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Abstract

Hadwiger’s Conjecture claims that any graph without Kk as a mi-
nor is (k − 1)-colorable. It has been proved for k ≤ 6, and is still
open for every k ≥ 7. It is not even known if there exists an abso-
lute constant c such that any ck-chromatic graph has Kk as a minor.
Motivated by this problem, we show that there exists a computable
constant f(k) such that any graph G without Kk as a minor admits a
vertex partition V1, . . . , V�15.5k� such that each component in the sub-
graph induced on Vi (i ≥ 1) has at most f(k) vertices. This result
is also extended to list colorings for which we allow monochromatic
components of order at most f(k). When f(k) = 1, this is a coloring
of G. Hence this is a relaxation of coloring and this is the first result
in this direction.
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1 Introduction

In this paper, all graphs are finite and simple. We follow standard graph
theory terminology and notation as used, for example, in [4]. A graph H
is a minor of a graph K if H can be obtained from a subgraph of K by
contracting edges.

Our research is motivated by Hadwiger’s Conjecture from 1943 which
suggests a far-reaching generalization of the Four Color Theorem and is one
of the most challenging open problems in graph theory.

Conjecture 1.1 (Hadwiger [6]) For every k ≥ 1, every graph with chro-
matic number at least k contains the complete graph Kk as a minor.

For k = 1, 2, 3, this is easy to prove, and for k = 4, Hadwiger himself [6]
and Dirac [5] proved it. For k = 5, however, it becomes extremely difficult.
In 1937, Wagner [17] proved that the case k = 5 is equivalent to the Four
Color Theorem. So, assuming the Four Color Theorem [1, 2, 13], the case
k = 5 of Hadwiger’s Conjecture holds. Robertson, Seymour and Thomas
[12] proved that a minimal counterexample to the case k = 6 is a graph G
that has a vertex v such that G− v is planar. By the Four Color Theorem,
this implies Hadwiger’s Conjecture for k = 6. This result is the deepest in
this research area. So far, the conjecture is open for every k ≥ 7. For the
case k = 7, Kawarabayashi and Toft [9] proved that any 7-chromatic graph
has K7 or K4,4 as a minor, and recently, Kawarabayashi [7] proved that any
7-chromatic graph has K7 or K3,5 as a minor.

It is even not known if there exists an absolute constant c such that any
ck-chromatic graph has Kk as a minor. So far, it is known that there exists
a constant c such that any ck

√
log k-chromatic graph has Kk as a minor.

This follows from results in [10, 11, 14, 15]. This result was proved 25 years
ago, but no one can improve the superlinear order k

√
log k of the bound on

the chromatic number. So it would be of great interest to prove that a linear
function of the chromatic number is sufficient to force Kk as a minor. From
an algorithmic point of view, we can “decide” this problem in polynomial
time. This was proved in [8]. We refer to [16] for further information on the
Hadwiger Conjecture.

Motivated by these facts, we shall prove the following relaxation.

Theorem 1.2 There exists a computable constant f(k) such that every
graph G without Kk as a minor admits a vertex partition V1, . . . , V�15.5k�
such that every component in the subgraph of G induced on Vi has at most
f(k) vertices.
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By saying that f(k) is computable, we mean that f(k) can be expressed
as a specific value, depending on k. The reader interested in this expression
should consult [3].

When f(k) = 1, we get a coloring of G. Hence, Theorem 1.2 gives a
relaxation of coloring, and this is the first result in this direction. In fact,
since it is still not known if there exists a constant c such that any ck-
chromatic graph has Kk as a minor, this may be viewed as the first step to
attack this conjecture.

We also extend Theorem 1.2 to list colorings. First we recall some def-
initions. Let G be a graph and t a positive number. A list-assignment is
a function L which assigns to every vertex v ∈ V (G) a set L(v) of natural
numbers, which are called admissible colors for that vertex. An L-coloring
is an assignment of admissible colors to all vertices of G, i.e., a function
c : V (G) → N such that c(v) ∈ L(v) for every v ∈ V (G), and for every
edge uv we have c(u) �= c(v). If |L(v)| ≥ t for every v ∈ V (G), then L is
a t-list-assignment . The graph is t-choosable if it admits an L-coloring for
every t-list-assignment L.

When relaxing the Hadwiger Conjecture to allow ck colors, the following
conjecture involving list colorings may also be true:

Conjecture 1.3 There is a constant c such that every graph without Kk

minors is ck-choosable.

Conjecture 1.1 does not hold for list colorings. For example, there exist
planar graphs (without K5 minors) which are not 4-choosable. However,
Conjecture 1.3 is formulated in such a way that it may also be true for
c = 1. We believe that Conjecture 1.3 holds with c = 3

2 .
In this paper we also extend Theorem 1.2 to the setting of list colorings.

Theorem 1.4 Let k be an integer. There is a computable constant f(k)
such that for every graph G without Kk as a minor and for every 15.5k-list-
assignment L, there is a vertex partition {Vi | i ∈ N} of V (G) such that for
every i, Vi ⊆ {v ∈ V (G) | i ∈ L(v)}, and every component of the subgraph
of G induced on Vi has at most f(k) vertices.

In fact, Theorem 1.4 is proved in Section 2 in a slightly more general
form, where a small set of vertices is “precolored”. See Theorem 2.1. Of
course, Theorem 1.2 follows directly from Theorem 1.4 by taking L(v) =
{1, 2, . . . , 	15.5k
} for every vertex v ∈ V (G).

In the proof of Theorem 1.4, we will use a corollary of the following result
from [3].
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Theorem 1.5 For any integers k, s and t, there exists a computable con-
stant N0(k, s, t) such that every (3k+2)-connected graph of minimum degree
at least 15.5k and with at least N0(k, s, t) vertices either contains Kk,st as a
topological minor or a minor isomorphic to s disjoint copies of Kk,t.

Let A and B be induced subgraphs of G such that G = A ∪ B. If
V (A) \ V (B) �= ∅ and V (B) \ V (A) �= ∅, then we say that the pair (A,B)
is a separation of G. The order of this separation is equal to |V (A ∩ B)|.
Let Z ⊆ V (G) be a vertex set. We say that the separation (A,B) of G is
Z-essential if (A − Z,B − Z) is a separation of G − Z. If l is a positive
integer, we say that G is l-connected relative to Z if it has no Z-essential
separations of order less than l.

We will need the following corollary of Theorem 1.5:

Theorem 1.6 For any integers k and z, there exists a constant N1(k, z)
such that for every graph G and every vertex set Z ⊆ V (G) of cardinality at
most z, if G is (3k + 2)-connected relative to Z, the degree of every vertex
in V (G) \ Z is at least 15.5k, and G has at least N1(k, z) vertices, then G
contains the complete graph Kk as a minor.

Proof. Let G and Z be as assumed in the statement of the theorem. Let
Z ′ be the set of all vertices in Z whose degree is at most 3k + 1 + z. Let
D be a set of vertices in G − Z of cardinality 3k + 2 such that no vertex
in Z ′ is adjacent to D. If |V (G)| ≥ (3k + 2 + z)z + 3k + 2 (which we may
assume), then D exists. Let G′ be the graph obtained from G by adding all
edges between Z ′ and D.

In G′, every vertex in Z has at least 3k + 2 neighbors that are not in
Z. Since G is (3k + 2)-connected relative to Z and is a spanning subgraph
of G′, this implies that G′ is (3k + 2)-connected. Suppose that |V (G)| ≥
N0(k, s, t). By Theorem 1.5, G′ either contains a subdivision of Kk,st or a
minor isomorphic to s disjoint copies of Kk,t. Let us take s = z + 1 and
t = 3k + 2 + z. If G′ has s copies of Kk,t as a minor, then G′ contains a
Kk,k-minor (and hence also a Kk-minor) that is disjoint from Z. As for the
other alternative, when G′ contains a subgraph K which is a subdivision of
Kk,st, none of the vertices of degree st in K belong to Z ′ since the vertices
in Z ′ have degree less than (3k +2+ z)z +3k +2 < (3k +2+ z)(z +1) = st.
Therefore, G′ − Z ′ contains a subgraph which is a subdivision of Kk,st−z.
Since st− z ≥ k, G has Kk,k and hence also Kk as a minor. So, the theorem
holds for the value N1(k, z) = N0(k, z + 1, 3k + 2 + z). �
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2 Proof of Theorem 1.4

In this section we fix a positive integer k and a number τ = τ(k) > 6k + 1
for which there exists a constant N = N(k, τ) such that for every graph
G and a vertex set Z ⊆ V (G) of cardinality at most 6k + 1, if G is 2k-
connected relative to Z, every vertex in V (G) \Z has degree at least τ , and
|V (G)| ≥ N , then G contains Kk as a minor. According to Theorem 1.6,
we can take τ = 15.5k and take as N(k, τ) the value N1(k, 6k + 1) from
Theorem 1.6.

The proof of Theorem 1.4 is by induction on |V (G)|. For the induction
purpose, we shall prove the following stronger statement:

Theorem 2.1 Let k, τ = τ(k) and N(k, τ) be as above. Let f(k) be the
maximum of N(k, τ(k)) and τ(k). Suppose that G is a graph without Kk as
a minor, L is a τ -list-assignment, Z ⊆ V (G) is a vertex set with |Z| ≤ 6k+1,
and c : Z → N is a mapping such that c(z) ∈ L(z) for every z ∈ Z. Then c
can be extended to a mapping c0 : V (G) → N with the following properties:

(a) For every v ∈ V (G), c0(v) ∈ L(v).

(b) For every i ∈ N, the subgraph Gi of G induced on Vi = c−1
0 (i) has only

components whose order is smaller than f(k).

(c) If a vertex v ∈ V (G) − Z is adjacent to a vertex z ∈ Z, then c0(v) �=
c(z).

Proof. Throughout the proof, the mapping c0 will be called a coloring , the
mapping c a precoloring , and the set Z will be referred to as the precolored
set . We also consider the corresponding color classes Vi. All these terms
refer to G or to its minors on which the induction hypothesis will be applied.

We prove this statement by induction on |V (G)|. If V (G) = Z, there is
nothing to prove. We claim that for any vertex v ∈ V (G − Z), degree of v
is at least τ . Suppose G − Z has a vertex v of degree at most τ − 1. Then,
by the induction hypothesis, G − v has a desired coloring, and since v has
degree at most τ − 1, we can set c0(v) = i, where i ∈ L(v) is such that v has
no neighbors in Vi. So, we may assume that every vertex v ∈ V (G−Z) has
degree at least τ . In particular, |V (G)| > τ .

Next, we claim that G is (3k + 2)-connected relative to Z. Suppose that
there is a Z-essential separation (A,B) of order at most 3k + 1. We assume
that (A,B) is a minimal Z-essential separation, and we let S = A ∩ B.
Note that the minimum degree of G is at least τ . Since |S| ≤ 3k + 1 and
|Z| ≤ 6k + 1, it follows that either |S ∪ (A∩Z)| ≤ 6k + 1 or |S ∪ (B ∩Z)| ≤
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6k + 1, say |S ∪ (A ∩ Z)| ≤ 6k + 1. Then we first apply induction to the
subgraph of G induced on B ∪ Z with Z precolored. Since (A,B) is a Z-
essential separation, the subgraph on B ∪ Z is smaller than G, and hence
the induction hypothesis can be applied.

Let S′ = S − Z. Then, after coloring B, each vertex s ∈ S′ has an
assignment c(s). Now, we apply induction to A with Z ′ = S ∪ (A ∩ Z)
precolored. Recall that |Z ′| ≤ 6k + 1. Finally, the combination of the
obtained colorings of B and A yields a coloring c0 of G. Every vertex
in S satisfies requirement (c) under the coloring of A. Therefore, every
component of some Vi is either contained in B∪Z (and is also a component
of the coloring of B ∪ Z), or is contained in A − (B ∪ Z). This shows that
the coloring c0 of G satisfies (b). Conditions (a) and (c) hold for inductively
obtained colorings, so they also hold for c0.

To conclude, we may now assume that G is (3k + 2)-connected relative
to Z. Since G has minimum degree at least τ and since G has at least
f(k) ≥ N(k, τ) vertices, G contains Kk as a minor. This contradiction
completes the proof. �

To conclude, let us observe that there is some room for improvement.
Certainly, the function N0 from [3] in Theorem 1.5 which is used to define
the constant f(k) can be considerably improved (but not to anything small).
Also the 15.5k bound can be improved slightly by improving parts of the
proof in [3]. However, new methods would be needed to go below 10k.
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