CIRCULAR COLORING THE PLANE*

MATT DEVOS †, JAVAD EBRAHIMI ${ }^{\dagger}$, MOHAMMAD GHEBLEH ${ }^{\dagger}$, LUIS GODDYN ${ }^{\dagger}$, BOJAN MOHAR ${ }^{\dagger}$, AND REZA NASERASR ${ }^{\ddagger}$

Abstract

The unit distance graph \mathcal{R} is the graph with vertex set \mathbb{R}^{2} in which two vertices (points in the plane) are adjacent if and only if they are at Euclidean distance 1. We prove that the circular chromatic number of \mathcal{R} is at least 4 , thus improving the known lower bound of $32 / 9$ obtained from the fractional chromatic number of \mathcal{R}.

Key words. graph coloring, circular coloring, unit distance graph
AMS subject classifications. 05C15, 05C10, 05C62
DOI. 10.1137/060664276

1. Introduction. The unit distance graph \mathcal{R} is defined to be the graph with vertex set \mathbb{R}^{2} in which two vertices (points in the plane) are adjacent if and only if they are at Euclidean distance 1. Every subgraph of \mathcal{R} is also said to be a unit distance graph. It is known that (cf. [1, 2])

$$
4 \leqslant \chi(\mathcal{R}) \leqslant 7
$$

and that (cf. [3, pp. 59-65])

$$
\frac{32}{9} \leqslant \chi_{f}(\mathcal{R}) \leqslant 4.36
$$

Here $\chi(\mathcal{R})$ denotes the chromatic number of \mathcal{R}, and $\chi_{f}(\mathcal{R})$ is the fractional chromatic number of \mathcal{R} defined as follows: a b-fold coloring of a graph G is an assignment of sets of b colors to the vertices of G. The fractional chromatic number of G, denoted $\chi_{f}(G)$, is defined by

$$
\chi_{f}(G)=\inf \left\{\left.\frac{a}{b} \right\rvert\, G \text { has a } b \text {-fold coloring using } a \text { colors }\right\} .
$$

In this paper we study the circular chromatic number of the unit distance graph \mathcal{R}.
Let $r \geqslant 2, a, b \in[0, r)$, and $a \leqslant b$. We define the circular distance of a and b, denoted by $\delta(a, b)=\delta_{r}(a, b)$, to be $\min \{b-a, r+a-b\}$. One may identify the interval [0, r) with a circle C^{r} having circumference r, and then $\delta(a, b)$ will be the distance between a and b in C^{r}. It is easy to see that δ satisfies the triangle inequality.

If $a, b \in[0, r)$ (or equivalently $a, b \in C^{r}$), we define the circular interval from a to b, denoted $[a, b]$, as follows (see Figure 1.1):

$$
[a, b]= \begin{cases}\{x \mid a \leqslant x \leqslant b\} & \text { if } a \leqslant b \\ \{x \mid 0 \leqslant x \leqslant b \text { or } a \leqslant x<r\} & \text { if } a>b\end{cases}
$$

[^0]

Fig. 1.1. Circular intervals (clockwise direction is the positive direction).

FIG. 2.1. The unit distance graph $H_{a, b}$.

An r-circular coloring of a graph G is a function $c: V(G) \rightarrow C^{r}$ such that for every edge $x y$ in $G, \delta(c(x), c(y)) \geqslant 1$. The circular chromatic number of G, denoted by $\chi_{c}(G)$, is

$$
\chi_{c}(G)=\inf \{r \mid G \text { admits an } r \text {-circular coloring }\}
$$

It is well known [4] that for every graph $G, \chi_{f}(G) \leqslant \chi_{c}(G) \leqslant \chi(G)$. For the unit distance graph \mathcal{R}, these inequalities give

$$
\frac{32}{9} \leqslant \chi_{f}(\mathcal{R}) \leqslant \chi_{c}(\mathcal{R}) \leqslant \chi(\mathcal{R}) \leqslant 7
$$

We improve the lower bound for $\chi_{c}(\mathcal{R})$ to 4 . We give two proofs of this result. The second one is constructive and gives a construction of finite unit distance graphs whose circular chromatic numbers are arbitrarily close to 4 .
2. Proof. Let a and b be two points in the plane, and let $d(a, b)$ denote the Euclidean distance between a and b. If $d(a, b)=\sqrt{3}$, then we may find points x and y in the plane such that the subgraph of \mathcal{R} induced on the set $\{a, b, x, y\}$ is isomorphic to the graph H obtained by deleting one edge from K_{4} (see Figure 2.1). We denote this unit distance graph by $H_{a, b}$. On the other hand, it is easy to see that, in any embedding of H as a unit distance graph in the plane, the Euclidean distance between the two vertices of degree 2 in H is $\sqrt{3}$.

Lemma 2.1. Let $0<\varepsilon<1$ and let $a, b \in \mathbb{R}^{2}$ with $d(a, b)=\sqrt{3}$. Let c be a $(3+\varepsilon)$-circular coloring of $H_{a, b}$. Then $\delta(c(a), c(b)) \leqslant \varepsilon$.

Proof. Without loss of generality, we may assume $c(a)=0$. Since a, x, y form a triangle in $H_{a, b}$, we have $c(x) \in[1,1+\varepsilon]$ and $c(y) \in[2,2+\varepsilon]$ up to symmetry. On
the other hand, b is adjacent to both x and y. Thus

$$
\begin{aligned}
c(b) & \in[c(x)+1, c(x)-1] \cap[c(y)+1, c(y)-1] \\
& \subseteq[2, \varepsilon] \cap[-\varepsilon, 1+\varepsilon] \\
& =[-\varepsilon, \varepsilon] .
\end{aligned}
$$

The last equality is true since $1+\varepsilon<2$.
Theorem 2.2. $\chi_{c}(\mathcal{R}) \geqslant 4$.
Proof. Suppose that c is a $(3+\varepsilon)$-circular coloring of \mathcal{R} where $0 \leqslant \varepsilon<1$. Let

$$
\mu=\sup \left\{\delta(c(a), c(b)) \mid a, b \in \mathbb{R}^{2} \text { and } d(a, b)=\sqrt{3}\right\}
$$

By Lemma 2.1, $\mu \leqslant \varepsilon$. By the definition of μ, for every $0<\mu^{\prime}<\mu$, there exist points a and b at distance $\sqrt{3}$ in the plane such that $\delta(c(a), c(b))>\mu^{\prime}$. Consider the graph $H_{a, b}$ as in Figure 2.1. Without loss of generality we may assume

$$
0=c(a) \leqslant c(b)<c(x)<c(y) \leqslant 2+\varepsilon
$$

Since $3+\varepsilon<4$, we have

$$
\delta(c(a), c(x))=c(x)=\delta(c(a), c(b))+\delta(c(b), c(x))>\mu^{\prime}+1
$$

On the other hand, since a and x are at distance 1 , there exists a point z which is at distance $\sqrt{3}$ from both a and x. Therefore

$$
1+\mu^{\prime}<\delta(c(a), c(x)) \leqslant \delta(c(a), c(z))+\delta(c(z), c(x)) \leqslant 2 \mu
$$

Since this is true for every $\mu^{\prime}<\mu$, we have $\mu \geqslant 1$. This is a contradiction since $\mu \leqslant \varepsilon<1$.
3. A constructive proof. The graph $G_{0}=K_{2}$ is obviously a unit distance graph. In our construction of graphs $G_{n}(n \geqslant 0)$ we distinguish two vertices in each of them. To emphasize the distinguished vertices x and y of G_{n}, we write $G_{n}^{x, y}$. We identify subgraphs of \mathcal{R} with their geometric representation given by their vertex set.

For $n \geqslant 0$, the graph G_{n+1} is constructed recursively from four copies of G_{n}. Let $S=V\left(G_{n}^{x, y}\right) \subseteq \mathbb{R}^{2}$. Let us rotate the set S in the plane about the point x, so that the image y^{\prime} of y under this rotation is at distance 1 from y. Let S^{\prime} be the image of S under this rotation. Let T be the set of all points in $S \cup S^{\prime}$ and their reflections across the line $y y^{\prime}$. In particular let $z \in T$ be the reflection of x across the line $y y^{\prime}$. We define $G_{n+1}^{x, z}$ to be the subgraph of \mathcal{R} induced on T. This construction is depicted in Figure 3.1.

Note that G_{1} is the graph $H_{a, b}$ of Figure 2.1 and G_{2} contains the Moser graph shown in Figure 3.2 as a subgraph. The Moser graph, also known as the spindle graph, was the first 4 -chromatic unit distance graph discovered [2].

Lemma 3.1. For every $n \geqslant 1$, $\chi_{c}\left(G_{n}\right) \geqslant 4-2^{1-n}$. Moreover, for every $r=$ $4-2^{1-n}+\varepsilon$ with $0 \leqslant \varepsilon<2^{1-n}$ and every circular r-coloring c of $G_{n}^{x, z}$, we have $\delta(c(x), c(z)) \leqslant 2^{n-1} \varepsilon$.

Proof. We use induction on n. The nontrivial part of the case $n=1$ is proved in Lemma 2.1. Let $n \geqslant 1$ and $G_{n+1}^{x, z}$ be as shown in Figure 3.1. Let $r=4-2^{1-n}+\varepsilon$ for some $\varepsilon \geqslant 0$, and let c be a circular r-coloring of $G_{n+1}^{x, z}$. Without loss of generality we may assume that $c(x)=0$. By the induction hypothesis, $\delta(0, c(y))$ and $\delta\left(0, c\left(y^{\prime}\right)\right)$ are both at most $2^{n-1} \varepsilon$. Hence $\delta\left(c(y), c\left(y^{\prime}\right)\right) \leqslant 2^{n} \varepsilon$. On the other hand, since y and

FIG. 3.1. Construction of G_{n+1} from G_{n}.

Fig. 3.2. The Moser (spindle) graph.
y^{\prime} are adjacent in $G_{n+1}^{x, z}$, we have $\delta\left(c(y), c\left(y^{\prime}\right)\right) \geqslant 1$. Therefore $\varepsilon \geqslant 2^{-n}$, and we have $\chi_{c}\left(G_{n+1}\right) \geqslant 4-2^{1-n}+2^{-n}=4-2^{-n}$.

Now let $r=4-2^{-n}+\varepsilon$ for some $0 \leqslant \varepsilon<2^{-n}$, and let c be a circular r-coloring of G_{n+1} with $c(x)=0$. Note that $r=4-2^{1-n}+\varepsilon^{\prime}$, with $\varepsilon^{\prime}=2^{-n}+\varepsilon<2^{1-n}$. By the induction hypothesis, $\delta(0, c(y)), \delta\left(0, c\left(y^{\prime}\right)\right), \delta(c(z), c(y))$, and $\delta\left(c(z), c\left(y^{\prime}\right)\right)$ are all at most $2^{n-1} \varepsilon^{\prime}<1$. Therefore we have

$$
c(y), c\left(y^{\prime}\right) \in\left[-2^{n-1} \varepsilon^{\prime}, 2^{n-1} \varepsilon^{\prime}\right]
$$

and

$$
c(z) \in\left[c(y)-2^{n-1} \varepsilon^{\prime}, c(y)+2^{n-1} \varepsilon^{\prime}\right] \cap\left[c\left(y^{\prime}\right)-2^{n-1} \varepsilon^{\prime}, c\left(y^{\prime}\right)+2^{n-1} \varepsilon^{\prime}\right] .
$$

Since $\delta\left(c(y), c\left(y^{\prime}\right)\right) \geqslant 1$, one of $c(y)$ and $c\left(y^{\prime}\right)$, say $c(y)$, is in the circular interval $\left[-2^{n-1} \varepsilon^{\prime}, 2^{n-1} \varepsilon^{\prime}-1\right]$, and $c\left(y^{\prime}\right) \in\left[-2^{n-1} \varepsilon^{\prime}+1,2^{n-1} \varepsilon^{\prime}\right]$. Therefore

$$
\left[c(y)-2^{n-1} \varepsilon^{\prime}, c(y)+2^{n-1} \varepsilon^{\prime}\right] \subseteq\left[-2^{n} \varepsilon^{\prime}, 2^{n} \varepsilon^{\prime}-1\right]=\left[-2^{n} \varepsilon^{\prime}, 2^{n} \varepsilon\right]
$$

and

$$
\left[c\left(y^{\prime}\right)-2^{n-1} \varepsilon^{\prime}, c\left(y^{\prime}\right)+2^{n-1} \varepsilon^{\prime}\right] \subseteq\left[-2^{n} \varepsilon^{\prime}+1,2^{n} \varepsilon^{\prime}\right]=\left[-2^{n} \varepsilon, 2^{n} \varepsilon^{\prime}\right] .
$$

Finally, since $\varepsilon^{\prime}<2^{1-n}$, we have $2^{n} \varepsilon^{\prime}<r-2^{n} \varepsilon^{\prime}$. Hence

$$
c(z) \in\left[-2^{n} \varepsilon^{\prime}, 2^{n} \varepsilon\right] \cap\left[-2^{n} \varepsilon, 2^{n} \varepsilon^{\prime}\right]=\left[-2^{n} \varepsilon, 2^{n} \varepsilon\right] .
$$

This completes the induction step. \quad a
Let us observe that, when constructing G_{n+1} from four copies of G_{n}, it may happen that vertices in distinct copies of G_{n} correspond to the same points in the
plane. Additionally, it may happen that some edges between vertices in distinct copies of G_{n} are introduced. We may define in the same way a sequence of abstract graphs H_{n}, where neither of these two issues occur. Clearly $\chi_{c}\left(G_{n}\right) \geqslant \chi_{c}\left(H_{n}\right)$, but we cannot argue equality in general. The proof of Lemma 3.1 applied to the graphs H_{n} gives slightly more, as follows.

Theorem 3.2. For every $n \geqslant 0, \chi_{c}\left(H_{n}\right)=4-2^{1-n}$.
Proof. The cases $n=0,1$ are trivial. Let $n \geqslant 1$, and let H_{n+1} be as in Figure 3.1. Let $r=4-2^{-n}=4-2^{1-n}+2^{n}$. By the proof of Lemma 3.1, $H_{n}^{x, y}$ admits a circular r-coloring c_{1}, with $c_{1}(x)=0$ and $c_{1}(y)=\frac{1}{2}$. Similarly the graphs $H_{n}^{x, y^{\prime}}$, $H_{n}^{y, z}$, and $H_{n}^{y^{\prime}, z}$ admit circular r-colorings c_{2}, c_{3}, and c_{4}, respectively, with $c_{2}(x)=0$, $c_{2}\left(y^{\prime}\right)=c_{4}\left(y^{\prime}\right)=-\frac{1}{2}, c_{3}(y)=\frac{1}{2}$, and $c_{3}(z)=c_{4}(z)=0$. Now a circular r-coloring c of H_{n+1} can be obtained by combining the partial colorings $c_{1}, c_{2}, c_{3}, c_{4}$.

The construction of this section gives an infinite subgraph of \mathcal{R} with a circular chromatic number of at least 4 . It remains open whether or not \mathcal{R} has a finite subgraph with the same property.

REFERENCES

[1] H. Hadwiger and H. Debrunner, Combinatorial Geometry in the Plane, Holt, Rinehart and Winston, New York, 1964.
[2] L. Moser and W. Moser, Solution to problem 10, Canad. Math. Bull., 4 (1961), pp. 187-189.
[3] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory, John Wiley \& Sons, New York, 1997.
[4] X. ZHU, Circular chromatic number: A survey, Discrete Math., 229 (2001), pp. 371-410.

[^0]: *Received by the editors July 4, 2006; accepted for publication (in revised form) January 31, 2007; published electronically May 22, 2007.
 http://www.siam.org/journals/sidma/21-2/66427.html
 ${ }^{\dagger}$ Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada (mdevos@sfu.can, javad.ebrahim@gmail.com, ghebleh@gmail.com, goddyn@math.sfu.ca, mohar@sfu.ca).
 \ddagger Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada (naserasr@math.uwaterloo.ca).

