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Abstract

For every fixed surface S, orientable or non-orientable, and a given graph G, Mohar (STOC’96 and
Siam J. Discrete Math. (1999)) described a linear time algorithm which yields either an embedding
of G in S or a minor of G which is not embeddable in S and is minimal with this property. That
algorithm, however, needs a lot of lemmas which spanned six additional papers. In this paper, we give
a new linear time algorithm for the same problem. The advantages of our algorithm are the following:

1. The proof is considerably simpler: it needs only about 10 pages, and some results (with rather
accessible proofs) from graph minors theory, while Mohar’s original algorithm and its proof
occupy more than 100 pages in total.

2. The hidden constant (depending on the genus g of the surface S) is much smaller. It is single
exponential in g, while it is doubly exponential in Mohar’s algorithm.

As a spinoff of our main result, we give another linear time algorithm, which is of independent interest.
This algorithm computes the genus and constructs minimum genus embeddings of graphs of bounded
tree-width. This resolves a conjecture by Neil Robertson and solves one of the most annoying long
standing open question about complexity of algorithms on graphs of bounded tree-width.
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1 Introduction

1.1 Planarity Testing and Surface Embeddings

A seminal result of Hopcroft and Tarjan [11] from 1974 is that there is a linear time algorithm for
testing planarity of graphs. This is just one of a host of results on embedding graphs in surfaces.
These problems are of both practical and theoretical interest. The practical issues arise, for instance, in
problems concerning VLSI, and also in several other applications of “nearly planar” networks, because
planar graphs and graphs embedded in low genus surfaces can be handled more easily. Theoretical interest
comes from the importance of the genus parameter of graphs and from the fact that graphs of bounded
genus naturally generalize the family of planar graphs and share many important properties with them.

Let us first observe that deciding the genus of a given graph is NP-complete as Thomassen showed
in [39]. Our main interest here is whether or not a given graph can be embedded into the surface of
Euler genus g (orientable or non-orientable), where g is a fixed integer. Filotti, Miller and Reif [9]
were the first to give a polynomial time algorithm for this problem. In their solution, the degree of the
polynomial bound on the time complexity depends on g. Djidjev and Reif [8] improved the algorithm of
[9] by presenting a polynomial time algorithm for each fixed orientable surface, where the degree of the
polynomial is fixed. In addition, linear time algorithms have been devised for embedding graphs in the
projective plane [19] and in the torus [14].

Robertson and Seymour [35] have already proved that all classes of graphs that are closed under taking
minors are recognizable in cubic time. This implies that there is an O(n3) algorithm for deciding whether
G can be embedded into a surface of Euler genus g, for every fixed g. In 1996, Mohar [21, 23] gave a
linear time algorithm for testing embeddability of graphs in surfaces and constructing an embedding, if
one exists. This is one of the deepest results in this area, since it clearly generalizes linear time algorithms
for testing planarity and constructing a planar embedding if one exists [4, 6, 11, 41].

Recently, some apparently new and nontrivial linear time algorithms concerning graph embeddings
appear: One [16] is concerning drawing a given graph into the plane with at most k crossings (for fixed
k), and the other one [17] is concerning embedding a given graph into a surface with face-width at least
k with an application to the graph isomorphism problem. Both algorithms depend on the linear time
algorithm for embedding a given graph into a given surface [21, 23].

1.2 Our main result

While Mohar’s algorithm [21, 23] is an ultimate result in this area, it needs a lot of preparation which
spanned six other papers [12, 13, 15, 20, 22, 26]. Our purpose of this paper is to give a new, simpler
linear time algorithm for testing embeddability of graphs in surfaces and constructing an embedding, if
one exists.

Specifically, we provide the following theorem.

Theorem 1.1 For every fixed surface S (orientable or non-orientable), and a given graph G, there is a
linear time algorithm which returns one of the following:

(1) an embedding of G in S, or

(2) a minor of G which is not embeddable in S and is minimal with this property.

The advantages of our algorithm are the following:

1. The proof is considerably simpler: it needs only about 10 pages, and some results (with rather
accessible proofs) from graph minors theory, while Mohar’s original algorithm and its proof occupy
more than 100 pages in total.

2. The hidden constant (depending on the genus g of the surface S) is much smaller. It is single
exponential in g, while it is doubly exponential in Mohar’s algorithm.
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Our algorithm has several appealing features. It applies techniques which were used in [31, 32] to
obtain a linear time algorithm to solve the k disjoint paths problem for planar graphs (improving the
O(n3) algorithm of Robertson and Seymour [35]).

Computing the genus of graphs in certain minor closed families has mainly theoretical (but also some
practical) importance. We refer to Mohar and Schrijver [27] for a discussion on this topic. While some
minor closed families of graphs allow polynomial time genus computation, there are some classes where
genus testing is NP-complete. The simplest such family is the class of all apex graphs [24]. (Recall that
a graph G is an apex graph if it contains a vertex v such that G − v is planar.)

It was most annoying that the status of the genus problem was open even for such a simple case as
graphs of bounded tree-width. As a spinoff of our main result, we give another linear time algorithm.

Theorem 1.2 There is a linear time algorithm to compute the genus, the Euler genus, the nonorientable
genus and to construct corresponding minimum genus embeddings of graphs of bounded tree-width.

Theorem 1.2 proves a conjecture by Robertson (private communication), see [28], and solves one of
the most annoying long standing open question about complexity of algorithms on graphs of bounded
tree-width.

1.3 Overview of the algorithm of Theorem 1.1

We now turn to our algorithm for constructing an embedding of a given graph G into the surface S of
Euler genus g, if one exists. Otherwise, we discover a minimal forbidden minor for embeddability in S
contained in G. The crux of the matter is to understand which vertices are irrelevant with respect to any
embedding of G into the surface S of Euler genus g. We prove that the removal of these vertices yields
a graph of bounded tree-width if G has an embedding in S.

We may assume that the minimum degree of G is at least 2. We iteratively find a sequence of graphs
G = G0, G1, . . . , Gb such that Gi is obtained from Gi−1 by either contracting a matching Mi with at least
ε|Gi−1| vertices for some small but constant ε > 0, or by deleting a stable set I of ε|Gi−1| vertices, each
of degree 2. In the latter case, every vertex in I has the same pair of neighbors as several other vertices
in I. In this case, we also add edges xy to Gi−1 for every x, y for which there is a vertex z ∈ I whose
neighbors are x and y. We stop after b steps, where b is minimum value such that Gb has fewer than B
vertices for some constant B. Clearly b ≤ log1/ε(n/B) and hence it turns out that the sum of the sizes of
all encountered graphs Gi is O(1

ε n).
For each i, we will either construct a desired embedding for Gi into some surface of Euler genus at

most g (and of the same orientability type as S), or give a minimal forbidden minor for the surface S
contained in Gi. It is easy to do this for Gb in constant time, since it has bounded size. We will work
backwards from b to 1 using the embedding of Gi+1 to help in constructing an embedding for Gi, if one
exists. The key idea is that when we construct the embedding of Gi+1, we make a reduction to get a
subgraph G′

i+1 of Gi+1, which has bounded tree-width. The important property of G′
i+1 is that Gi has

an embedding in some surface of Euler genus at most g if and only if the subgraph G′′
i obtained from

G′
i+1 by uncontracting the matching Mi restricted on the vertices of G′

i+1 has such an embedding. Note
that Gi+1 may be obtained from Gi by deleting a stable set I of ε|Gi| vertices of degree 2. In this case,
it is actually easy to construct an embedding of Gi from Gi+1. Therefore, we shall only concentrate on
the case when Gi+1 is obtained from Gi by contracting the matching Mi.

Suppose that we have an embedding of G′
i+1, which has tree-width at most h(g) for some function h

of g and satisfies the property mentioned above. We then uncontract the matching Mi of Gi restricted
on G′

i+1 to obtain the graph G′′
i . It is easy to see that the tree-width of G′′

i is at most 2h(g). Therefore,
we can find an embedding of G′′

i using the standard dynamic programming approach; otherwise, we can
detect a minimal forbidden minor for the surface S in G′

i. By the property of G′
i+1, we can extend the

embedding of G′′
i ⊆ G′

i to Gi that is obtained from Gi+1 by uncontracting the matching Mi.

3



It remains to find a subgraph G′
i of Gi with the property, which is exactly the same as that of G′

i+1,
i.e., G′

i has tree-width at most h(g), and Gi−1 has an embedding in some surface of Euler genus at most g
if and only if the subgraph G′′

i−1 obtained from G′
i by uncontracting the matching Mi−1 of Gi−1 restricted

on the vertices of G′
i has. This is our main challenge in this algorithm, and we shall describe more details

in Section 5.
We continue with this procedure until we reach G = G0. In order to achieve properties as claimed for

our main algorithm, we need the following ingredients:

1. Finding an induced matching of large size. This was originated in Bodlaender [5].

2. Finding an embedding of a bounded tree-width graph.

3. Reducing the tree-width by deleting irrelevant vertices.

For the third ingredient, we shall use the technique in [31, 32]. The results in [31, 32] show that there
is a linear time algorithm for the k disjoint paths problem for fixed k when an input graph is planar. This
algorithm handles planar graphs more quickly than the seminal algorithm of Robertson and Seymour in
[35] which solves the same problem for arbitrary graphs in cubic time. The proof in [31, 32] uses several
ideas underlying Robertson and Seymour’s algorithm.

For the second ingredient, we actually get a much stronger result, as mentioned above. Namely, if a
given graph G has bounded tree-width, then the algorithm can determine the minimum Euler genus of
G, and furthermore, returns an embedding of G into the surface of minimum (Euler) genus.

These tasks are presented in more detail in Sections 2, 3, and 4, respectively.

1.4 Overview of the genus algorithm for graphs of bounded tree-width

Our algorithm for genus of graphs of bounded tree-width follows the standard dynamic programming
approach of Arnborg and Proskurowski [1] and uses some lemmas that establish that there is only a
bounded number of “boundary schemes” which need to be memorized when computing the genus of the
union of two graphs, whose intersection contains a bounded number of vertices.

Let G be a connected graph, and let T ⊆ V (G) be a separating set of G. Suppose that G is embedded
in a surface S, and let G = G1∪G2 be a separation of G with V (G1∩G2) = T . Let W = v1e1v2e2 . . . vkekv1

be a facial walk. A triple ei−1viei in W (including the triple ekv1e1) is called a mixed angle if one of the
edges ei−1 or ei belongs to E(G1), the other one to E(G2). In particular, the vertex vi of a mixed angle
is in T .

Let M be the multigraph embedded in S obtained by joining vertices of consecutive mixed angles in
the facial walks such that for every facial walk W with r > 0 mixed angles, there is a closed walk MW

of length r in M . Clearly, V (M) ⊆ T , and the number of edges of M is equal to the number of mixed
angles. We assume that E(M) ∩ E(G) = ∅.

Two embeddings Π1 and Π2 of G are said to be of the same type with respect to the separation
G = G1 ∪ G2 if they have the same (isomorphic) graph M of mixed angles, the extended embeddings
Π̃1 and Π̃2 of G̃ = G ∪ M induce the same rotation system on M and the same corresponding partition
{Fi | 1 ≤ i ≤ r} of faces of M .

We say that the embedding Π is T -homogeneous if every embedding of smaller or equal genus has at
least as many mixed angles as Π.

Lemma 1.3 Every S-homogeneous embedding Π of G has the following properties:

(a) If F is a mixed face and v ∈ T , then F and v have at most two mixed incidences.

(b) For every v ∈ S there is at most one mixed face with two mixed incidences with v.

(c) For every pair u, v ∈ T , there are at most c(|T |) mixed faces which have mixed incidence with both,
u and v, where the value c(|T |) depends only on the size of T .
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The main fact needed for the algorithm of Theorem 1.2 to work is the following result whose proof is
deferred for the full version of the paper.

Lemma 1.4 The minimum genus taken over all T -homogeneous embeddings of G is equal to the genus
of G.

2 Finding a large induced matching

In the Appendix we review the greedy algorithm for finding a maximal matching in the subgraph induced
on some vertex set T . We now give an algorithmic proof of the following result.

Theorem 2.1 Let g be a fixed positive integer, and let G be a graph of order n with minimum degree at
least 2 and with at most 4n edges. Let d > 8g · 216

√
g and ε = d−6. Then we can find in linear time one

of the following:

(1) A vertex set Z of at least 5ε|G| vertices of degree 2, each of which has the same pair of neighbors
as at least one other vertex in Z.

(2) A matching M in the subgraph of G induced by the vertices of degree at most d that has size
|M | > 2dε|G|.

(3) A minor G′ of G with at least 28
√

g|G′| edges.

(4) A minor G′′ of G which is isomorphic to K3,4g+4.

Proof. The proof outlined here is similar to a proof given in [5] and in [33]. Let S be the set of vertices
of degree at most d in G. The lower bound on d and the imposed conditions on the degrees and on the
number of edges in G imply that |S| ≥ (1 − 6/(d − 1))|G|. So, S contains almost all vertices of G. We
then choose a maximal matching M within G(S). This can be done by Algorithm A.5. We can assume
that M has size at most 2dε|G| or we are done. Then, since the vertices in M have degree ≤ d and |M |
is small, M ∪N(M) is also small. More precisely, |M ∪N(M)| ≤ |M |+ (d− 1)|M | ≤ 4d2ε|G|. Therefore,
S◦ = S − (M ∪ N(M)) is large. Since M is maximal, edges with one endpoint in S◦ have their other
endpoint in V − S. So each vertex in S◦ has at least 2 and at most d neighbors in V − S. For each of
these vertices in turn, we choose a pair of its neighbors in V −S. By contracting (for each v ∈ S◦) one of
the edges towards such a pair, we get a minor of G with vertex set V −S and with many edges (possibly
some of them parallel to each other). If we choose 28

√
g|V − S| such edges, where no two of them are

parallel to each other, then they give rise to a dense minor on the vertex set V −S, yielding outcome (3).
Otherwise we construct as a minor a simple graph F on vertex set V − S with fewer than 28

√
g|V − S|

edges. Let S∗ be the subset of vertices of S◦ used to get the edges of F , and let S′ = S◦ − S∗. Note that
|S∗| < 28

√
g|V − S|.

If S′ contains more than 28
√

g|V − S| + 5dε|G| vertices of degree 2, then there is a subset Z of these
vertices with |Z| ≥ 5ε|G|, giving outcome (1) of the theorem. Note that such a subset can be obtained
by a greedy selection. So we may assume that this is not the case, and hence S′ contains a subset S′′ of
vertices of degree at least three whose cardinality is at least

|S′′| ≥ (1 − 6/(d − 1) − 4d2ε − 5dε)|G| − 2 · 28
√

g|V − S| ≥ 4(g + 1) · 216
√

g|V − S|.

For each vertex s ∈ S′′ choose three of its neighbors in V − S, and denote them by T (s) = {s1, s2, s3}. If
4g+4 vertices s have the same triple T (s), then we get a K3,4g+4 minor which is outcome (4). Otherwise,
a subset Z ′ of 216

√
g|V − S| vertices in S′′ will have pairwise distinct triples.

Consider a vertex v ∈ V − S and let Z ′
v be the set of all vertices s in Z ′ such that v ∈ T (s). If

|Z ′
v | ≥ 28

√
g deg(v), then we get a minor of the graph G on the neighbors of v which satisfies (3). Finally,

5



if this does not happen for any of the vertices v ∈ V −S, then the number of triples and hence the number
of elements in Z ′ is bounded:

|Z ′| ≤ 1
3

∑

v∈V −S

|Z ′
v| ≤ 1

3 · 28
√

g
∑

v∈V −S

deg(v) ≤ 2
3 · 216

√
g|V − S|,

where we have used the fact that the subgraph on V −S has average degree bounded by 28
√

g (or we get
outcome (3)). The derived inequality contradicts the fact that Z ′ ≥ 216

√
g|V − S|. This completes the

proof. �

Let us observe that if we find a minor G′ of G with at least 28
√

g|G′| edges in Theorem 2.1, then
we can find a minimal forbidden minor for embeddability in surfaces of Euler genus g in linear time.
Specifically, this is a corollary of the following result in [33].

Theorem 2.2 Suppose G has at least 2k|G| edges. Then we can detect a Kk-minor in G in linear time.

Since the maximum degree of the vertices in the matching M obtained as outcome (2) of Theorem
2.1 is d, this outcome can be used to get a large induced matching.

Theorem 2.3 Suppose there is a matching M that comes from outcome (2) of Theorem 2.1. Then there
is a submatching M ′ of M of size M ′ ≥ |M |

2d > εn which is induced.

Having K3,4g+4 or K8
√

g (extracted by applying Theorem 2.2) as a minor, we obtain from it (in
constant time) a minimal forbidden minor for the surface S of Euler genus g. In summary:

Theorem 2.4 Let G be a graph with minimum degree at least 2 with at most 4n edges. Let d > 8g ·216
√

g

and ε = d−6. Then we can find in linear time one of the following:

1. A vertex set Z of at least 5ε|G| vertices of degree 2, each of which has the same pair of neighbors
as at least one other vertex in Z.

2. An induced matching M in G containing at least ε|G| edges.

3. A minor G′ of G which is a minimal forbidden minor for the surface S of Euler genus g.

3 Tree-width bounded case

Our algorithm needs to test whether or not a given graph G has bounded tree-width. This can be done
in linear time by the algorithm of Bodlaender [5]. In fact, if the tree-width is bounded, say at most f(k),
we would like to have a tree-decomposition of tree-width at most f(k).

Theorem 3.1 For every fixed l, there is a linear time algorithm to determine whether or not a given graph
G has tree-width at most l. Moreover, if this is the case, then the algorithm gives a tree-decomposition of
tree-width at most l.

The above theorem was slightly improved by Perković and Reed [29].
We now state the main theorems of this section.

Theorem 3.2 Suppose G has tree-width at most k. Then there is a linear time algorithm to decide
whether or not G can be embedded into a surface of (Euler) genus at most g. Moreover, if the answer is
yes, then the algorithm gives an embedding of G, and if the answer is no, then the algorithm outputs a
minimal forbidden minor.
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Proof. This can be achieved by using the standard dynamic programming approach. See [5]. We need
an actual upper bound a(g) on the order of the largest minimal forbidden minor for the surfaces of Euler
genus g. Such a bound does not follow from the non-constructive graph minors proof of Robertson and
Seymour. It follows from the constructive proof of Mohar [21]. The best known bound is given explicitly
in Seymour’s unpublished paper [37]. See also [25]. Therefore, by the standard dynamic programming
[5], we can find each minimal forbidden minor in linear time, if one exists.

Alternatively, a recent result of Adler, Grohe and Kreutzer [2] gives rise to a minimal forbidden minor,
if one exists. �

More generally, we can prove the following theorem, which answers a conjecture posed by Neil Robert-
son (private communication), see [28].

Theorem 3.3 There is a linear time algorithm to compute the genus, the Euler genus, the nonorientable
genus and to construct corresponding minimum genus embeddings of graphs of bounded tree-width.

4 Bounding the tree-width of planar graphs

In this section, we are given a planar graph. What we shall do here is that, we are going to bound
tree-width by deleting many vertices at once, and we have to do this in linear time. How do we find such
vertices in every planar graph? Before we address the question, let us state a result which tells that the
vertices deep inside the planar part are irrelevant. Specifically, the following theorem is proved in [18].

We say that a set U of vertices of G is irrelevant if the graph G embeds in some surface (of Euler
genus at most g) if and only if G − U does.

Theorem 4.1 Suppose that G contains a planar subgraph Q and that C is the outer cycle of a planar
embedding of Q. Suppose also that for every vertex in Q\C, all its neighbors in the graph G are contained
in Q. If Q contains an h-wall W , where h ≥ 2g + 1, then the set of all vertices of W , that have face-
distance in the wall W at least g from the outer cycle of W , is irrelevant. In particular, every vertex
surrounded by a 2g-wall in Q is irrelevant.

Theorem 4.1 says that for any planar subgraph, if there is a “planar” (2g+1)-wall, then we can delete
the middle vertex, and actually, we can keep deleting irrelevant vertices until there is no flat (2g +1)-wall
in the resulting graph. The problem here is that, how can we perform this operation in linear time?
Fortunately, there is a way to do it. This method was first adapted by Reed, Robertson, Seymour and
Schrijver [31, 32], who proved that there is a linear time algorithm for the k disjoint paths problem for
planar graphs. So we shall use this method to delete vertices of each planar graph until the resulting
graph has no flat (2g + 1)-wall. Let us state this as a lemma.

Lemma 4.2 Suppose that Q is a planar subgraph of a graph G such that for every vertex of Q that is
not on the outer cycle of Q, all its neighbors in the graph G are contained in Q. Then there is a linear
time algorithm to find an irrelevant vertex set X ⊆ V (Q). Furthermore, this algorithm can output the
graph Q − X such that it does not contain a (2g + 1)-wall, and no matter how G is embedded into the
surface S of Euler genus at most g, the embedding can be changed at vertices of Q such that all vertices
in X are contained in a disk of the embedding of G in S.

The proof of Lemma 4.2 is exactly same as what Reed, Robertson, Schrijver and Seymour did. We
omit the detail, and refer to the papers [31, 32].

Actually, we shall need the following extension of Lemma 4.2.

Lemma 4.3 Suppose Q is a planar subgraph of a graph G such that for every vertex of Q that is not on
the outer cycle of Q, all its neighbors in the graph G are contained in Q. Let C1, . . . , Cl be disjoint faces of
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Q. Then there is a linear time algorithm to find a vertex set X such that each vertex in X is surrounded
by a 2g-wall in Q − X that does not contain any face of C1, . . . , Cl, and deleting the vertices of X can
be shown not to change the problem of finding an embedding of G into the fixed surface S of Euler genus
at most g, by a sequence of applications of Theorem 4.1, and Q − X contains no 2gl-wall. Furthermore,
no matter how G is embedded into the surface S of Euler genus at most g, the deleted vertices are in the
disk of the embedding of G.

The proof of Lemma 4.3 is also exactly same as what Reed, Robertson, Schrijver and Seymour did.
We omit the detail, and refer to the papers [31, 32].

5 Finding a relevant subgraph of bounded tree-width

Let us recall that our algorithm produces first a sequence of graphs G = G0, G1, . . . , Gb, where each
Gi+1 is obtained from Gi either by contracting a large induced matching Mi or by deleting a large set of
vertices of degree 2 (in which case we shall write Mi = ∅), see Theorem 2.4. In this section, an integer i
is fixed such that Mi 	= ∅ and the following hypothesis is assumed.

Hypothesis 5.1 The graph Gi+1 can be embedded into a surface S of Euler genus at most g (and cannot
be embedded in any surface of smaller genus and the same orientability type). The graph Gi is obtained
from Gi+1 by uncontracting the matching Mi and |Mi| ≥ ε|Gi|, where ε > 0 is some small but fixed
constant. Moreover, we have a subgraph G′

i+1 of Gi+1 satisfying the following conditions:

1. G′
i+1 has tree-width at most h(g) for some function h of g (to be determined later).

2. Let G′′
i be the subgraph of Gi obtained from G′

i+1 by uncontracting the matching Mi restricted to
the vertex set of G′

i+1. Then G′′
i can be obtained from Gi by deleting disjoint disks D1,D2, . . . and

every embedding of G′′
i in S can be extended to an embedding of Gi into S by adding these disks Dj

into faces of G′′
i .

3. Every vertex of Gi − G′′
i is surrounded by a 2g-wall that is flat in every embedding of Gi in S.

The objective of this section is to start with G′
i+1 satisfying the hypothesis and to either construct

G′
i satisfying the hypothesis for i − 1, or to find a minimal forbidden minor for the surface S in time

O(|Gi−1|).
From G′

i+1 we construct G′′
i simply by uncontracting Mi. It is easy to see that G′′

i has tree-width at
most 2h(g), since G′

i has tree-width at most h(g). So, we can find an embedding of G′′
i in S by using the

algorithm for graphs of bounded tree-width. By Hypothesis 5.1, we can extend the embedding of G′′
i to

Gi. We now construct G′
i with the help of G′′

i .
We assume that if the tree-width of a graph embedded in S is at most 4h(g), then this graph does

not contain a flat 16g2 · s(g)-wall for some function s of g, which will be determined later; see Theorem
5.2.

In order to construct G′
i or find a minimal forbidden minor for the surface S, we need several phases

described below. We first uncontract the matching Mi−1 restricted on G′′
i . Note that Gi may have been

obtained from Gi−1 by deleting a stable set of ε|Gi−1| vertices, each of which has degree 2. In this case, it
is actually easy to construct an embedding of Gi−1 from Gi, and a desired subgraph G′

i, since the vertices
of degree two are easy to embed into faces of Gi, and of G′

i. Therefore, we shall only consider the case
when Gi is obtained from Gi−1 by contracting the matching Mi−1.

Phase 1. Extend the embedding of G′′
i to Gi by adding the disks D1,D2, . . . and then delete

some irrelevant vertices. If the embedding does not extend, then return a minimal forbidden minor for
embeddability in S.

We need to consider vertices in the disjoint disks D1,D2, . . . that have been temporarily deleted from
Gi to construct the graph G′′

i (see the last assumption of Hypothesis 5.1). In each disk Dj, we first add
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the “first neighborhood” of Dj (to make sure that we deal with all the matching edges of Mi−1 that were
contracted). By the first neighborhood we mean all facial cycles (in the corresponding embedding of Gi)
that intersect Dj in at least one vertex. Let us denote this intermediate graph by Q′

j ⊆ Gi. Next, we
uncontract the matching Mi−1 restricted to the vertices in Q′

j . Let Qj ⊆ Gi−1 be the resulting graph.
If Qj is planar, then by Theorem 4.1, the vertices surrounded by a 2g-wall in Qj are irrelevant for

Gi−1. Therefore we can delete all irrelevant vertices in time O(|Qj |), as shown by Lemma 4.2. In this way
we destroy all planar subgraphs that contain flat walls of width at least 2g + 1. Therefore, by Theorem
A.4, the tree-width of the resulting graph is at most h(g).

We need to consider the case when Qj is not planar. Note that Q′
j is planar. By the algorithm of

Hopcroft and Tarjan [10], we can easily make Q′
j 3-connected in such a way that each 1- or 2-connected

component can be dealt with separately.
Therefore, we may assume that each vertex v of degree at least 3 in Q′

j has the wheel property, i.e.,
the deletion of v results in a new face bounded by a cycle C, and each neighbor of v is on C. We call
this cycle the first neighbor cycle of v.

The matching Mi−1 is induced in Gi−1 by Theorem 2.4. Therefore, if Qj is not planar, then each of
non-planar parts must involve a matching edge in Qj . Let us look at each non-planar part more closely.
Let e be a matching edge, and v be the vertex after the contraction of e. By the previous observation, if
the uncontraction of v results in a non-planar part, the first neighbor cycle of v together with e includes
a subdivision of K3,3 (or K5) such that e is an edge of this subdivision. We will say that e is a genus
boosting edge.

We now check, for each matching edge e ∈ Mi−1 ∩ Qj , if it is a genus boosting edge. Since Qj

has at most 3|Qj | + 2g edges, it is easy to see that we can test this for all such edges in time O(|Qj|).
Furthermore, we can adequatly treat the genus boosting edges by using the next result.

Theorem 5.2 Let Q be a graph and M an induced matching in Q. Suppose that Q′ = Q − V (M) is
a planar 3-connected graph and that each edge e ∈ M has all its neighbors on a face Fe of the planar
embedding of Q′. If e is a genus boosting edge, then we shall say that Fe is a genus boosting face. If the
number of distinct genus boosting faces Fe is at least s(g), then the Euler genus of Q is more than g.

If there are more than s(g) genus boosting faces, then we can find a minimal forbidden minor, by
adding non-planar parts to Q′

j . This is simply because we can find one of the minimal forbidden minors
by adding non-planar crosses to G′′

i , in time O(|V (Gi−1)|).
Suppose now that there are at most s(g) genus boosting faces. We now delete all vertices contained

in the genus boosting edges in Qj. Let Q′′
j be the resulting graph, which is planar. In this case, we

shall delete all irrelevant vertices X in time O(|Qj |) by using Lemma 4.3. When we apply the lemma,
the genus boosting faces in Q′′

j together with the outer face boundary of Dj play the role of the faces
C1, . . . , Cl (l ≤ s(g)) in Lemma 4.3. Therefore, we can delete all irrelevant vertices with respect to the
faces C1, . . . , Cl (l ≤ s(g)) in time O(|Q′′

j |) by Lemma 4.3. After deleting them, the resulting subgraph
of Q′′

j does not have a 2gs(g)-wall. We then put the genus boosting edges of Mi−1 back to each of the
disks, if they exist, and we denote the resulting subgraph of Qj by D′

j .
Since we destroy all flat 2gs(g)-walls for each Dj , each disk D′

j has bounded tree-width by Theorem
A.4. Let us observe that all deleted vertices are surrounded by a 2g-wall in Qj (and hence in Gi−1). This
completes this phase.

Phase 2. Putting things together.

We first take the graph G′′ which is obtained from G′′
i by uncontracting all edges of Mi−1 contained

in it. From Phase 1, we have got disjoint disks D′
1,D

′
2, . . . , each of which has bounded tree-width, by

deleting irrelevant vertices in Gi−1. We now put them together. More precisely, we add D′
1,D

′
2, . . . to

G′′. Let G′ ⊆ Gi−1 be the resulting graph. Let us recall that every vertex deleted during Phase 1 is
surrounded by a 2g-wall in Gi−1. Therefore, they are irrelevant by Theorem 4.2.
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The tree-width of G′ may be bigger than h(g). In this case, we need to delete some irrelevant vertices
in Gi−1 again.

Let us show that G′ has tree-width at most 4h(g). To see this, let us first observe that the graph
G′′ does not contain a flat (8g + 1)-wall, and no disk D′

1,D
′
2, . . . (obtained in Phase 1) contains a flat

2gs(g)-wall. It follows that G′ does not contain a flat 16g2s(g)-wall and that the tree-width of G′ is at
most 16h(g). This conclusion has a technical proof (given in the full paper) and, roughly speaking, is
based on the following fact: If we have a graph (in our case G′′) of bounded tree-width embedded in a
surface of bounded genus and we add planar graphs (in our case D′

1,D
′
2, . . . ) into some faces in such a way

that all new vertices are close to the corresponding boundary in the “face-distance”, then the resulting
graph (in our case G′) has bounded tree-width.

Since G′ has bounded tree-width, we can either find an embedding of G′ into the surface S or detect
a minimal forbidden minor for S by using Theorem 3.2.

Suppose first that there is an embedding of G′. We need to reduce G′ so that it has tree-width at
most h(g). Actually, we need to find all planar subgraphs and all flat walls of size at least 2g, but this
can be also done in time O(|G′|), since, again, G′ has tree-width at most 4h(g). By Theorem 4.1, the
vertices surrounded by a 2g-wall in each of the planar parts are irrelevant for Gi−1. In this case, we shall
delete all irrelevant vertices in time O(|G′|) by using Lemma 4.2.

But we need to make sure that after deleting irrelevant vertices in Phase 2, all the deleted vertices are
still in the disk, and surrounded by a 2g-wall in Gi−1. We now argue that this is, indeed, true. Suppose
not. We pick up the “last” vertex v which was deleted in Phase 2, i.e, in the current graph W , all the
deleted vertices are surrounded by 2g-walls, but when we delete v from W , there is a vertex w which
was deleted in either Phase 1 or 2, but w is not surrounded by any 2g-wall in W \ {v}. Let C1, . . . , Cg

be the g nested cycles of a 2g-wall surrounding w in W , and let C ′
1, . . . , C

′
g be the g nested cycles of a

2g-wall surrounding v in W . Assume that v is in one of C1, . . . , Cg, say Cl. If we cannot reroute Cl using
C ′

1, this means that C ′
1 hits both Cl−1 and Cl+1. Inductively, it can be shown that if we cannot reroute

Cl−j , . . . , Cl, . . . , Cl+j using C ′
1, . . . , C

′
j , this means that C ′

j hits both Cl−j−1 and Cl+j+1. However, clearly
for some j ≤ g/2, we can reroute Cl−j, . . . , Cl, . . . , Cl+j using C ′

1, . . . , C
′
j. So, there are 2g nested cycles

for w ∈ W \ {v}. Since w is surrounded by a 2g-wall, we may assume that there are g disjoint paths
joining C1 and Cg. The vertex v may be on one of these paths. By a similar argument, we can reroute
these g disjoint paths using the cycles C ′

1, . . . , C
′
g. Therefore, w is surrounded by a 2g-wall in W \ {v}, a

contradiction.
Therefore, by Theorem A.4, the resulting graph (which is the graph G′′

i−1 in our notation) has tree-
width at most h(g). Let us repeat the important fact that every deleted vertex in Phases 1 and 2 is in
a disk, and surrounded by a 2g-wall in Gi−1. We now contract all the edges of Mi−1, and let G′

i be the
resulting graph. Then we output the graph G′

i. By Theorem 4.2, Gi−1 can be embedded into a surface
S of Euler genus at most g if and only if G′′

i−1 can, where G′′
i−1 is a subgraph of Gi−1 obtained from G′

i

by uncontracting the matching Mi−1 restricted to the vertex set on G′
i. This finishes the last phase.

Hence, in all phases, in time O(|Gi−1|), either we can detect a minimal forbidden minor or we can
bound the tree-width of G′

i, i.e., there are no flat walls of size 2g + 1 in G′
i.

Let us observe that the deleted vertices can be put back to the embedding of G′′
i−1 (if one exists), which

is obtained from G′
i by uncontracting the submatching of the matching Mi−1 restricted on the vertices

of G′
i, since these vertices must be embedded into a disk of the embedding of Gi−1, and surrounded by a

2g-wall.
In summary, either we can find a minimal forbidden minor for the surface S or we temporary delete

some vertices in Gi to obtain the new graph G′
i, which is a subgraph of Gi and has tree-width at most

h(g). Moreover, as discussed above, G′
i satisfies Hypothesis 5.1 for i− 1, instead of i. As observed above,

this process can be done in time O(|V (Gi−1)|), which is linear.
This is one of the key parts of the whole algorithm.
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6 Algorithm

Finally, we are ready to present the complete algorithm.

Algorithm for Theorem 1.1

We assume a positive integer g and a surface S of Euler genus g are fixed.
Input: A graph G of order n.
Output: Either an embedding of G in S or a minor of G which is not embeddable in S and is minimal

with this property.
Running time: O(f(g)n) for some function f : N → N.
Description:
Initially, we delete all vertices of degree at most 1. Hereafter, we assume that G has minimum degree

at least 2.
Step 1. Find a sequence of graphs G = G0, G1, ..., Gb such that Gi is obtained from Gi−1 by either

contracting on a matching Mi with at least ε|Gi−1| edges for some small but constant ε > 0, or deleting
a stable set of ε|Gi−1| vertices each of degree 2. Every deleted vertex has the same pair of neighbors as
another vertex of degree 2 that is not deleted.

This step can be done as discussed in Section 2. As pointed out there, if we find a minimal forbidden
minor in Theorem 2.4, we stop and output the minor. Otherwise, we keep doing it b steps, where b is
minimum integer such that Gb has fewer than B vertices for some constant B. Then b ≤ log1/εn and the
sum of the sizes of all Gi is O(n).

At each step i, we can either find a desired matching or a desired stable set in time O(|Gi|) as explained
in Section 2. A short computation implies that we can do it in linear time.

Step 2. Apply a brute force algorithm to find either an embedding of Gb or a minimal forbidden
minor. Since |Gb| < B, this can be done in constant time.

We recursively apply Steps 3 and 4 for i = b, b − 1, . . . .
Step 3. For the ith iteration, either find a subgraph G′

i of Gi satisfying Hypothesis 5.1 or a minimal
forbidden minor for the surface S. This can be done, as discussed in Section 5, in time O(|Gi−1|).

Step 4. Extend the embedding of G′
i to Gi.

This can be done in time O(V (|Gi|)) by applying the planarity algorithm [4, 6, 11, 41]. Note that
all vertices of Gi − G′

i can be embedded into a disks D1,D2, . . . . Therefore, we just need the planarity
algorithm for this task.

Since b ≤ log1/εn and the sum of the sizes of the Gi is O(n), we can get a linear time algorithm to
output a desired conclusion in Theorem 1.1.

Let us finally estimate the constant f(g). The most expensive part is dealing with s(g) in Section 5.
The other expensive part is the sum of the sizes of the Gi, which can be written as c(ε)n for some function c
of ε. Therefore, f(g) only depends on s(g) and c(ε), and the algorithm shows that f(g) = Poly(s(g) ·c(ε)).
Thus, f(g) is single exponential as we claimed.

This completes the (sketch of the) proof of Theorem 1.1. �
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A Basic definitions

A.1 Graphs on a fixed surface

For basic graph theoretic notation, we refer the reader to the book of Bondy and Murty [3]. If G is a
graph, we denote by |G| the number of vertices and by ‖G‖ the number of edges of G.

A surface is a compact connected 2-manifold without boundary. We assume familiarity with basic
notions of surface topology, like genus and Euler’s formula. We define the Euler genus of a surface S
as 2 − χ(S), where χ(S) is the Euler characteristic of S. An I-arc in a surface Σ is a subset of Σ
homeomorphic to [0, 1]. An O-arc is a subset of Σ homeomorphic to a circle. Let G be a graph that is
embedded in Σ. To simplify notation we do not distinguish between a vertex of G and the point of Σ
used in the embedding to represent the vertex, and we do not distinguish between an edge and the arc
on the surface representing it. We also consider G as the union of the points corresponding to its vertices
and edges.

A graph G is embedded in a topological space X if the vertices of G are distinct elements of X and
every edge of G is simple arc connecting in X the two vertices which it joins in G, such that its interior
is disjoint from other edges and vertices. An embedding of a graph G in the topological space X is an
isomorphism of G with a graph G′ embedded in X. In this case, G′ is said to be a representation of G in
X. If there is an embedding of G into X, we say that G can be embedded into X.

If a graph G is embedded in Σ, a region or face of G in Σ is a connected component of Σ\(E(G)∪V (G)).
Every region is an open set. We use the notation R(G) for the set of regions of G. The embedding is
said to be a 2-cell embedding if every region is homeomorphic to a disc.

If Δ ⊆ Σ, then Δ denotes the closure of Δ, and the boundary of Δ is ∂Δ = Δ ∩ Σ \ Δ. An edge e
(or a vertex v) is incident with a region r if e ⊆ ∂r (v ∈ ∂r).

A subset of Σ meeting the embedded graph only in vertices of G is said to be G-normal. If an O-arc
is G-normal then we call it a noose. We say that a disc D ⊂ Σ is bounded by a noose N if N = ∂D. A
graph G, which is 2-cell embedded in a surface Σ, has face-width or representativity at least θ if every
noose, which intersects G in fewer than θ vertices is contractible (null-homotopic) in Σ. Alternatively, the
face-width or representativity of G is equal to the minimum number of facial walks whose union contains
a cycle which is non-contractible in Σ. See [28, Chapter 5] for further details.

A.2 Tree-width, walls and grid minors

A bramble in a graph G is a set of trees in G, every two of which intersect or are joined by an edge. A
hitting set for a bramble β is a set of vertices of G intersecting the vertex set of each tree of β. The order
of a bramble β, denoted ord(β), is the minimum size of a hitting set. For any set W of vertices, the
set βW of trees of G containing more than half the vertices of W is a bramble since any two such trees
intersect. We now characterize graphs which have no brambles of order l, using tree decompositions.

A tree decomposition of a graph G consists of a tree T and a subtree Sv of T for each vertex v of G
such that if uv is an edge of G then Su and Sv intersect. For each node t of the tree, we let Yt be the set
of vertices v of G such that t ∈ Sv. The width of a tree decomposition is the maximum of |Wt| over the
nodes t of T , and the tree-width of G is the minimum width of its tree decompositions.

It is not hard to see that for every bramble β in G and for every tree decomposition of G, there is a
node t such that Wt is a hitting set for β. This implies that the tree width of G is at least the maximum
order of a bramble. Seymour, and Thomas [38] showed that this bound is tight, proving:

Theorem A.1 The maximum order of a bramble in G is equal to its tree-width.

One of the most important results about graphs, whose tree-width is large, is existence of a large
grid minor or, equivalently, a large wall. Let us recall that an r-wall is a graph which is isomorphic to a
subdivision of the graph Wr with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r} in which two vertices
(i, j) and (i′, j′) are adjacent if and only if one of the following possibilities holds:
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(1) i′ = i and j′ ∈ {j − 1, j + 1}.
(2) j′ = j and i′ = i + (−1)i+j .

It is convenient to delete the vertices of degree 1 from Wr and refer to the resulting 2-connected planar
graph as an r-wall as well.

We can also define an (a× b)-wall in a natural way, so that the r-wall is the same as the (r × r)-wall.
It is easy to see that if G has an (a × b)-wall, then it has an (1

2a� × b)-grid minor, and conversely, if G
has an (a× b)-grid minor, then it has an (a× b)-wall. Let us recall that the (a× b)-grid is the Cartesian
product of paths Pa × Pb. The (8 × 5)-wall is shown in Figure 1.

Figure 1: The (8 × 5)-wall and its outer cycle

The main result of Graph Minors V [34] says the following.

Theorem A.2 For every positive integer r, there exists a constant f(r) such that if a graph G has
tree-width at least f(r), then G contains an r-wall as a (topological) minor.

The best currently known upper bound for f(r) is given in [36], (see also [7, 30]). It is 2064r5
, and

202r5
for the (r × r)-grid minor. The best known lower bound on f(r) is of order Θ(r2 log r), see [36].

But for planar graphs, Robertson, Seymour and Thomas [36] proved the following result which yields
essentially best possible bound 6r for the existence of an r-wall.

Theorem A.3 For every positive integer r, if a graph G is planar and has tree-width at least 6r, then
G contains an r-wall as a (topological) minor.

Let H be an r-wall in G. If G is embedded in a surface S, then we say that the wall H is flat if the
outer cycle of H (see Figure 1) bounds a disk in S and H is contained in this disk. The following theorem
was proved by Thomassen [40].

Theorem A.4 For every r and g, there is a value f(g, r) satisfying the following. If a graph G is
embedded in a surface of Euler genus at most g and has tree-width at least f(g, r), then G contains a flat
r-wall. Hence, if there is no flat r-wall, then the tree-width of G is at most f(g, r).

A.3 Greedy algorithm for finding a maximal matching

Below we describe an algorithm to find a maximal matching M in the graph induced by T for some vertex
set T .

Algorithm A.5 Let M be the empty graph.
For v ∈ T , let v be unmarked.
For each edge uv ∈ E(T ):

If u is unmarked and v is unmarked then
Add u and v to V (M) and add uv to E(M)
Mark u and v.
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We claim that M is a maximal matching in S. Suppose not. Let uv ∈ E(S), u, v /∈ V (M). When uv is
considered in the algorithm, at least one of u or v was marked. So one of u or v was in V (M). But no
vertex added to M is later removed, a contradiction. Let us observe that Algorithm A.5 can be easily
implemented so that its running time is linear.
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