University of LJubluana
Institute of Mathematics, Physics and Mechanics Department of Mathematics
Jadranska 19, 1000 LJubluana, Slovenia

Preprint series, Vol. 44 (2006), 1023

ON THE LAPLACIAN
 COEFFICIENTS OF ACYCLIC GRAPHS

Bojan Mohar

ISSN 1318-4865

November 20, 2006

Ljubljana, November 20, 2006

On the Laplacian coefficients of acyclic graphs

Bojan Mohar* ${ }^{*}$
Department of Mathematics
Simon Fraser University
Burnaby, B.C. V5A 1S6
email: mohar@sfu.ca

Abstract

Let G be a graph of order n and let $\Lambda(G, \lambda)=\sum_{k=0}^{n}(-1)^{k} c_{k} \lambda^{n-k}$ be the characteristic polynomial of its Laplacian matrix. Zhou and Gutman recently proved that among all trees of order n, the k th coefficient c_{k} is largest when the tree is a path, and is smallest for stars. A new proof and a strengthening of this result is provided. A relation to the Wiener index is discussed.

1 Introduction

Let G be a graph of order $n=|G|$ and let $L(G)=D(G)-A(G)$ be its Laplacian matrix. The Laplacian polynomial of G is the characteristic polynomial of its Laplacian matrix, $\Lambda(G, \lambda)=\operatorname{det}\left(\lambda I_{n}-L(G)\right)$. Let $c_{k}=c_{k}(G)$ $(0 \leq k \leq n)$ be the absolute values of the coefficients of $\Lambda(G, \lambda)$, so that

$$
\Lambda(G, \lambda)=\sum_{k=0}^{n}(-1)^{k} c_{k} \lambda^{n-k}
$$

It is easy to see that $c_{0}=1, c_{1}=2\|G\|, c_{n}=0$, and $c_{n-1}=n \tau(G)$, where $\tau(G)$ denotes the number of spanning trees of G. We refer to $[5]$ and $[6,7]$ for a detailed introduction to graph Laplacians.

For a graph G, let $m_{k}(G)$ be the number of matchings of G containing precisely k edges (shortly k-matchings), and let $S(G)$ denote the subdivision

[^0]of G. Zhou and Gutman [10] proved that for every acyclic graph T of order n,
\[

$$
\begin{equation*}
c_{k}(T)=m_{k}(S(T)), \quad 0 \leq k \leq n . \tag{1}
\end{equation*}
$$

\]

Using this correspondence, Zhou and Gutman [10] proved a conjecture from [3] that the extreme values of Laplacian coefficients among all n-vertex trees are attained on one side by the path P_{n} of length $n-1$, and on the other side by the star $S_{n}=K_{1, n-1}$ of order n. In other words,

$$
\begin{equation*}
c_{k}\left(S_{n}\right) \leq c_{k}(T) \leq c_{k}\left(P_{n}\right), \quad 0 \leq k \leq n \tag{2}
\end{equation*}
$$

holds for all trees T of order n.
In this note we present a different proof of (2) and obtain a strengthening of Zhou and Gutman's result. We prove that all Laplacian coefficients are monotone under two operations called π and σ. It is shown that by using π consecutively, every tree can be transformed into a path, and successive application of the operation σ transforms any tree into the star. This in particular implies (2).

It is well-known that the Laplacian coefficient c_{n-2} of an n-vertex tree T is equal to the sum of all distances between unordered pairs of vertices (see, e.g. [9]), also known as the Wiener index $W(T)$ of T :

$$
c_{n-2}(T)=W(T)=\sum_{\{u, v\}} \operatorname{dist}(u, v) .
$$

In the last section we discuss some questions suggested by this correspondence.

2 The transformation π

Let u_{0} be a vertex of a tree T. Suppose that $P=u_{0} u_{1} \ldots u_{p}(p \geq 1)$ is a path in T whose internal vertices u_{1}, \ldots, u_{p-1} all have degree 2 in T and where u_{p} is a leaf (i.e., a vertex of degree 1 in T). Then we say that P is a pendant path of length p attached at u_{0}.

Suppose that $\operatorname{deg}_{T}\left(u_{0}\right) \geq 3$ and that $P=u_{0} u_{1} \ldots u_{p}$ and $Q=u_{0} v_{1} \ldots v_{q}$ are distinct pendant paths attached at u_{0}. Then we form a tree $T^{\prime}=$ $\pi\left(T, u_{0}, P, Q\right)$ by removing the paths P and Q and replacing them with a longer path $R=u_{0} u_{1} \ldots u_{p} v_{1} v_{2} \ldots v_{q}$. We say that T^{\prime} is a π-transform of T.

Proposition 2.1 Every tree which is not a path contains a vertex of degree at least three at which (at least) two pendant paths are attached. In
particular, every tree can be transformed into a path by a sequence of π transformations.

Proof. Let T be a tree which has at least one vertex of degree 3 or more. To prove that T contains a vertex of degree at least 3 with two pendant paths, consider a path S in T which contains the maximum number of vertices of degree different from 2. Then S joins two leaves x and y. Let u be a vertex on S of degree ≥ 3 which is closest to x. Let Q be a path joining u with some leaf of T such that $Q \cap S=\{u\}$. If Q would not be a pendant path, this would contradict the maximality of S. So, Q and the segment of S from u to x are two pendant paths attached at u.

The second part of the proposition is easily proved by induction on the number of leaves of the tree since every π-transformation eliminates one leaf.

Theorem 2.2 Let $T^{\prime}=\pi\left(T, u_{0}, P, Q\right)$ be a π-transform of a tree T of order $n=|T|$. For $d=1, \ldots, k-1$, let n_{d} be the number of vertices in $T-P-Q$ that are at distance d from u_{0} in T. Then

$$
c_{k}(T) \leq c_{k}\left(T^{\prime}\right)-\sum_{d=1}^{k-1} n_{d}\binom{n-3-d}{k-1-d} \quad \text { for } 2 \leq k \leq n-2
$$

and $c_{k}(T)=c_{k}\left(T^{\prime}\right)$ for $k \in\{0,1, n-1, n\}$.
Proof. As mentioned before, the coefficients $c_{0}=1$ and $c_{n}=0$ are constant, while c_{1} and c_{n-1} "count" the number of edges and the number of spanning trees (multiplied by n), respectively, so they are the same for all trees with the same number of vertices. This shows that $c_{k}(T)=c_{k}\left(T^{\prime}\right)$ for $k \in\{0,1, n-1, n\}$, and so we henceforth assume that $2 \leq k \leq n-2$.

By a theorem of Zhou and Gutman, our Eq. (1), it suffices to see that $m_{k}(S) \leq m_{k}\left(S^{\prime}\right)-\sum_{d=1}^{k-1} n_{d}\binom{n-3-d}{k-1-d}$, where $S=S(T)$ and $S^{\prime}=S\left(T^{\prime}\right)$. We let $P=u_{0} u_{1} \ldots u_{p}, Q=u_{0} v_{1} \ldots v_{q}$, and $R=u_{0} u_{1} \ldots u_{p} v_{1} \ldots v_{q}$. In the subdivision graphs we have the corresponding paths $\hat{P}=u_{0} \hat{u}_{1} u_{1} \hat{u}_{2} u_{2} \ldots \hat{u}_{p} u_{p}$, $\hat{Q}=u_{0} \hat{v}_{1} v_{1} \hat{v}_{2} v_{2} \ldots \hat{v}_{q} v_{q}$, and $\hat{R}=u_{0} \hat{u}_{1} u_{1} \ldots \hat{u}_{p} u_{p} \hat{v}_{1} v_{1} \ldots \hat{v}_{q} v_{q}$, where the vertices with the "hats" are those subdividing the edges of T and T^{\prime}.

We consider the vertex-sets and edge-sets of T and T^{\prime} and then also of S and S^{\prime} to be the same under the obvious correspondence. In particular, the edge $e_{1}=u_{0} \hat{v}_{1}$ of S is identified with the edge $u_{p} \hat{v}_{1}$ of S^{\prime}.

Let M be a k-matching of S. If $e_{1} \notin M$ or $e_{2}=\hat{u}_{p} u_{p} \notin M$, then we set M^{\prime} be the corresponding k-matching of S^{\prime}. Every matching M^{\prime} of S^{\prime}
obtained in this way is said to be of type 1 . If e_{1} and e_{2} are both in M, then we define the k-matching M^{\prime} of S^{\prime} as follows. We let M and M^{\prime} agree on $E(S) \backslash E(\hat{P})$, but we replace the edges in $M \cap E(\hat{P})$ with the edgeset $\left\{\hat{u}_{i} u_{i} \mid u_{p-i} \hat{u}_{p-i+1} \in M\right\} \cup\left\{u_{i-1} \hat{u}_{i} \mid \hat{u}_{p-i+1} u_{p-i+1} \in M\right\}$. (We think of replacing the path \hat{P} with its inverse path $u_{p} \hat{u}_{p} \ldots u_{1} \hat{u}_{1} u_{0}$.) It is obvious that M^{\prime} is a k-matching of S^{\prime} also in this case. We say that M^{\prime} is a matching of type 2 . All other matchings of S^{\prime} are of type 0 .

It is easy to see that a matching of S^{\prime} cannot be of types 1 and 2 at the same time. This shows that the correspondence $M \mapsto M^{\prime}$ is 1-1. Therefore, $m_{k}(S) \leq m_{k}\left(S^{\prime}\right)$ and hence $c_{k}(T) \leq c_{k}\left(T^{\prime}\right)$. In order to prove stronger inequalities of the theorem, we have to find additional $\sum_{d=1}^{k-1} n_{d}\binom{n-3-d}{k-1-d} k$ matchings of S^{\prime} which are of type 0 .

It is easy to see that for every vertex $v \in V\left(S^{\prime}\right)$, there is a (unique) ($n-1$)-matching M_{v} of S^{\prime} such that the vertex v is not covered by the edges in M_{v}. For our purpose, we shall consider the vertex $v=v_{q}$. Then $M_{v} \cap E(\hat{R})$ contains the edge $u_{p} \hat{v}_{1}$ and edges $\left\{u_{i-1} \hat{u}_{i} \mid 1 \leq i \leq p\right\} \cup\left\{v_{j-1} \hat{v}_{j} \mid\right.$ $2 \leq j \leq q\}$. Let u be a vertex of $T-P-Q$ that is at distance d from u_{0}. In S^{\prime}, there is a path U of length $2 d$ joining u_{0} with u. Every second edge on this path belongs to M_{v}. Let us now form an $(n-2)$-matching $M_{v}^{u}=\left(M_{v}+E(U)\right) \backslash\left\{u_{0} \hat{u}_{1}\right\}$, where + denotes the symmetric difference of edge-sets. Finally, let \mathcal{N}_{k}^{u} be the set of all k-matchings contained in M_{v}^{u} which contain the edge $u_{p} \hat{v}_{1}$ and all d edges of $M_{v}^{u} \cap E(U)$. It is clear that no matching N in \mathcal{N}_{k}^{u} is of type 0 , because every matching of type 1 corresponds to a matching of S (which N does not since $u_{p} \hat{v}_{1}=u_{0} \hat{v}_{1}$ and the edge of U incident with u_{0} are both in N), and every matching of type 2 contains the edge $u_{0} \hat{u}_{1}$.

The set \mathcal{N}_{k}^{u} contains precisely $\binom{n-3-d}{k-1-d}$ matchings, and for distinct vertices u, w, the matchings are distinct, $\mathcal{N}_{k}^{u} \cap \mathcal{N}_{k}^{w}=\emptyset$. This gives rise to $\sum_{d=1}^{k-1} n_{d}\binom{n-3-d}{k-1-d}$ additional k-matchings of S^{\prime}, which we were to prove.

Let us observe that the estimate for the difference $c_{k}\left(T^{\prime}\right)-c_{k}(T)$ in Theorem 2.2 is just the "first-order estimate" and that the method of our proof easily reveals additional k-matchings of S^{\prime} (except in some very specific cases).

3 The transformation σ

Let u_{0} be a vertex of a tree T of degree $p+1$. Suppose that $u_{0} u_{1}, \ldots u_{0} u_{p}$ are pendant edges incident with u_{0}, and that v_{0} is the neighbor of u_{0} distinct
from u_{1}, \ldots, u_{p}. Then we form a tree $T^{\prime}=\sigma\left(T, u_{0}\right)$ by removing the edges $u_{0} u_{1}, \ldots u_{0} u_{p}$ from T and adding p new pendant edges $v_{0} v_{1}, \ldots v_{0} v_{p}$ incident with v_{0}. We say that T^{\prime} is a σ-transform of T.

Proposition 3.1 Every tree which is not a star contains a vertex u_{0} such that $p=\operatorname{deg}_{T}\left(u_{0}\right)-1$ neighbors of u_{0} are leaves of T, while the remaining neighbor of u_{0} is not a leaf. Consequently, every tree can be transformed into a star by a sequence of σ-transformations.

Proof. Let us consider a longest path S in T. Clearly, S connects two leaves x and y and the vertex u_{0} adjacent to x has the required property. The second part of the proposition is easily proved by induction on the number of leaves of the tree since every σ-transformation increases the number of leaves by one.

Theorem 3.2 Let $T^{\prime}=\sigma\left(T, u_{0}\right)$ be a σ-transform of a tree T of order $n=|T|$. For $d=2, \ldots, k$, let n_{d} be the number of vertices in $T-u_{0}$ that are at distance d from u_{0} in T. Then

$$
c_{k}(T) \geq c_{k}\left(T^{\prime}\right)+\sum_{d=2}^{k} n_{d} p\binom{n-2-d}{k-d} \quad \text { for } \quad 2 \leq k \leq n-2
$$

and $c_{k}(T)=c_{k}\left(T^{\prime}\right)$ for $k \in\{0,1, n-1, n\}$.
Proof. The last claim was already argued before, so let us assume that $2 \leq k \leq n-2$. Again, we will compare k-matchings in $S=S(T)$ and in $S^{\prime}=S\left(T^{\prime}\right)$. We denote by $\hat{u}_{i}(1 \leq i \leq p)$ and \hat{v}_{0} the vertices of S and S^{\prime} which subdivide edges $u_{0} u_{i}$ and $u_{0} v_{0}$, respectively.

The edges of S and S^{\prime} are in the natural bijective correspondence, and it is easy to see that a k-matching M^{\prime} of S^{\prime} is also a k-matching of S unless $\hat{v}_{0} u_{0} \in M^{\prime}$ and $v_{0} \hat{v}_{i} \in M^{\prime}$ for some $1 \leq i \leq p$. In the latter case, a k matching of S is obtained by replacing the edge $\hat{v}_{0} u_{0}$ of M^{\prime} by the edge $\hat{v}_{0} v_{0}$.

Similarly as in the proof of Theorem 2.2, we shall prove that there exist k-matchings of S that are not counted in the above 1-1 correspondence $M^{\prime} \mapsto M$. We refer to the notation introduced in that proof.

Let us consider the ($n-1$)-matching M_{0} of S such that the vertex u_{0} is not covered by the edges in M_{0}. Let u be a vertex of T that is at distance $d \geq 2$ from u_{0}. In S^{\prime}, there is a path U of length $2 d-2$ joining v_{0} with u. Every second edge on this path belongs to M_{0}. For $i=1, \ldots, p$, let us
now form an $(n-2)$-matching $M_{i}^{u}=\left(\left(M_{0}+E(U)\right) \cup\left\{u_{0} \hat{u}_{i}\right\}\right) \backslash\left\{v_{0} \hat{0}_{0}, \hat{u}_{i} u_{i}\right\}$. Finally, let \mathcal{N}_{k}^{u} be the set of all k-matchings contained in some M_{i}^{u} which contain the edges $u_{0} \hat{u}_{i}$ and all $d-1$ edges of $M_{i}^{u} \cap E(U)$. It is clear that no matching N in \mathcal{N}_{k}^{u} appears under the above correspondence $M^{\prime} \mapsto M$, because every such M either corresponds to a matching of S^{\prime} (which N does not), or contains the edge $v_{0} \hat{v}_{0}$.

The set \mathcal{N}_{k}^{u} contains precisely $p\binom{n-2-d}{k-d}$ matchings, and for distinct pairs u, w, the matchings are distinct, $\mathcal{N}_{k}^{u} \cap \mathcal{N}_{k}^{w}=\emptyset$. This gives rise to $\sum_{d=1}^{k} n_{d} p\binom{n-2-d}{k-d}$ additional k-matchings of S, which we were to prove.

4 Wiener index

As observed in the introduction, the Wiener index $W(T)$ of an n-vertex tree T is equal to the ($n-2$)nd Laplacian coefficient, $W(T)=c_{n-2}(T)$. It is a simple exercise to show that Theorems 2.2 and 3.2 can be made more explicit for this special coefficient:

Theorem 4.1 Let $T^{\prime}=\pi\left(T, u_{0}, P, Q\right)$ be a π-transform of a tree T of order $n=|T|$, and let $T^{\prime \prime}=\sigma\left(T, u_{0}\right)$ be a σ-transform of T. If $p=|P|-1$ and $q=|Q|-1$, then

$$
W\left(T^{\prime}\right)-W(T)=c_{n-2}\left(T^{\prime}\right)-c_{n-2}(T)=p q(n-p-q) .
$$

If $r=\operatorname{deg}_{T}\left(u_{0}\right)-1$, then

$$
W(T)-W\left(T^{\prime \prime}\right)=c_{n-2}(T)-c_{n-2}\left(T^{\prime \prime}\right)=r(n-r-1) .
$$

Ordering of trees based on their Wiener index has a long history and is in almost ideal correlation with several combinatorial properties and, notably, also with some physical properties of substances whose molecular graphs correspond to such trees, see, e.g. [2, 8]. Theorem 4.1 suggests a refinement of this order. Namely, trees with the same Wiener index should be ordered (lexicographically) according to the values of other Laplacian coefficients. Of course, Laplacian-cospectral trees $[1,4]$ will be indistinguishable.

Another partial ordering among classes of Laplacian-cospectral trees of the same order n may be of interest. We can say that $T \preceq T^{\prime}$ if $c_{i}(T) \leq c_{i}\left(T^{\prime}\right)$ for $i=1, \ldots, n$. Theorems 2.2 and 3.2 show that this poset has a unique minimal and a unique maximal element. It would be interesting to know what is the height (the maximum length of a chain) and how large is the width (the maximum size of an antichain) of this poset.

References

[1] P. Botti, R. Merris, Almost all trees share a complete set of immanantal polynomials, J. Graph Theory 17 (1993) 467-476.
[2] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[3] I. Gutman, L. Pavlović, On the coefficients of the Laplacian characteristic polynomial of trees, Bull. Acad. Serbe Sci. Arts 127 (2003) 31-40.
[4] B.D. McKay, On the spectral characterisation of trees, Ars Combinatoria 3 (1977) 219-232.
[5] R. Merris, A survey of graph Laplacians, Lin. Multilin. Algebra 39 (1995) 19-31.
[6] B. Mohar, The Laplacian spectrum of graphs, in "Graph Theory, Combinatorics, and Applications", Vol. 2, Ed. Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk, Wiley, New York, 1991, pp. 871-898.
[7] B. Mohar, Graph Laplacians, Chapter 4 in "Topics in Algebraic Graph Theory," L. W. Beineke and R. J. Wilson (Eds.), Encyclopedia of Mathematics and Its Applications, Vol. 102, Cambridge Univ. Press, Cambridge, 2004, pp. 113-136.
[8] D. H. Rouvray, The role of graph-theoretical invariants in chemistry, Congr. Numer. 55 (1986) 253-265.
[9] W. Yan, Y.-N. Yeh, Connections between Wiener index and matchings, J. Math. Chem. 39 (2006) 389-399.
[10] B. Zhou and I. Gutman, A connection between ordinary and Laplacian spectra of bipartite graphs, to appear in Lin. Multilin. Algebra.

[^0]: *Supported in part by the ARRS, Research Program P1-0507, and by an NSERC Discovery Grant.
 ${ }^{\dagger}$ On leave from Department of Mathematics, University of Ljubljana, 1000 Ljubljana, Slovenia.

