embedding of \overline{G} in a surface Σ' of genus $g(\Sigma') = g(\Sigma) + \operatorname{mcr}(G, \Sigma)$. Using minor operations on D, we can obtain an embedding of G in Σ' , which yields $g(\Sigma') \geq g(G)$. Thus, we have $\operatorname{mcr}(G, \Sigma) \geq g(G) - g(\Sigma)$. The other two claims can be proved in a similar way by adding crosscaps at crossings of D. Note also that adding a crosscap to an orientable surface of genus g results in a surface of nonorientable genus 2g + 1.

When the genus of a graph is not known, one can derive the following lower bound using the Euler formula and the same technique as in the preceding proof.

PROPOSITION 3.2. Let G be a graph with $n = |V_G|$, $m = |E_G|$, and girth r, and let Σ be a surface of Euler genus g. Then $mcr(G, \Sigma) \geq \frac{r-2}{r}m - n - g + 2$.

Proof. As in the proof of Theorem 3.1, we obtain an embedding D of G in \mathbb{N}_{g+k} , where $k = \operatorname{mcr}(G, \Sigma)$. Let f be the number of faces in D. All faces have length at least r, and thus $f \leq \frac{2m}{r}$. The Euler formula results in $2 - (g+k) = n - m + f \leq n - \frac{r-2}{r}m$, which yields the claimed bound. \Box

In section 5 we derive an improvement over Proposition 3.2; see Theorem 5.6.

The following proposition relates minor crossing numbers in different surfaces with the one in the plane.

PROPOSITION 3.3. The inequality $mcr(G, \Sigma) \leq max(0, mcr(G) - g(\Sigma))$ holds for every surface Σ and every graph G, where $g(\Sigma)$ denotes the (non)orientable genus of Σ .

Proof. Let us start with a realizing drawing of G in the sphere. We can remove at least one existing crossing by adding either a crosscap (if the surface is nonorientable) or a handle. This increases the genus of the surface by 1, and the result follows.

4. Minor crossing number and connectivity. Let G_1, \ldots, G_k be the components of a graph G. It is easy to see that $mcr(G) = \sum_{i=1}^{k} mcr(G_i)$. We shall extend this fact to the blocks (2-connected components) of G, even in the setting of the minor crossing number in a surface.

Let Σ be a surface and k a positive integer. We say that a collection $\Sigma_1, \ldots, \Sigma_k$ of surfaces is a *decomposition* of Σ and write $\Sigma = \Sigma_1 \# \cdots \# \Sigma_k$ if Σ is homeomorphic to the connected sum of $\Sigma_1, \ldots, \Sigma_k$.

THEOREM 4.1. Let Σ be a surface and let G be a graph with blocks G_1, \ldots, G_k . Then

$$\sum_{i=1}^{k} \operatorname{mcr}(G_i, \Sigma) \leq \operatorname{mcr}(G, \Sigma) \leq \min\left\{\sum_{i=1}^{k} \operatorname{mcr}(G_i, \Sigma_i) \mid \Sigma = \Sigma_1 \# \cdots \# \Sigma_k\right\}.$$

Proof. Let D be an optimal drawing of a realizing graph \tilde{G} in Σ . For each G_i it contains an induced subdrawing D_i of some graph \tilde{G}_i with G_i as a minor. G_i and G_j are either disjoint (implying that \tilde{G}_i and \tilde{G}_j are disjoint), or they have a cutvertex v in common (implying that \tilde{G}_i and \tilde{G}_j intersect in a part of the tree T_v). As there are at least $\operatorname{mcr}(G_i, \Sigma)$ crossings in D_i and there are no crossings in the subdrawing induced by T_v for any $v \in V_G$, the lower bound follows.

Let us reorder the blocks of G in such a way that for i = 2, ..., k the block G_i shares at most one vertex with the graph $H_i := \bigcup_{j=1}^{i-1} G_j$. This can be done using the block-cutvertex forest of G.

Let $\Sigma_1, \ldots, \Sigma_k$ be a decomposition of Σ where the minimum is attained. For $i = 1, \ldots, k$ let the D_i be some optimal drawing of \bar{G}_i in Σ_i . Set $\tilde{D}_1 = D_1$, $\tilde{H}_1 = \bar{G}_1$, and $\Pi_1 = \Sigma_1$. For $i = 2, \ldots, k$ we choose a face f_i of \tilde{D}_{i-1} in Π_{i-1} and f'_i of D_i in Σ_i . If H_{i-1} and G_i share a vertex v, then we choose f_i incident with some vertex x_i of $T_v \subseteq \tilde{H}_{i-1}$ and f'_i incident with some vertex y_i of $T_v \subseteq \bar{G}_i$; otherwise the choice can be arbitrary. By constructing a connected sum of faces f_i, f'_i and, if necessary, connecting x_i with y_i in the new face $f_i \# f'_i$, we obtain a drawing \tilde{D}_i of \tilde{H}_i in $\Pi_i := \Pi_{i-1} \# \Sigma_i$.

It is clear that $G \leq_m \tilde{H}_k$ and that \tilde{D}_k is a drawing of \tilde{H}_k in Σ with at most $\sum_{i=1}^k \operatorname{mcr}_{\Sigma_i}(G_i)$ crossings. This proves the upper bound inequality. \Box

COROLLARY 4.2. Let G be a graph with blocks G_1, \ldots, G_k . Then

$$\operatorname{mcr}(G) = \sum_{i=1}^{k} \operatorname{mcr}(G_i)$$

Proof. To prove this, one just has to observe that, for $\Sigma = S_0$, the left-hand side and the right-hand side in the inequalities in Theorem 4.1 are equal. \Box

5. Structure of graphs with bounded mcr (G, Σ) . As mentioned in section 1, the family $\omega(k, \Sigma)$ of all graphs, whose mcr (G, Σ) is at most k, is minor-closed. Let us denote by $F(k, \Sigma)$ the set of minimal forbidden minors for $\omega(k, \Sigma)$. F(k) and $\omega(k)$ stand for $F(k, \mathbb{S}_0)$ and $\omega(k, \mathbb{S}_0)$, respectively.

Graphs in $\omega(0, \Sigma)$ have a simple topological characterization—they are precisely the graphs that can be embedded in Σ . A similar topological characterization holds for graphs in $\omega(1)$. They are precisely the graphs that can be embedded in the projective plane with face-width at most 2. This was observed by Robertson and Seymour [18], who determined the set F(1) of minimal forbidden minors for $\omega(1)$ as follows.

THEOREM 5.1 (see Robertson and Seymour [18]). The set F(1) contains precisely the 41 graphs G_1, \ldots, G_{35} and Q_1, \ldots, Q_6 , where G_1, \ldots, G_{35} are the minimal forbidden minors for embeddability in the projective plane and Q_1, \ldots, Q_6 are projective planar graphs that can be obtained from the Petersen graph by successively applying the $Y\Delta$ and ΔY operations.

This theorem establishes the following linear time algorithm for testing whether mcr(G) is at most 1: first embed G in the projective plane [14] and then check whether the face-width of the embedding is less than or equal to 2 (see [8]).

Let us remark that the forbidden minors for the projective plane have been determined by Glover, Huneke, and Wang [7] and Archdeacon [2]. There are seven graphs that can be obtained from the Petersen graph by $Y\Delta$ and ΔY operations (known as the Petersen family), but one of them cannot be embedded in the projective plane and is one of the forbidden minors for the projective plane.

We will prove that every family $\omega(k, \Sigma)$ has a similar topological representation, for which we need some further definitions.

Let γ be a one-sided simple closed curve in a nonorientable surface Π of Euler genus g. Cutting Π along γ and pasting a disk to the resulting boundary yields a surface denoted by Π/γ of Euler genus g-1. We say that Π/γ is obtained from Π by annihilating a crosscap at γ .

Let us call a set of pairwise noncrossing, onesided, simple closed curves $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$ in a nonorientable surface Π a *k*-system in Π . It is easy to see that for distinct $\gamma_i, \gamma_j \in \Gamma$ the surface $(\Pi/\gamma_i)/\gamma_j$ is homeomorphic to $(\Pi/\gamma_j)/\gamma_i$. Therefore the order in which we annihilate the crosscaps at prescribed curves is irrelevant, and we define $\Pi/\Gamma := \Pi/\gamma_1/\ldots/\gamma_k$. We say that the *k*-system Γ in Π is an orienting *k*-system if the surface Π/Γ is orientable.

Suppose that D is a drawing of G in a nonorientable surface Π with at most c crossings. If there exists an (orienting) k-system Γ in Π with each $\gamma \in \Gamma$ intersecting D in at most two points, then we say that D is (*orientably*) (c, k)-degenerate, and we call Γ an (*orienting*) k-system of D. If c = 0, then D is an embedding and we also say that it is k-degenerate. Let us observe that an embedding of a graph in the projective plane is 1-degenerate precisely when the face-width of the embedding is at most 2.

FIG. 4. Replacing a crossing by a crosscap and a respective annihilating curve.

LEMMA 5.2. Let Σ be an (orientable) surface of Euler genus g, and let $k \geq 1$ be an integer. Then, for any $l \in \{1, \ldots, k\}$, the family $\omega(k, \Sigma)$ consists precisely of all those graphs $G \in \omega(k - l, \mathbb{N}_{g+l})$, for which there exists a graph \tilde{G} that contains G as a minor and that can be drawn in the nonorientable surface \mathbb{N}_{g+l} of Euler genus g+lwith (orienting) degeneracy (k - l, l).

Proof. Let $G \in \omega(k, \Sigma)$ and let \overline{G} be its realizing graph, drawn in Σ with at most k crossings. Choose a subset of l crossings of \overline{G} . By replacing a small disk around each of the chosen crossings with a Möbius band, we obtain a drawing of \overline{G} in \mathbb{N}_{g+l} with (orienting) degeneracy (k - l, l). The replacement at one such crossing and the corresponding curve annihilating the crosscap are illustrated in Figure 4.

For the converse we first prove the induction basis l = 1.

Let \tilde{G} be the graph that contains G as a minor and is drawn in \mathbb{N}_{g+1} with at most k-1 crossings, and let us assume that a one-sided curve γ intersects the drawing of \tilde{G} in at most two points, x and y. After cutting the surface along γ and pasting a disc Δ on the resulting boundary, we get a surface of Euler genus g. On the boundary of Δ , two copies of x and y interlace. By adding paths P_x and P_y joining the copies of x and y (respectively), we obtain a drawing D' of a graph G', which contains \tilde{G} (and hence also G) as a minor. Clearly, D' has one crossing more (the one between P_x and P_y) than the drawing of \tilde{G} . So, D' is (k-1,1)-degenerate.

If $l \geq 2$, we may annihilate the crosscaps consecutively, as the curves in the corresponding *l*-system are noncrossing. Note that if the *l*-system is orienting, we obtain an orientable surface Σ . \Box

LEMMA 5.3. Let \tilde{G} be a graph with an (orientably) k-degenerate embedding in a surface Σ . If G is a surface minor of \tilde{G} , then G is also (orientably) k-degenerate.

Proof. It suffices to verify the claim for edge-deletions and edge-contractions. For edge-deletions, there is nothing to be proved, and for edge contractions, one has to show only that a k-system for \tilde{G} can be transformed into a k-system for \tilde{G}/e . We leave the details to the reader. \Box

Lemma 5.3 can be extended to drawings with crossings if we restrict edge-contraction to edges that are not involved in crossings.

As a direct consequence of Lemmas 5.2 and 5.3 we have the following result.

THEOREM 5.4. Let Σ be an (orientable) surface of Euler genus g, and let $k \geq 1$ be an integer. Then $\omega(k, \Sigma)$ consists of precisely all the graphs that can be embedded in the nonorientable surface \mathbb{N}_{g+k} of Euler genus g + k with (orienting) degeneracy k.

Figure 5(a) exhibits the geometric structure of a realizing drawing in the Klein bottle, (b) shows the general structure of its minors G with $mcr(G) \leq 2$, and (c) is a degenerate example of this structure in which the curves of the corresponding

FIG. 5. Embeddings in the Klein bottle with orienting degeneracy 2.

2-system $\{\gamma_1, \gamma_2\}$ touch twice.

Theorem 5.4 can be used to express a more intimate relationship between the graphs in $\omega(k, \Sigma)$ and $\omega(0, \Sigma)$, as follows.

COROLLARY 5.5. Let Σ be a surface of Euler genus $g, k \geq 0$ be an integer, and $G \in \omega(k, \Sigma)$. Then there exists a graph H, which embeds in Σ , such that G can be obtained from H by identifying at most k pairs of vertices.

Theorem 5.4 can be used to improve the lower bound of Proposition 3.2.

THEOREM 5.6. Let G be a simple graph with $n = |V_G|$, $m = |E_G|$ and let Σ be a surface of Euler genus g. Then

$$mcr(G, \Sigma) \ge \frac{1}{2}(m - 3(n + g) + 6).$$

Two technical lemmas are needed for the proof of this result. Let Σ be a closed surface and $x, y \in \Sigma$. Let $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$ be a k-system of one-sided noncrossing simple closed curves in Σ such that $\gamma_i \cap \gamma_j = \{x, y\}$ for all $1 \leq i < j \leq k$. Let $\gamma_i = \gamma_i^1 \cup \gamma_i^2$, where γ_i^l is an arc from x to y. If a curve $\gamma_i^l \cup \gamma_j^m$ $(i \neq j)$ bounds a disk in Σ whose interior contains no segment of curves in Γ , then we say that $\gamma_i^l \cup \gamma_j^m$ is a Γ -digon.

LEMMA 5.7. Every k-system Γ has at most $k - 1 \Gamma$ -digons.

Proof. We assume the notation introduced above. Let us contract one of the segments, say γ_1^1 . Then each other γ_i^l becomes a loop in Σ . Since Γ is a k-system of one-sided noncrossing loops, the loops in Γ generate a k-dimensional subspace of the first homology group $H_1(\Sigma; \mathbb{Z}_2)$. This implies that the 2k - 1 loops $L = \{\gamma_i^l \mid 1 \leq i \leq k, l = 1, 2\} \setminus \{\gamma_1^1\}$ also generate at least k-dimensional subspace. If there are k Γ -digons, then k of the loops could be removed from L, and the remaining k - 1 loops would still generate the same k-dimensional subspace. This contradiction completes the proof. \Box

Let G be a graph and D its k-degenerate embedding in a surface Σ . Let $\Gamma = \{\gamma_1, \ldots, \gamma_k\}$ be the corresponding k-system of D. The curves γ_i are pairwise noncrossing, so we may assume that γ_i and γ_j $(i \neq j)$ intersect (touch) only in points where they intersect the graph. We subdivide edges of D in such a way that every γ_i intersects D only at vertices. If γ_i intersects D at vertices u_i and v_i , we add to D two new edges e_i , f_i with ends u_i , v_i whose embedding in Σ coincides with γ_i . (If $u_i = v_i$, we add one loop e_i at v_i .) We call the resulting embedding D' a k-augmented embedding of D and the corresponding graph G' a k-augmented graph of G (with respect to Γ). Let us observe that we may assume that curves in Γ intersect D only at vertices. In that case, subdivision of edges is not necessary, and then G is a subgraph of G'.

THE MINOR CROSSING NUMBER

FIG. 6. Realizing drawings of K_6 , K_7 , and K_8 , respectively.

LEMMA 5.8. Let D be a k-degenerate embedding of a simple graph G in a nonorientable surface Σ , and let D' be a k-augmented embedding of D. Then D' has at most k faces of length two and has no faces of length one.

Proof. We shall use the notation introduced before the lemma. Since G is a simple graph, any face of length 1 or 2 involves some edge e_i , f_i $(i \in \{1, \ldots, k\})$. If e_i is a loop, it cannot bound a face since γ_i is a onesided curve in Σ . Two loops cannot form a facial boundary since then they would be homotopic, and homotopic onesided curves always cross each other. So, an edge e_i or f_i can be part of a face of length two only when $u_i \neq v_i$.

For simplicity of notation, suppose that $\gamma_1, \ldots, \gamma_t$ all contain the same pair of vertices u_1 and v_1 . It suffices to see that the edges e_i , f_i $(i = 1, \ldots, t)$ and possible edge $e_0 = u_1v_1$ of G together form at most t faces of length 2. By Lemma 5.7, $\{e_i, f_i \mid 1 \leq i \leq t\}$ form at most t - 1 faces of length 2, and e_0 can give rise to one additional such face. This proves the claim, and the application of this claim to all pairs u_i, v_i completes the proof of the lemma.

Proof of Theorem 5.6. Let $\operatorname{mcr}(G, \Sigma) = k$. By Theorem 5.4, there exists an embedding D of G in \mathbb{N}_{g+k} with crossing degeneracy k. Let D' be a k-augmented embedding of D, and let G' be its graph. By Lemma 5.8, removing at most k edges from G' yields an embedding D'' without faces of length two, implying $|F_{D''}| \leq \frac{2}{3}|E_{D''}|$. Euler formula implies $n - |E_{D''}| + |F_{D''}| = 2 - (g+k)$. The stated inequality follows. \Box

If one would like to extend the bound of Proposition 3.2 for graphs of girth $r \ge 4$, additional arguments would be needed.

6. Examples. We have so far developed some tools to find lower bounds of the minor crossing number. In this section, they are applied to several families of graphs. In general, Theorem 2.3 yields better bounds for graphs of small maximum degree (cubes, $C_n \Box C_m$), while Theorem 3.1 suits graphs with large maximum degree better, e.g., complete bipartite graphs. Theorem 5.6 performs best on dense graphs of girth three, for instance complete graphs.

6.1. Complete graphs. Theorem 5.6 implies the following inequality, which is sharp for $n \in \{3, ..., 8\}$, as demonstrated in Figure 6.

PROPOSITION 6.1. Let $n \geq 3$. Then $\operatorname{mcr}(K_n) \geq \left\lfloor \frac{1}{4}(n-3)(n-4) \right\rfloor$.

The following proposition establishes an upper bound.

PROPOSITION 6.2. For $n \ge 9$, $\operatorname{mcr}(K_n) \le \lfloor \frac{1}{2}(n-5)^2 \rfloor + 4$.

FIG. 7. Drawings of graphs \tilde{K}_{10} and \tilde{K}_{11} .

Proof (sketch). We shall exhibit graphs \tilde{K}_n $(n \ge 9)$ together with their drawings D_n so that \tilde{K}_n contains K_n as a minor and that $\operatorname{cr}(D_n) = \lfloor \frac{1}{2}(n-5)^2 \rfloor + 4$. Figure 7 presents drawings of \tilde{K}_{10} and \tilde{K}_{11} . Different vertex symbols (diamond, circle, triangle, etc.) represent vertices in the same tree T_v , $v \in V_{K_n}$, which contracts to the vertex v in the K_n minor. By contracting the thick edges of the graphs in Figure 7, we obtain K_{10} and K_{11} , respectively.

The reader should have no difficulty placing the tree T_{n+1} into D_n in order to obtain D_{n+1} . The tree T_{n+1} crosses precisely each T_v with $7 \le v \le n$. To connect T_{n+1} with the trees T_1, \ldots, T_6 , we need three new crossings if n is even $(T_1 \text{ with } T_2, T_3 \text{ with } T_4, \text{ and } T_5 \text{ with } T_6)$ and no new crossing if n is odd.

Let c_n denote the number of crossings in the drawing of \tilde{K}_n described above, and let $a_k = c_{2k}$. We have $a_4 = 6$, $a_5 = 14$, $a_6 = 26$, and a recurrence equation

$$a_{k+1} = c_{2k+2} = c_{2k+1} + (2k - 1 - 6)$$

= $c_{2k} + (2k - 6) + 3 + (2k - 1 - 6)$
= $c_{2k} + 4k - 8$
= $a_k + 4k - 8$,

whose solution is $a_k = 2k^2 - 10k + 14$. For even *n* this yields

$$c_n = \frac{1}{2}((n-5)^2 + 3),$$

and for odd \boldsymbol{n}

$$c_n = \frac{1}{2}(n-5)^2 + 4.$$

COROLLARY 6.3. Let Σ be a fixed surface. For $n \in \mathbb{N}$, let $c_n = \frac{\operatorname{mcr}(K_n, \Sigma)}{n(n-1)}$. The sequence $\{c_n\}_{n=1}^{\infty}$ is nondecreasing and

$$c_{\infty} := \lim_{n \to \infty} c_n \in \left[\frac{1}{4}, \frac{1}{2}\right]$$

Proof. First we prove the following claim: Let $mcr(K_n, \Sigma) \ge cn(n-1)$. Then $mcr(K_m, \Sigma) \ge cm(m-1)$ for every $m \ge n$.

FIG. 8. A drawing of the graph $\tilde{K}_{8,7}$ with 22 crossings.

Clearly it suffices to prove this for m = n + 1. Let \overline{D} be a realizing drawing of K_{n+1} in Σ . Let T_i be the tree in \overline{D} which contracts to the vertex i of K_{n+1} . If we remove T_i and all incident edges from \overline{D} , we obtain a drawing of a graph with K_n minor. This can be done in n + 1 different ways. These n + 1 drawings contain at least $(n + 1) \operatorname{mcr}(K_n, \Sigma)$ crossings altogether. We may assume that there are no removed edges in \overline{D} , as their number can only increase the number of crossings. Then each crossing from \overline{D} appears in at most n - 1 of these drawings. Therefore, $(n - 1) \operatorname{mcr}(K_{n+1}, \Sigma) \ge (n + 1) \operatorname{mcr}(K_n, \Sigma) \ge c(n + 1)n(n - 1)$.

The stated bounds on c_{∞} follow easily from Propositions 6.1 and 6.2.

We believe that the minor crossing number of complete graphs lies close to the upper bound from Proposition 6.2, so that the following asymptotic holds: $mcr(K_n) = \frac{1}{2}n^2 + O(n)$.

6.2. Complete bipartite graphs. The genus of complete bipartite graphs [15, Theorem 4.4.7] in combination with Theorem 3.1 establishes the following proposition. PROPOSITION 6.4. Let $3 \le m \le n$. Then

$$\operatorname{mcr}(K_{m,n}) \ge \left\lceil \frac{1}{2}(m-2)(n-2) \right\rceil.$$

For the upper bound, consider a set of graphs $\tilde{K}_{m,n}$. They are constructed in a way similar to that of their complete analogues \tilde{K}_n , and an example is presented in Figure 8.

PROPOSITION 6.5. Let $4 \le m \le n$. Then

$$\operatorname{mcr}(K_{m,n}) \le (m-3)(n-3) + 5.$$

Also in the case of complete bipartite graphs we think that the upper bound from Proposition 6.5 lies close to the actual minor crossing number: $mcr(K_{m,n}) = m \cdot n + O(m+n)$.

6.3. Hypercubes. Applying Proposition 3.2 to hypercubes yields the following result.

PROPOSITION 6.6. Let $n \ge 4$. Then $mcr(Q_n) \ge (n-4)2^{n-2} + 2$.

Using the best known lower bound for crossing number of hypercubes, $cr(Q_n) > 0$ $4^{n}/20 - (n^{2} + 1)2^{n-1}$ by Sýkora and Vrťo [19] in combination with Theorem 2.3, we can deduce the following alternative lower bound, which is stronger for large values of n.

PROPOSITION 6.7. Let $n \ge 4$. Then $mcr(Q_n) > \frac{1}{n^2} \left(\frac{1}{5} 4^n - 2^{n+1}\right) - 2^{n+1}$. Following the same idea as in [12, Figures 2 and 3], one can obtain a family of graphs \hat{Q}_n and their drawings D_n with $\Delta(\hat{Q}_n) = 4$ and \hat{Q}_n having Q_n as a minor. They establish the following upper bound.

PROPOSITION 6.8. Let $n \ge 2$. Then $mcr(Q_n) \le 2 \cdot 4^{n-2} - (n-1)2^{n-1}$.

6.4. Cartesian products of cycles $C_m \square C_n$. Combining the results presented in [5] and Theorem 2.3 implies the following fact.

PROPOSITION 6.9. Suppose that $n \ge m$ and either $m \le 7$ or $m \ge 3$ and $n \ge 3$ m(m+1). Then $\frac{1}{4}(m-2)n \le mcr(C_m \Box C_n) \le (m-2)n$.

REFERENCES

- [1] D. ARCHDEACON, Problems in Topological Graph Theory, Department of Mathematics and Statistics, University of Vermont, Burlington, VT; online at http://www.emba.uvm.edu/ ~archdeac/problems/minorcr.htm, 1995.
- [2] D. ARCHDEACON, A Kuratowski theorem for the projective plane, J. Graph Theory, 5 (1981), pp. 243–246.
- [3] S. N. BHATT AND F. T. LEIGHTON, A framework for solving VLSI graph layout problems, J. Comput. System Sci., 28 (1984), pp. 300-343.
- [4] G. FIJAVŽ, Graph Minors and Connectivity, Ph.D. thesis, Department of Mathematics, University of Ljubljana, Slovenia, 2001 (in Slovene).
- [5] L. Y. GLEBSKY AND G. SALAZAR, The crossing number of $C_m \Box C_n$ is as conjectured for $n \geq 1$ m(m+1), J. Graph Theory, 47 (2004), pp. 53–72.
- [6] P. HLINĚNÝ, Crossing number is hard for cubic graphs (extended abstract), in Math Foundations of Computer Science MFCS 2004, Lecture Notes in Comput. Sci. 3153, Springer-Verlag, New York, 2004, pp. 772–782.
- [7] H. H. GLOVER, J. P. HUNEKE, AND C.-S. WANG, 103 graphs that are irreducible for the pro*jective plane*, J. Combin. Theory Ser. B, 27 (1979), pp. 332–370.
- M. JUVAN AND B. MOHAR, An Algorithm for Embedding Graphs in the Torus, manuscript.
- [9] K. KURATOWSKI, Sur le problème des courbes gauches en topologie, Fund. Math., 15 (1930), pp. 271–283.
- [10] F. T. LEIGHTON, Complexity Issues in VLSI, MIT Press, Cambridge, MA, 1983.
- [11] F. T. LEIGHTON, New lower bound techniques for VLSI, Math. Systems Theory, 17 (1984), pp. 47–70.
- [12] T. MADEJ, Bounds for the crossing number of the N-cube, J. Graph Theory, 15 (1991), pp. 81-97.
- [13] D. MCQUILLAN AND R. B. RICHTER, On 3-regular graphs having crossing number at least 2, J. Graph Theory, 18 (1994), pp. 831-893.
- [14] B. MOHAR, Projective planarity in linear time, J. Algorithms, 15 (1993), pp. 482–502.
- [15] B. MOHAR AND C. THOMASSEN, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.
- [16] E. G. MORENO AND G. SALAZAR, Bounding the crossing number of a graph in terms of the crossing number of a minor with small maximum degree, J. Graph Theory, 36 (2001), pp. 168-173.
- [17] R. B. RICHTER, Cubic graphs with crossing number two, J. Graph Theory, 12 (1988), pp. 363-374.
- [18] N. ROBERTSON AND P. SEYMOUR, Excluding a graph with one crossing, Contemp. Math., 147 (1993), pp. 669-675.
- [19] O. SÝKORA AND I. VRŤO, On crossing numbers of hypercubes and cube connected cycles, BIT, 33 (1993), pp. 232–237.
- [20] I. VRŤO, Crossing number of graphs: A bibliography, Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovak Republic; available online from ftp://ftp.ifi.savba.sk/pub/ imrich/crobib.pdf.