CIRCULAR COLORING THE PLANE*

MATT DEVOS^{\dagger}, JAVAD EBRAHIMI^{\dagger}, MOHAMMAD GHEBLEH^{\dagger}, LUIS GODDYN^{\dagger}, BOJAN MOHAR^{\dagger}, AND REZA NASERASR^{\ddagger}

Abstract. The unit distance graph \mathcal{R} is the graph with vertex set \mathbb{R}^2 in which two vertices (points in the plane) are adjacent if and only if they are at Euclidean distance 1. We prove that the circular chromatic number of \mathcal{R} is at least 4, thus improving the known lower bound of 32/9 obtained from the fractional chromatic number of \mathcal{R} .

Key words. graph coloring, circular coloring, unit distance graph

AMS subject classifications. 05C15, 05C10, 05C62

DOI. 10.1137/060664276

1. Introduction. The unit distance graph \mathcal{R} is defined to be the graph with vertex set \mathbb{R}^2 in which two vertices (points in the plane) are adjacent if and only if they are at Euclidean distance 1. Every subgraph of \mathcal{R} is also said to be a unit distance graph. It is known that (cf. [1, 2])

$$4 \leqslant \chi(\mathcal{R}) \leqslant 7$$

and that (cf. [3, pp. 59–65])

$$\frac{32}{9} \leqslant \chi_f(\mathcal{R}) \leqslant 4.36.$$

Here $\chi(\mathcal{R})$ denotes the chromatic number of \mathcal{R} , and $\chi_f(\mathcal{R})$ is the fractional chromatic number of \mathcal{R} defined as follows: a *b-fold coloring* of a graph G is an assignment of sets of b colors to the vertices of G. The fractional chromatic number of G, denoted $\chi_f(G)$, is defined by

$$\chi_f(G) = \inf \left\{ \frac{a}{b} \mid G \text{ has a } b\text{--fold coloring using } a \text{ colors} \right\}.$$

In this paper we study the circular chromatic number of the unit distance graph \mathcal{R} . Let $r \geq 2$, $a, b \in [0, r)$, and $a \leq b$. We define the *circular distance* of a and b, denoted by $\delta(a, b) = \delta_r(a, b)$, to be $\min\{b - a, r + a - b\}$. One may identify the interval [0, r) with a circle C^r having circumference r, and then $\delta(a, b)$ will be the distance between a and b in C^r . It is easy to see that δ satisfies the triangle inequality.

If $a, b \in [0, r)$ (or equivalently $a, b \in C^r$), we define the *circular interval from a to* b, denoted [a, b], as follows (see Figure 1.1):

$$[a,b] = \begin{cases} \{x \mid a \leqslant x \leqslant b\} & \text{if } a \leqslant b, \\ \{x \mid 0 \leqslant x \leqslant b \text{ or } a \leqslant x < r\} & \text{if } a > b. \end{cases}$$

^{*}Received by the editors July 4, 2006; accepted for publication (in revised form) January 31, 2007; published electronically May 22, 2007.

 $[\]rm http://www.siam.org/journals/sidma/21-2/66427.html$

[†]Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada (mdevos@sfu.can, javad.ebrahim@gmail.com, ghebleh@gmail.com, goddyn@math.sfu.ca, mohar@sfu.ca)

[‡]Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada (naserasr@math.uwaterloo.ca).

Fig. 1.1. Circular intervals (clockwise direction is the positive direction).

Fig. 2.1. The unit distance graph $H_{a,b}$.

An r-circular coloring of a graph G is a function $c: V(G) \to C^r$ such that for every edge xy in G, $\delta(c(x), c(y)) \ge 1$. The circular chromatic number of G, denoted by $\chi_c(G)$, is

 $\chi_c(G) = \inf\{r \mid G \text{ admits an } r\text{-circular coloring}\}.$

It is well known [4] that for every graph G, $\chi_f(G) \leq \chi_c(G) \leq \chi(G)$. For the unit distance graph \mathcal{R} , these inequalities give

$$\frac{32}{9} \leqslant \chi_f(\mathcal{R}) \leqslant \chi_c(\mathcal{R}) \leqslant \chi(\mathcal{R}) \leqslant 7.$$

We improve the lower bound for $\chi_c(\mathcal{R})$ to 4. We give two proofs of this result. The second one is constructive and gives a construction of finite unit distance graphs whose circular chromatic numbers are arbitrarily close to 4.

2. Proof. Let a and b be two points in the plane, and let d(a,b) denote the Euclidean distance between a and b. If $d(a,b) = \sqrt{3}$, then we may find points x and y in the plane such that the subgraph of \mathcal{R} induced on the set $\{a,b,x,y\}$ is isomorphic to the graph H obtained by deleting one edge from K_4 (see Figure 2.1). We denote this unit distance graph by $H_{a,b}$. On the other hand, it is easy to see that, in any embedding of H as a unit distance graph in the plane, the Euclidean distance between the two vertices of degree 2 in H is $\sqrt{3}$.

LEMMA 2.1. Let $0 < \varepsilon < 1$ and let $a, b \in \mathbb{R}^2$ with $d(a, b) = \sqrt{3}$. Let c be a $(3 + \varepsilon)$ -circular coloring of $H_{a,b}$. Then $\delta(c(a), c(b)) \leq \varepsilon$.

Proof. Without loss of generality, we may assume c(a) = 0. Since a, x, y form a triangle in $H_{a,b}$, we have $c(x) \in [1, 1 + \varepsilon]$ and $c(y) \in [2, 2 + \varepsilon]$ up to symmetry. On

the other hand, b is adjacent to both x and y. Thus

$$c(b) \in [c(x) + 1, c(x) - 1] \cap [c(y) + 1, c(y) - 1]$$

$$\subseteq [2, \varepsilon] \cap [-\varepsilon, 1 + \varepsilon]$$

$$= [-\varepsilon, \varepsilon].$$

The last equality is true since $1 + \varepsilon < 2$.

THEOREM 2.2. $\chi_c(\mathcal{R}) \geqslant 4$.

Proof. Suppose that c is a $(3+\varepsilon)$ -circular coloring of \mathcal{R} where $0 \le \varepsilon < 1$. Let

$$\mu = \sup \{ \delta(c(a), c(b)) \mid a, b \in \mathbb{R}^2 \text{ and } d(a, b) = \sqrt{3} \}.$$

By Lemma 2.1, $\mu \leq \varepsilon$. By the definition of μ , for every $0 < \mu' < \mu$, there exist points a and b at distance $\sqrt{3}$ in the plane such that $\delta(c(a), c(b)) > \mu'$. Consider the graph $H_{a,b}$ as in Figure 2.1. Without loss of generality we may assume

$$0 = c(a) \leqslant c(b) < c(x) < c(y) \leqslant 2 + \varepsilon.$$

Since $3 + \varepsilon < 4$, we have

$$\delta(c(a), c(x)) = c(x) = \delta(c(a), c(b)) + \delta(c(b), c(x)) > \mu' + 1.$$

On the other hand, since a and x are at distance 1, there exists a point z which is at distance $\sqrt{3}$ from both a and x. Therefore

$$1 + \mu' < \delta(c(a), c(x)) \leqslant \delta(c(a), c(z)) + \delta(c(z), c(x)) \leqslant 2\mu.$$

Since this is true for every $\mu' < \mu$, we have $\mu \geqslant 1$. This is a contradiction since $\mu \leqslant \varepsilon < 1$. \square

3. A constructive proof. The graph $G_0 = K_2$ is obviously a unit distance graph. In our construction of graphs G_n $(n \ge 0)$ we distinguish two vertices in each of them. To emphasize the distinguished vertices x and y of G_n , we write $G_n^{x,y}$. We identify subgraphs of \mathcal{R} with their geometric representation given by their vertex set.

For $n \geq 0$, the graph G_{n+1} is constructed recursively from four copies of G_n . Let $S = V(G_n^{x,y}) \subseteq \mathbb{R}^2$. Let us rotate the set S in the plane about the point x, so that the image y' of y under this rotation is at distance 1 from y. Let S' be the image of S under this rotation. Let T be the set of all points in $S \cup S'$ and their reflections across the line yy'. In particular let $z \in T$ be the reflection of x across the line yy'. We define $G_{n+1}^{x,z}$ to be the subgraph of R induced on T. This construction is depicted in Figure 3.1.

Note that G_1 is the graph $H_{a,b}$ of Figure 2.1 and G_2 contains the Moser graph shown in Figure 3.2 as a subgraph. The Moser graph, also known as the spindle graph, was the first 4-chromatic unit distance graph discovered [2].

LEMMA 3.1. For every $n \ge 1$, $\chi_c(G_n) \ge 4 - 2^{1-n}$. Moreover, for every $r = 4 - 2^{1-n} + \varepsilon$ with $0 \le \varepsilon < 2^{1-n}$ and every circular r-coloring c of $G_n^{x,z}$, we have $\delta(c(x), c(z)) \le 2^{n-1}\varepsilon$.

Proof. We use induction on n. The nontrivial part of the case n=1 is proved in Lemma 2.1. Let $n \ge 1$ and $G_{n+1}^{x,z}$ be as shown in Figure 3.1. Let $r=4-2^{1-n}+\varepsilon$ for some $\varepsilon \ge 0$, and let c be a circular r-coloring of $G_{n+1}^{x,z}$. Without loss of generality we may assume that c(x)=0. By the induction hypothesis, $\delta(0,c(y))$ and $\delta(0,c(y'))$ are both at most $2^{n-1}\varepsilon$. Hence $\delta(c(y),c(y')) \le 2^n\varepsilon$. On the other hand, since y and

Fig. 3.1. Construction of G_{n+1} from G_n .

Fig. 3.2. The Moser (spindle) graph.

y' are adjacent in $G_{n+1}^{x,z}$, we have $\delta(c(y),c(y'))\geqslant 1$. Therefore $\varepsilon\geqslant 2^{-n}$, and we have $\chi_c(G_{n+1})\geqslant 4-2^{1-n}+2^{-n}=4-2^{-n}$.

Now let $r=4-2^{-n}+\varepsilon$ for some $0 \le \varepsilon < 2^{-n}$, and let c be a circular r-coloring of G_{n+1} with c(x)=0. Note that $r=4-2^{1-n}+\varepsilon'$, with $\varepsilon'=2^{-n}+\varepsilon<2^{1-n}$. By the induction hypothesis, $\delta(0,c(y)), \delta(0,c(y')), \delta(c(z),c(y))$, and $\delta(c(z),c(y'))$ are all at most $2^{n-1}\varepsilon'<1$. Therefore we have

$$c(y), c(y') \in [-2^{n-1}\varepsilon', 2^{n-1}\varepsilon']$$

and

$$c(z) \in [c(y)-2^{n-1}\varepsilon',c(y)+2^{n-1}\varepsilon'] \cap [c(y')-2^{n-1}\varepsilon',c(y')+2^{n-1}\varepsilon'].$$

Since $\delta(c(y),c(y'))\geqslant 1$, one of c(y) and c(y'), say c(y), is in the circular interval $[-2^{n-1}\varepsilon',2^{n-1}\varepsilon'-1]$, and $c(y')\in [-2^{n-1}\varepsilon'+1,2^{n-1}\varepsilon']$. Therefore

$$[c(y)-2^{n-1}\varepsilon',c(y)+2^{n-1}\varepsilon']\subseteq [-2^n\varepsilon',2^n\varepsilon'-1]=[-2^n\varepsilon',2^n\varepsilon]$$

and

$$[c(y')-2^{n-1}\varepsilon',c(y')+2^{n-1}\varepsilon']\subseteq [-2^n\varepsilon'+1,2^n\varepsilon']=[-2^n\varepsilon,2^n\varepsilon'].$$

Finally, since $\varepsilon' < 2^{1-n}$, we have $2^n \varepsilon' < r - 2^n \varepsilon'$. Hence

$$c(z) \in [-2^n \varepsilon', 2^n \varepsilon] \cap [-2^n \varepsilon, 2^n \varepsilon'] = [-2^n \varepsilon, 2^n \varepsilon].$$

This completes the induction step.

Let us observe that, when constructing G_{n+1} from four copies of G_n , it may happen that vertices in distinct copies of G_n correspond to the same points in the

plane. Additionally, it may happen that some edges between vertices in distinct copies of G_n are introduced. We may define in the same way a sequence of abstract graphs H_n , where neither of these two issues occur. Clearly $\chi_c(G_n) \geqslant \chi_c(H_n)$, but we cannot argue equality in general. The proof of Lemma 3.1 applied to the graphs H_n gives slightly more, as follows.

THEOREM 3.2. For every $n \ge 0$, $\chi_c(H_n) = 4 - 2^{1-n}$.

Proof. The cases n=0,1 are trivial. Let $n\geqslant 1$, and let H_{n+1} be as in Figure 3.1. Let $r=4-2^{-n}=4-2^{1-n}+2^n$. By the proof of Lemma 3.1, $H_n^{x,y}$ admits a circular r-coloring c_1 , with $c_1(x)=0$ and $c_1(y)=\frac{1}{2}$. Similarly the graphs $H_n^{x,y'}$, $H_n^{y,z}$, and $H_n^{y',z}$ admit circular r-colorings c_2 , c_3 , and c_4 , respectively, with $c_2(x)=0$, $c_2(y')=c_4(y')=-\frac{1}{2}$, $c_3(y)=\frac{1}{2}$, and $c_3(z)=c_4(z)=0$. Now a circular r-coloring c of H_{n+1} can be obtained by combining the partial colorings c_1,c_2,c_3,c_4 . \square

The construction of this section gives an infinite subgraph of \mathcal{R} with a circular chromatic number of at least 4. It remains open whether or not \mathcal{R} has a finite subgraph with the same property.

REFERENCES

- H. Hadwiger and H. Debrunner, Combinatorial Geometry in the Plane, Holt, Rinehart and Winston, New York, 1964.
- [2] L. Moser and W. Moser, Solution to problem 10, Canad. Math. Bull., 4 (1961), pp. 187-189.
- [3] E. R. SCHEINERMAN AND D. H. ULLMAN, Fractional Graph Theory, John Wiley & Sons, New York, 1997.
- [4] X. Zhu, Circular chromatic number: A survey, Discrete Math., 229 (2001), pp. 371-410.