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1. INTRODUCTION

Let G be a graph. A list-assignment is a function L which assigns to every
vertex v ∈ V (G) a set L(v) of natural numbers, which are called admissible
colors for that vertex. An L-coloring of the graph G is an assignment
of admissible colors to all vertices of G, i.e., a function c : V (G) → N

such that c(v) ∈ L(v) for every v ∈ V (G), and for every edge uv we have
c(u) �= c(v). If k is an integer and |L(v)| ≥ k for every v ∈ V (G), then L is
a k-list-assignment . The graph is k-choosable if it admits an L-coloring for
every k-list-assignment L. If L(v) = {1, 2, . . . , k} for every v, then every
L-coloring is referred to as a k-coloring of G. If G admits an L-coloring
(k-coloring), then we say that G is L-colorable (k-colorable).

It is not difficult to prove that every planar graph is 5-colorable. In
fact, the Four Color Theorem [2, 11] shows that every planar graphs is
4-colorable. Concerning list colorings, Voigt [16] proved that not every
planar graph is 4-choosable, and Thomassen proved in his renowned paper
[13] that all planar graphs are 5-choosable. In fact, Thomassen proved a
strengthening of this result which will be applied in our paper:

Theorem 1.1 (Thomassen [13]). Let G be a plane graph, and let L be
a list-assignment for G such that every vertex has at least three admissible
colors and every vertex that is not on the boundary of the outer face has at
least five admissible colors. Then G can be L-colored.

Leaving the plane to consider graphs on surfaces of higher genus, the
chromatic and list chromatic number can increase. However, for graphs
which obey certain local planarity conditions, one can deduce similar prop-
erties as for planar ones. We say that a graph G embedded in a surface S
is locally planar if it does not contain short noncontractible cycles. Quanti-
tatively, we introduce the edge-width of G as the length of a shortest cycle
which is noncontractible in S. Thomassen proved in [12] that graphs in
S with sufficiently large edge-width are 5-colorable. Many people asked if
sufficiently large edge-width also implies 5-choosability. In our paper we
answer this question affirmatively.

Theorem 1.2. For every surface S there exists a constant w such that
every graph that can be embedded in S with edge-width at least w is 5-
choosable.

The proof of Theorem 1.2 is given in Section 4.
If G is a graph of girth at least w, then its edge-width in every surface

is at least w. For arbitrarily large values of w, there exist graphs of girth
w with arbitrarily large chromatic number [4]. Therefore, the constant w
in Theorem 1.2 necessarily depends on the surface.
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Our proof of Theorem 1.2 uses a result of Robertson and Seymour (cf.
Theorem 2.1), whose proof in [9] does not yield an explicit bound on the
value of w = w(S) needed in the proof. However, there are more specific
results which show that one can take w = 2O(g), where g is the Euler genus
of S. See [8, Chapter 5] for more details.

Böhme et al. [3] found the best possible value of w for the projective
plane by proving:

Theorem 1.3 (Böhme, Mohar, and Stiebitz [3]). A graph G embed-
ded in the projective plane is 5-choosable if and only if it does not contain
K6 as a subgraph.

Since K6 has edge-width 3, every graph in the projective plane having
edge-width 4 or more is 5-choosable. The value w = 4 for the projective
plane is the only known minimum value of the width forcing 5-choosability
of graphs in some surface.

Our proof also gives a polynomial time algorithm to 5-list-color graphs
with an embedding of sufficiently large edge-width.

Theorem 1.4. There exists an algorithm, whose input is a graph G
embedded in a surface of Euler genus g with edge-width at least 2Θ(g) and
a 5-list-assignment L for G, which finds an L-coloring of G in polynomial
time.

Some comments about the algorithm of Theorem 1.4 can be found in the
concluding section.

Let us point out that deciding about the choice number of planar graphs
is actually hard. In fact, the following was proved by Gutner [6] (see also
survey [17]).

Theorem 1.5. The problems of deciding whether a given planar graph
is 4-choosable and of deciding whether a given triangle-free planar graph is
3-choosable are both Πp

2-complete.

So, Theorem 1.4 is best possible in a sense that one cannot replace 5-list-
colorings with 4-list-colorings (if P �= NP). On the other hand, we believe
that the edge-width condition is perhaps not necessary. We propose the
following:

Conjecture 1.6. For any fixed surface S, there is a polynomial time
algorithm to decide whether a given graph embedded on S is 5-choosable.
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In fact, Thomassen posed the following conjecture, which would imme-
diately imply ours.

Conjecture 1.7 (Thomassen [14]). For every fixed surface S, there
are only finitely many 5-list-critical graphs that can be embedded in S.

The definition of k-list-critical graphs is given after Corollary 3.1.
Albertson [1] conjectured that for every surface S there exists an integer

q = q(S) such that any graph G embedded in S contains a set U of at most
q vertices such that G − U is 4-colorable. Such a result does not hold for
list colorings since there exist planar graphs that are not 4-choosable [16].
However, Theorem 1.2 implies such a result for 5-list-colorings.

Corollary 1.1. For every surface S there is a constant k such that
for every graph G embedded in S, there exists a vertex set U of at most k
vertices such that G − U is 5-choosable.

Proof. The proof is by induction on the Euler genus g of S. The base
case when g = 0 follows by Theorem 1.1 with k = 0. Let k′ be the maximum
value of k taken over all surfaces whose Euler genus is less than g, and let
w be the value from Theorem 1.2. If the edge-width of G is at least w, then
G is 5-choosable by Theorem 1.2. Otherwise, let C be a noncontractible
cycle of length at most w − 1. The Euler genus of the induced embedding
of G−C is less than g, so there is a set of at most k′ vertices whose removal
yields a 5-choosable graph. This shows that we may take k = k′ +w−1.

2. PLANARIZATION

Local planarity in this paper is defined by requesting large edge-width.
However, sometimes a stronger condition is appropriate. We say that a
graph G embedded in a surface S has face-width at least k, fw(G) ≥ k, if
every noncontractible closed curve in the surface intersects the graph in at
least k points.

It is known that under the assumption of an embedding with large edge-
width, there exist pairwise disjoint simple closed curves in the surface such
that (a) any intersections of distinct curves with the graph are far apart in
the graph, and (b) after cutting the surface along these curves, a surface
of genus 0 is obtained. If the face-width is large, then these curves can be
chosen to correspond to cycles in the graph. This result was established
by Robertson and Seymour [9]; for a simple proof see, e.g., [8, Theorem
5.11.1]. After cutting the surface, known properties of planar graphs can be
applied to the graph obtained after cutting, and this approach gave rise to
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many results about graphs on general surfaces embedded with large edge-
or face-width, cf. [8, Chapter 5].

We will also use the approach described above. However, we will need a
more elaborate way of cutting the surface. In particular, we want the sur-
face obtained after the cutting to be a disk. Before introducing additional
conditions, we need some definitions.

Let H be a graph. We will assume that H is connected, without vertices
of degree 1 and that it has a vertex of degree more than 2. Every vertex
of H of degree more than 2 is called a branch vertex . A path in H from a
branch vertex x to a branch vertex y whose intermediate vertices all have
degree 2 is said to be a branch of H and x and y are the endvertices of this
branch. Let H◦ be the graph obtained from H by replacing every branch
with a single edge. Then we say that H is a subdivision of H◦.

Suppose that H is a subgraph of a graph W , and that the maximum
degree of H is equal to 3. Suppose that for every branch ε of H , there is an
induced subgraph of W that contains ε and is isomorphic to a subdivision
of the graph shown in Figure 1, where ε is represented by the bold edges.
Only the vertices on the left and the right in the figure are incident with
edges of W that are not shown. The shown structure extends along ε all the
way towards its endvertices. Suppose also that around the branch vertices
of H , W is isomorphic to a subdivision of the graph shown in Figure 2.
Then we say that W is a wall of height 3 around H . In the same way we
define walls around H of height bigger than 3 by increasing the number
of layers on each side of the branches. The minimum number of 6-cycles
along a branch of H is called the width of the wall.

FIG. 1. A part of the wall of height 3 around a branch

Suppose now that G is a graph that is embedded in some surface. Sup-
pose that G contains a subgraph W which is a wall of height h around
its subgraph H , and that H has all the properties stated above. Suppose
moreover that every cycle C in W , which corresponds to one of the cycles
of length 5 or 6 shown in Figures 1 and 2, is contractible in S and the
closed disk D bounded by C in S has its interior disjoint from W . Let B
be the subgraph of G contained in D. Then B is a planar graph with outer
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FIG. 2. A part of the wall of height 3 around a branch vertex

cycle C, and we say that B is a brick of the wall W and that C is a brick
cycle.

Suppose that the wall W around H has height h. If b is a vertex of H
and d ≤ h is a non-negative integer, then we define the brick neighborhood
Bd(b) around b as follows. If d = 0, then Bd(b) = {b}. For 1 ≤ d ≤ h,
let Bd(b) be the union of Bd−1(b) and all bricks that have some vertex in
common with Bd−1(b). The subgraph Bd(b) is planar and is called the
d-brick neighborhood of b.

Later we will assume that G triangulates the surface S. In that case,
every brick will be a near-triangulation – a planar graph whose all faces
except the outer face are triangles. Our goal will be to cut the surface along
the branches of H , and we will ask the resulting surface to be a disk. This
is true if and only if the induced embedding of H in S is a 2-cell embedding
with precisely one face. In fact, we shall also require a wall W of width 100
and height 100 around H . Such a graph W can be drawn in S, but it is
not true that every triangulation G will contain it as a subgraph. However,
if G has large face-width, then G contains an induced subgraph which is a
wall of width and height 100 around a subgraph H whose properties are as
requested above. This was proved by Robertson and Seymour in [9].

Theorem 2.1 ([9]). Let S be a surface, and let W be a cubic graph
that is embedded in S. Then there is a constant w such that every graph
embedded in S with face-width at least w contains a subgraph W ′ which is
isomorphic to a subdivision of W and whose induced embedding is combi-
natorially the same as the embedding of W .
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Theorem 2.1 holds also when W is not cubic, but in that case we may
only conclude that W ′ can be contracted to W .

We shall need a large face-width condition in order to apply Theorem
2.1. However, this does not follow from our assumption that the edge-width
is large. This is resolved by applying the following construction. Let F be
a facial walk of length k ≥ 4 in the embedded graph G. Next we define
a graph G1 embedded in the same surface as G such that G1 contains G
as an embedded subgraph and such that the only face of G which is not
a face of G1 is F . We start by drawing k nested circuits C1, C2, . . . , Ck,
each of length k, inside the face F . For 1 ≤ i ≤ k, we add an “antiprism”
between the vertices of Ci−1 and Ci, where instead of C0 we consider F .
Finally, we add one additional vertex and join it to all vertices of Ck. The
construction is illustrated in Figure 3.

F C5

FIG. 3. Adding a chimney in a face of length 5

We say that this new embedded graph is obtained from G by adding a
chimney to F . Let us observe that F may not be a cycle. The following
proposition will enable us to restrict our attention to triangulations.

Proposition 2.1. Let G′ be obtained from an embedded graph G by
adding a chimney to one or more faces of length at least 4. Then the edge-
width of G′ is equal to the edge-width of G, and G′ is 5-choosable if and
only if G is 5-choosable.

Proof. If C′ is a noncontractible cycle in G′, then C′ can be changed
by a homotopy into a closed walk C which does not use any edges inside
the chimneys. It is easy to argue that the length of C is not larger than
the length of C′. So C is also a noncontractible closed walk in G. Since
the edge set of C contains a noncontractible cycle in G, we conclude that
the edge-width of G is not larger than the edge-width of G′. The converse
inequality is obviously true since G is a subgraph of G′, so we conclude
that the first statement of the proposition holds.
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Clearly, if G′ is 5-choosable, then so is its induced subgraph G. To prove
the converse, suppose that G is 5-choosable, and let L be a 5-list assignment
for G′. Since G is 5-choosable, there exists an L-coloring of G. Every vertex
of G′−V (G) has at most two neighbors in G. Therefore, G′−V (G) consists
of disjoint planar graphs to which Theorem 1.1 can be applied. This shows
that the L-coloring of G can be extended to an L-coloring of the whole G′.
This completes the proof.

Chimneys will be used to triangulate faces of size at least 7. Shorter
faces will be triangulated by adding edges only in order to keep control of
short contractible cycles.

Proposition 2.2. Let G′ be obtained from an embedded graph G by
adding a chimney to every face of length at least 7, and by triangulating
the faces of lengths 4, 5, 6 by adding edges in those faces. Then G′ is a
triangulation whose edge-width is at least one third of the edge-width of G.
If G′ is 5-choosable, then so is G.

Proof. The proof of the first part is similar to the proof of Proposition
2.1, except that one has to note that the cycle C may become shorter. How-
ever, it can shrink at most by the factor of 3 (which can be caused by adding
diagonals across 6-faces of G). The second part is obvious since G is a sub-
graph of G′.

The graph G′ described in Proposition 2.2 will be called the triangular
completion of G.

3. LIST-CRITICAL GRAPHS AND SHORT
CONTRACTIBLE CYCLES

In [13], Thomassen proved a result which is slightly stronger than stated
in Theorem 1.1.

Theorem 3.1 (Thomassen [13]). Let G be a plane graph with outer
facial walk C, and let x, y be adjacent vertices on C. Let L be a list-
assignment for G such that L(x) = {α}, L(y) = {β}, where β �= α, every
vertex on C\{x, y} has at least three admissible colors, and every vertex that
is not on C has at least five admissible colors. Then G can be L-colored.

Theorem 3.1 has the following useful corollary.

Corollary 3.1. Let G be a plane graph whose outer face C is a triangle.
Let L be a 5-list-assignment for G. Then every L-coloring of C can be
extended to an L-coloring of the whole graph G.



5-LIST COLORING LOCALLY PLANAR GRAPHS 9

Proof. Let C = xyz. Let c(x) = α, c(y) = β, and c(z) = γ be a precolor-
ing of C. Let L′ be the list-assignment for G which agrees with L on V (G)\
V (C), and L′(x) = {α}, L′(y) = {β}, L′(z) = {α, β, γ}. Now the proof is
complete by applying Theorem 3.1 to G and L′.

Let G0 be a graph and let L be a list assignment for G. We say that
G0 is L-critical if G0 is not L-colorable but every proper subgraph of G0

is. The graph G0 is 5-list-critical if there is a 5-list-assignment L such that
G0 is L-critical.

Suppose that G0 is embedded in some surface, and let G be a triangular
completion of G0, cf. Proposition 2.2. Let L be a 5-list-assignment for which
G0 is L-critical. Let us recall that G is said to be internally 6-connected if
it is 5-connected and whenever G = G1 ∪G2 with |V (G1 ∩G2)| = 5, either
G1 \ G2 or G2 \ G1 contains at most one vertex.

Lemma 3.1. Let G0 and G be as stated above. Then the following holds:

(a) If ew(G0) ≥ 10, then G is 4-connected.
(b) Suppose that C is a cycle of G of length k ≤ 6. If C is contractible

in the surface and the disk D bounded by C contains at least one vertex in
its interior, then G ∩ D is as shown in Figure 4.

(c) If ew(G0) ≥ 19, then G is internally 6-connected.

(a) (b) (c) (d) (e)

FIG. 4. Short contractible cycles

Proof. Throughout the proof, let L be the 5-list assignment as intro-
duced above. We also let R be the subgraph of G0 obtained by deleting
all vertices and edges of G0 that lie in the interior D◦ of D. Finally, let
Q = G ∩ D be the planar near-triangulation with outer cycle C.

(a) By Proposition 2.2, ew(G) ≥ 4. Since G is a triangulation, it is 3-
connected (cf. [8, Proposition 5.3.1]). If vertices x, y, z separate G, they
form a minimal separator and hence they induce a triangle in G. Since the
edge-width of G is at least 4, the triangle C = xyz is contractible. Clearly,
C cannot be inside a chimney, so the disk D bounded by C (and containing
one of the components of G−{x, y, z} in its interior) contains at least one
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edge of G0. Since G0 is L-critical, R has an L-coloring c. By Corollary 3.1,
the coloring c can be extended to Q, and hence to the whole of G0. This
contradicts the fact that G0 is not L-colorable, and proves (a).

(b) By means of contradiction, we assume that we have an example for
which the claims in (b) do not hold and that this counterexample is chosen
in such a way that k is minimum possible and, subject to that, the number
of vertices in D◦ is minimum. Let us observe that C is not the face of G0

since the triangular completion of G0 in Proposition 2.2 adds only edges
into the disk bounded by a face of size at most 6.

First of all, it is easy to see that D contains at least one edge of G0 in its
interior. Hence, there is an L-coloring c of R. By the minimality of k, D
contains no chords of C, i.e. R is an induced subgraph of G0. Let us first
assume thet Q contains a vertex v that is adjacent to three or more vertices
on C. The minimality of k and |V (Q)| assures that the following is true.
If k = 4, then v is the only vertex in D◦. So v is of degree 4, and c can
be extended to the whole G0. If k = 5, then we have in D◦ two adjacent
vertices, one of which is of degree 4 in G. This again yields a contradiction.

So, we have k = 6. Moreover, v is adjacent to precisely three vertices
on C = x1x2 . . . x6, and they are consecutive on C. Suppose that they are
x1, x2, x3. Consider the cycle C′ = x1vx3x4x5x6. By the minimality of our
counterexample, C′ looks like shown in Figure 4. Since v must be of degree
bigger than 4, this gives one of the cases in Figure 4 also for the cycle
C, except for the case when inside the disk of C′ we have three mutually
adjacent vertices (see Figure 4(e)), two of which are adjacent to v. In this
case it is easy to see that c can be extended to Q, a contradiction.

Now we may assume that no vertex in D has three or more neighbors
on C. Therefore the list coloring c can be extended to Q by Corollary 3.1,
and hence to the whole of G0. This contradicts the fact that G0 is not
L-colorable, and proves (b).

(c) Let k be the order of a minimal separation and suppose that k ∈
{4, 5}. Since G is a triangulation, every minimal separation induces a
connected subgraph, denote it by C in our case. By Proposition 2.2 we
know that ew(G) ≥ 7, so C contains no noncontractible cycles. Of course,
C should contain a cycle C′ in order to separate. By (a), this cycle is
of length 4 or 5, and now we easily complete the proof by using (b).

4. PROOF OF THE MAIN THEOREM

This section is devoted to the proof of Theorem 1.2. Having a non-5-
choosable graph in a fixed surface S with large edge-width, we first take its
5-list-critical subgraph, which is henceforth extended to a triangulation of
large face-width. Next, we apply Theorem 2.1 to obtain a 2-cell embedded
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subgraph H surrounded by a wall of width 70 and height 30. The graph
H will be used to cut the surface in order to obtain a disk.

The graph H , along which we will cut the surface, will be colored in such
a way that Thomassen’s theorem 1.1 can be applied to list-color the rest
of the graph. This step is rather complicated, and H has to be changed
and extended accordingly in order to achieve this task. The details of the
whole procedure are given in the sequel.

Initial reductions
Let G1 be a graph embedded in a surface of Euler genus g with edge-

width at least w. If G1 is not 5-choosable, then there is a 5-list assignment
L′ such that G1 is not L′-colorable. Let G0 be an L′-critical subgraph of
G1. The induced embedding of G0 (cf. [8] for details) is an embedding in a
(possibly different) surface S of Euler genus at most g and with ew(G0) ≥
ew(G1) ≥ w. Let G be a triangular completion of G1 in S. By Proposition
2.2,

fw(G) = ew(G) ≥ 1
3
ew(G0) ≥ 1

3
ew(G1).

Extend L′ (arbitrarily) to a 5-list-assignment L for G. We will show that
G is L-colorable, contradicting the assumption that its subgraph G0 is not
L′-colorable. This contradiction will complete the proof.

We are assuming that w ≥ 19, so fw(G) ≥ 7, and hence Lemma 3.1 can
be applied to conclude that G is internally 6-connected.

The cutting subgraph
Let H ′ be a cubic graph which is 2-cell embedded in S with a single

face, and let W ′ be a wall of height 30 and width 70 around H ′. We
are assuming that w is large enough so that G contains a subdivision W0

of W ′ as a subgraph; cf. Theorem 2.1. (Let us observe that this is the
only condition imposed on the edge-width of G1. See the discussion after
the statement of Theorem 1.2.) We also let H0 be the subgraph of W0

corresponding to H ′.
We shall modify H0 to obtain a subgraph H of G, by changing H0 only

locally, with the goal to achieve the following properties:

(1) Every branch vertex s of H0 is replaced by another branch vertex s′

of degree 3 which is contained within the 25-brick neighborhood around s
in W0.

(2) Every branch ε of H0 joining branch vertices s and t (say) is changed
outside the 27-brick neighborhoods of s and t to a path which is contained
within the 4-brick neighborhood of ε.

(3) H is an induced subgraph of G homeomorphic to H0.
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(4) H satisfies the consecutive neighbors property (abbreviated CNP),
which means that for every vertex v ∈ V (G) \ V (H), if its neighbors in H
are contained in a single branch ε of H , then they induce a path on ε.

(5) Every branch of H contains a break segment (see the next subsection
for the definition).

Break segments on the branches
In the next two subsections we shall use the following notation. If P is

a path and a, b ∈ V (P ), then P [a, b] denotes the subpath of P from a to
b. By replacing brackets with parentheses, i.e., writing P [a, b), P (a, b], or
P (a, b), we denote the same segment except that one, the other, or both
ends are excluded. By dP (a, b) we denote the distance between a and b on
P , while dG(a, b) denotes their distance in G. The distance notation in G
is also extended to the distance between a vertex and a subgraph, and the
distance between two subgraphs in the standard way.

Let ε be a branch joining branch vertices a and b. Suppose that ε =
L ∪ S ∪ R where L and S have only a vertex p in common, S and R have
precisely a vertex w in common, and S = ε[p, w] = pqrstuvw is a segment
of ε of length 7. We say that S is a break segment on ε if the following
conditions are satisfied:

(BS1) For every x, y ∈ V (S), dε(x, y) = dG(x, y).
(BS2) For every x ∈ V (L) \ {p} and every y ∈ V (S),

dG(x, y) ≥ dε(p, y) + 1.

(BS3) For every x ∈ V (R) \ {w} and every y ∈ V (S),

dG(x, y) ≥ dε(w, y) + 1.

(BS4) For every x ∈ V (L) and every y ∈ V (R), dG(x, y) ≥ 7, with
equality holding if and only if x = p and y = w.

Let ε be a branch in H0. We shall show how to change ε to another
branch ε′ joining the same branch vertices, a and b, which will contain a
break segment in the middle.

First, let us fix some notation. Let B1, . . . , B70 be the consecutive bricks
along ε on the “upper” side of ε. Let z0 be the vertex on ε in which the
bricks B35 and B36 intersect. Let us consider all pairs of vertices p ∈ ε(a, z0)
and w ∈ ε(z0, b) such that dG(p, w) = 7, and choose a pair (p, w) whose
ε-segment ε[p, w] has maximum number of vertices. Let S = pqrstuvw be
a path of length 7 joining p and w, and let ε′ = ε[a, p] ∪ S ∪ ε[w, b].

It is easy to see that ε′ is a path in G and that S is a break segment
on ε′: (BS1) is clear by construction, while (BS2)–(BS4) hold because the
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pair (p, w) was selected so that ε[p, w] has maximum number of vertices.
Let us observe that S is contained within the 7-brick neighborhood of z0,
so it does not intersect the 27-brick neighborhood of any branch vertex. It
is also within the 4-brick neighborhood of ε.

We repeat this procedure for all branches ε of H0 and replace ε with ε′.
Let us denote by H1 the resulting subgraph of G.

Changing branch vertices
Let s be a branch vertex of H0. Let us consider the 25-brick neighborhood

N of s. There are three branches meeting at s, and we denote them by
α, β, γ. We will replace the branches inside N with three new paths α′, β′, γ′

(respectively), meeting at a new branch vertex s′. Let us observe that N
contains only contractible cycles, so we may consider an embedding of N in
the plane. Under this embedding, we will assume that formerly α∪ β, and
afterwards α′∪β′, are drawn as a “horizontal” line, and that γ, and later γ′,
arrives to this line from below, as shown in Figures 5 and 6. Accordingly,
we shall speak of “up” and “down”, of the “left” and “right” side of γ, etc.

a

s

t

p
9

q
9

P1

� �

�

s'

�'

FIG. 5. Changes in a neighborhood of a branch vertex

For a path P = p1p2 . . . pk in G we say that it is geodesic if for any
vertices pi, pj on P , dG(pi, pj) = dP (pi, pj) = |j − i|. Suppose that P is a
geodesic path in a graph embedded in a surface and that there is another
path P ′ that contains P in its interior. Then we can speak of the left and
the right hand-side at every vertex in P . The edges which are incident
with vertices on P and do not lie on P ′ are divided to those on the left and
those on the right according to their local rotation with respect to the two
edges of P ′, and the choice of the left and right is made consistent when
we follow the edges of P from p1 to pk. We say that P is strongly geodesic
on the right side (or on the left side) if every path Q in G which joins two
vertices pi, pj of P , which is internally disjoint from P , and leaves pi and
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enters pj at an edge on the right (respectively, left) side of P , has length
strictly greater than |j − i|.

a
6

a
5

a
4

a
3

a
2

a
1

s' b
1

b
2

c
1

c
2

c
3

c
4

D

C
1

B
1

A
1

�' �'

�'

FIG. 6. Strongly geodesic neighborhood of a new branch vertex

Our goal, when making the indicated changes, is to achieve strong geo-
desic property on the upper side of a part of α′∪β′ and on the right side of
γ′. See Figure 6. More precisely, if A1, B1, C1 are are the initial segments
of α′, β′, and γ′ of length 6, 2, and 4 (respectively), we will require that

(B1) A1 ∪B1 is geodesic and is strongly geodesic on its upper side in N .
(B2) C1 is geodesic and is strongly geodesic on the right side in N .
(B3) The ith vertex ci of C1 (1 ≤ i ≤ 4) has distance i from α′∪β′ in G.
(B4) dG(α′ − A1, β

′ − B1) ≥ 3, dG(α′ − A1, γ
′ − C1) ≥ 3, and dG(β′ −

B1, γ
′ − C1) ≥ 3.

(B5) For every vertex in (α′ − A1) ∪ (β′ − B1) ∪ (γ′ − C1), its distance
from vertices s′, a1, a2, a3, a4, c1, and c2 is at least 3.

Let us now traverse α from the boundary of N towards s, and let a be
the first vertex reached in this way whose distance in G from β ∪γ is equal
to 25. We may assume that dG(a, β ∪ γ) = dG(a, β) = 25. Let P1 be the
upper-most path of length 25 joining a and β. Observe that P1 is contained
in N . Let t be the vertex on P1 whose distance from a is 13.

For 1 ≤ i ≤ 9, let pi, qi be the vertices on P1 that are at distance i from
t. We assume that pi is to the left, and qi is to the right of t. Since G is
a triangulation and the triangles in N are contained in a topological disk,
there is a unique path Qi in N joining pi and qi such that the following
holds. The path Qi is below P1, every vertex on Qi is at distance i from t,
and every vertex of G that lies in N below P1 and is at distance at most i
from t is contained in the disk bounded by P1[pi, qi] ∪ Qi. This is obvious
for Q1, and can be proved easily by induction for i = 2, . . . , 9.

Let us now consider Q9. Since P1 is geodesic in G, dG(p9, q9) = 18.
Therefore, Q9 contains a vertex r9 whose distance from p9 and from q9 is
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at least 9. Let R = tr1r2 . . . r9 be a path of length 9 joining t with r9. Let
us now traverse R from t towards r9, and let u be the first vertex whose
distance from P1 is equal to 4. We claim that u exists and that it is one of
the vertices r4, . . . , r8. To prove this, it suffices to see that dG(r8, P1) ≥ 4.
If this distance would be less than 4, then we would have dG(r9, P1) ≤ 4.
However, this would imply that dG(r9, {p9, t, q9}) ≤ 8, a contradiction.

Now let us consider paths of length 4 from P1 to u. Every such path
is contained inside the disk bounded by P1[p9, q9] ∪ Q9. Among all such
paths we select the right-most one, and we denote it by C1 = s′c1c2c3c4,
where s′ ∈ V (P1) and c4 = u. The right-most choice assures that (B2)
is satisfied. The vertex s′ will be our new branch vertex, and we just
observe that s′ ∈ V (P1[p8, q8]). (If not, a pair of vertices in {p9, t, q9, r9}
would be at distance less than 9.) We also define A1 = s′a1a2 . . . a6 and
B1 = s′b1b2 to be the segments of P1 to the left and right of s′, which are
of lengths 6 and 2, respectively. Observe that the choice of t and our earlier
observation that s′ ∈ V (P1[p8, q8]) guarantee that A1 and B1 are contained
in P1. Hence, (B1) holds. It is also clear that (B3) holds.

Now, we define α′ as the branch which is obtained from α by replacing
α[a, s] with P1[a, s′]. Similarly, we replace the last segment of β with the
appropriate segment of P1 to get β′. Finally, we let γ′ be a path starting
at s′ with C1, continuing on R from u = c4 to r9, and finally taking a path
towards γ such that we never approach α′ ∪ β′ to the distance 2 or less.

Existence of such a path γ′ needs an argument which shall be provided
in this paragraph. Let us first observe that Q9 is at distance at least 3 from
β ∪ γ since every vertex x ∈ V (Q9) satisfies:

dG(a, x) ≤ dG(a, t) + dG(t, x) = 13 + 9 = 22.

Similarly as we have argued about paths Q1, . . . , Q9, one can show that
there are paths R1, R2, R3 that lie below α′ ∪ β′ such that each vertex on
Ri is at distance i from α′ ∪ β′ (i = 1, 2, 3). Let D ⊂ N be the disk below
R3. Clearly, β ∪ γ contains a path in D joining the boundary of N with
a vertex y on R3. There is a path in Q9 joining r9 with R3 (on the right
side). Continuing this path along R3 to y, we obtain the required path γ′.
This is sketched in Figure 7.

The final conclusion is that α′, β′, γ′ satisfy (B4) and (B5). As mentioned
above, they also satisfy (B1)–(B3), hence our goal is complete.

After performing such a change around every branch vertex of H1, a new
subgraph of G is obtained, and we denote it by H2.

Let us recall that W0 is a wall around H0 of width 70 and height 30.
Therefore, the changes made around the branch vertices and the changes
made to obtain break segments on the branches do not interfere with each
other. Actually, much smaller width and height would suffice for our ar-
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FIG. 7. How to construct γ′

guments to work, but we care about simplicity of the proof, and not that
much about best possible estimates on the edge-width.

Consecutive neighbors property
Let ε be a branch of H2 and let s′ be one of its endvertices. Recall

that, when changing H1 around the branch vertex s which was eventually
replaced by s′, the new branch vertex became the end of three branches
α′, β′, γ′. These branches start with geodesic walks A1, B1, C1 (respec-
tively), where A1 = s′a1 . . . a6 is of length 6, B1 = s′b1b2 is of length 2, and
C1 = s′c1c2c3c4 is of length 4. If ε = β′, then we set x = s′. If ε = γ′, then
we set x = c2. In this case we also set x′ = c1. If ε = α′, then we consider
the largest index i ∈ {0, . . . , 4} such that ai is at distance 2 from c2 (where
we conveniently set a0 = s′). Then we take x = ai and set x′ = ai−1 (if
i > 0). Let us observe for further reference that the vertices on ε[s′, x] will
be colored before we will start coloring other vertices on ε. See the next
two subsections.

Let S = pqrstuvw be the break segment in the “middle” of ε defined
previously. If p is closer to x than w, then we take y = p; otherwise we
take y = w. We also denote the neighbor of y outside ε[x, y] by y′. Observe
that y′ ∈ {q, v}.

We shall change the segment ε[x, y] such that CNP will be satisfied for
all vertices with a neighbor in ε(x, y) and such that all vertices on the new
branch will be at distance at most 2 from ε.

First of all, we want ε to be an induced path in G. If ε contains adjacent
vertices u, v that are not consecutive on ε, then we can shorten ε by replac-
ing ε[u, v] by the edge uv. Let us observe that such changes do not affect
break segments or the initial segments A1, B1, C1 around branch vertices
in H2. In particular, they preserve all properties established earlier.
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Suppose now that v is a vertex in V (G) \ V (H2) that has at least three
neighbors in ε, at least one of which is in ε(x, y). Let u ∈ ε(x, y) be
a neighbor of v, and let u′ be a neighbor of v in ε − ε[x, y] such that
uu′ /∈ E(G). Because of properties (BS1)–(BS4) and (B1)–(B4), it follows
that u′ ∈ {x′, y′}, where x′ and y′ are the neighbors of x or y (respectively)
on ε − ε[x, y] as introduced above.

Suppose that the neighbors of v do not induce a path on ε. Let v1, v2

be distinct nonadjacent neighbors of v on ε such that ε(v1, v2) contains no
neighbors of v. It is clear by 4-connectivity of G that dε(v1, v2) > 2. By
using property (B5), it can be verified easily that v1, v2 �= x′. Since G is
a 4-connected triangulation, the neighbors of v inside the disk bounded by
the path v1vv2 and the segment ε[v1, v2] induce a path Pv1v2 ⊆ G from v1

to v2. Now, we replace ε[v1, v2] by Pv1v2 . See Figure 8.

v
1

v
2

v

FIG. 8. Elimination of a bad triple

It may happen that v1 (or v2) is equal to y′. In such a case, the corre-
sponding vertex p or w of the break segment on ε is replaced by another
vertex on Pv1v2 . It is easy to see that such a change preserves the essential
propoerties (BS1)–(BS4) of break segments.

Let us call the triple (v, v1, v2) bad if it corresponds to a situation as
encountered above. It is clear that the change described above removes the
bad triple (v, v1, v2) and we claim that it does not introduce any new bad
triples (u, u1, u2). If it would, then u would be contained in the (closed)
disk bounded by ε[v1, v2] ∪ Pv1v2 , and u1, u2 would be vertices on Pv1v2 .
However, in such a case, the vertices u, u1, u2, and v would separate the
graph G, contrary to Lemma 3.1. This contradiction proves that after
a finite number of steps, we can get rid of all bad triples. It is also clear
that every bad triple elimination preserves properties (BS1)–(BS4) of break
segments and (B1)–(B4) of neighborhoods of branch vertices.

Once there are no bad triples, the resulting graph, which we will denote
by H , satisfies the CNP.

Obtaining a precoloring of H

As mentioned before, we are going to color H and some other vertices
of G which are either close to the branch vertices or close to the break
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segments of H . The ultimate goal is to be able to apply Theorem 1.1 to
the uncolored part of the graph G.

For every branch vertex b of H , we color b and some vertices close to
b. Next, we color every branch starting with the colored vertices around
branch vertices and continuing towards the break segments. Finally, the
break segments and some other vertices close to them are colored. The
requirement for this precoloring is that all vertices of H are colored. We
also color some additional vertices forming a connected subgraph together
with H . This ensures that all vertices of the remaining graph, which have
a precolored neighbor, are on the outer face of the corresponding planar
embedding. Lastly, and this is where the difficulty lies, we require that
every uncolored vertex still has at least three available colors in its list
after the colors used on its neighbors are removed. All of these properties
ensure that Theorem 3.1 can be applied.

During the proof given below, we shall have some vertices of G already
colored (precolored). If we color a vertex v by color a, then this color
can no longer be used to color the neighbors of v. We therefore consider
the reduced list L′(u) = L(u) \ {a} for every neighbor u of v. To simplify
notation, we shall assume that the current list of admissible colors is always
updated according to the colors used on the precolored neighbors of any
vertex. When we color the subgraph H , our main goal will be to make
sure that every vertex not in H is left with at least three admissible colors.
This will be automatically satisfied for all vertices which have at most two
neighbors in H . For others we adopt the following terminology. We say
that v is a peak if it is a vertex in V (G)\V (H) and has at least 3 neighbors
in H . Having partially colored the vertices of H , we say that a peak v is
endangered if it has only three admissible colors left. Our only concern will
be not to lose any more colors at endangered vertices.

Coloring around a branch vertex
Let us recall the notation for P1, α

′, β′, γ′, etc. around a branch vertex
s′ introduced before and conveniently shown in Figure 6.

Consider all paths of length 2 from c2 to P1. They all reach P1 to the
left of s′. Choose the one, call it D1 which is the lower-most one (possibly
D1 = c2c1s

′), and let D be the disk (possibly just the path c2c1s
′) bounded

by D1, C1, A1. Observe that D1 ∩ A1 is the vertex x in {s′, a1, a2, a3, a4},
which we have introduced when speaking how to get the CNP on α′.

The vertices in D can be L-colored by Theorem 3.1. We claim that, after
doing this, every vertex adjacent to D still has at least three admissible
colors. If there was a vertex v with at most two, then v would have at
least three neighbors in D. Now, v cannot be above P1 because of (B1),
and it cannot be to the right of C1 because of (B2). If it were below P1

(and hence to the left of C1), it would be adjacent to the three vertices in



5-LIST COLORING LOCALLY PLANAR GRAPHS 19

D1. However, this would contradict our choice of D1 as the lowest path of
length 2 from c2 to P1.

There are two details that should be made clear at this point. First, the
above coloring procedure is performed simultaneously around all branch
vertices s′ of H . Secondly, if ε is a branch of H incident with s′, let x
be the vertex on ε as defined in the subsection on Consecutive neighbors
property. Then it is precisely the segment ε[s′, x] that has been precolored
at this step.

Extending the coloring along a branch
Let ε be a branch of H and let v0, v1, . . . , vN be the consecutive vertices

on ε, where v0 is a branch vertex of H and vN belongs to the break segment
S on ε such that S∩ε[v0, vN ] = {vN}. In the previous step we have already
colored one or up to 5 initial vertices v0, . . . , vj on ε, where 0 ≤ j ≤ 4, and in
the general step we assume that v0, . . . , vi−1 (i > j) have been precolored,
and that we want to color vi next.

Let us recall that vj+1 and vj+2 are part of a geodesic and on one side
strongly geodesic segment A1, B1, or C1, see the subsection on changing
the branch vertices and confirm conditions (B1)–(B3). This ensures that,
when we come to color vj+1 and afterwards vj+2, at most one endangered
vertex is adjacent to that vertex.

We claim that vi is adjacent to at most one endangered vertex also for
i ≥ j+3. If there were two, say a and b, consider their precolored neighbors
in H . Because of the CNP, their neigbors are on ε, immediately preceding
vi. In particular, they are both adjacent to vi−2. Consequently, viavi−2bvi

is a (contractible) 4-cycle whose interior contains vi−1. This contradicts
Lemma 3.1(b).

Since ε is an induced subgraph of G, the only precolored neighbor of vi

is vi−1. Therefore, vi has at least 4 admissible colors when we come to
color it. If vi is adjacent to an endagered vertex u, let c be an admissible
color for vi that is not among admissible colors of u. Otherwise, let c
be any admissible color of vi. Now we color vi by c. We repeat this for
i = j + 1, . . . , N .

Note that the above procedure has not much flexibility. It may happen
that all vertices have endangered neighbors and that the coloring along
ε is uniquely determined. Therefore, a special care is needed when the
precolorings of ε from the left and the right side come together. Here we
use special properties of the break segments. This is dealt with in the next
subsection. Let us also observe that coloring different branches or different
segments of the same branch do not interfere with each other by (BS4).
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Coloring at break segments
Let ε be a branch of H with endvertices a and b and break segment S =

pqrstuvw. Let us denote L = ε[a, p] and R = ε[w, b], so that ε = L∪S ∪R
and L ∩ S = {p} and S ∩ R = {w}.

For x, y ∈ V (S), define D(x, y) as the subgraph consisting of all geodesic
paths from x to y in G. In particular, S[x, y] ⊆ D(x, y). We choose
x ∈ {p, q} and y ∈ {v, w} as follows. First we consider D(q, v). Suppose
that q is of degree 2 in D(q, v) and that α, β are its neighbors. Let γ, δ be
vertices distinct from p, q such that pqγ and pqδ are the triangles containing
pq. If αγ and βδ (or αδ and βγ) are edges of G, then we set x = p (see
Figure 9). In all other cases we set x = q. Similarly, we set y = v, unless
v has precisely two neighbors α, β in D(q, v) and there exist vertices γ, δ
with γ adjacent to v, w, α, and δ adjacent to v, w, β; in the latter case we
set y = w.

�

p q

v

�

�

�

w

FIG. 9. The case when we select x = p

Let us now consider D(x, y). Since D(x, y) is contained within the
wall around ε, there is a (closed) disk (possibly with some “degeneracy”)
bounded by the “upper-most” and the “lower-most” (x, y)-path in D(x, y).
We let D be the set of vertices of G contained in this disk. Let x′, x′′ (where
possibly x′ = x′′ if the disk is degenerate at that point) be the neighbor(s)
of x on the boundary of D(x, y). Define similarly the neighbor(s) y′, y′′ of
y.

To color the whole branch ε, we first color it along L until reaching
p, as explained in the preceding subsection. Next we color x if x = q.
Same arguments as before show that this is possible. After that, we also
color x′ and x′′, taking care of possible endangered vertices. This may
not be possible only when x′ and x′′ are adjacent and they each have an
endangered neighbor. If this were the case, then x′, x′′ and their endangered
neighbors would play the role of α, β, γ, δ above, and hence x would not be
equal to q. However, knowing that the situation in Figure 9 occurs around
q, it is easy to see that the same cannot happen at x = p. So, we conclude
that x′ and x′′ can be precolored.

If x′ �= x′′ and there is a vertex x′′′ adjacent to x, x′, and x′′, then we
also color x′′′. Note that such a vertex x′′′ belongs to D.

On the “right” part of ε, we color R in the similar way, starting at b.
Finally, we color y′, y′′, and y′′′ (if it exists).
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FIG. 10. Coloring the disk around a break segment

We claim that every vertex in D has at most two colored neighbors.
Clearly, z ∈ V (D) cannot be adjacent to one of x, x′, x′′, x′′′ and to one
of y, y′, y′′, y′′′ at the same time, since dG(x, y) ≥ dG(q, v) = 5. So, if a
vertex z ∈ D has three colored neighbors, they are x′, x′′, x′′′ (or y′, y′′, y′′′).
However, this contradicts Lemma 3.1. For convenience, we exhibit the
situation in Figure 10.

Therefore, we can apply Theorem 3.1 and extend the coloring to all
vertices in D. We claim that all uncolored vertices still have at least 3 ad-
missible colors. To see this, recall that we took care of endangered vertices
while coloring L ∪ {x′, x′′} and R ∪ {y′, y′′}. May it be that by extending
the coloring to D, we overlooked some endangered vertex z? Then z has
at least 3 neighbors in D ∪L ∪R. Since the outer paths of D are geodesic
(x, y)-paths in G, z cannot have three neighbors in D. If so, it would be
included in D. So, we may assume that one of its neighbors, say α (possibly
α = p), is in L−{x}. Another neighbor is in the “upper” path in D and is
different from x, x′, x′′. Then dG(α, y) ≤ dG(x, y), which is a contradiction
to the defining property of a break segment, (BS1) if α = p, or (BS2) if
α �= p. This shows that z does not exist.

Extending into the remaining disk
After coloring H and some additional vertices contained in the disks D

close to branch vertices or close to break segments, the remaining graph
K is planar. Moreover, all vertices of K which have a precolored neighbor
are on the outer face of a plane embedding of K. (K may be disconnected,
though.) Therefore, we can apply Thomassen’s Theorem 3.1 and color K
using only admissible colors. This completes the proof of our main theorem.

5. CONCLUDING REMARKS

In concluding, we should first remark that the proof of Theorem 1.2 also
gives a polynomial-time algorithm for 5-list-coloring graphs embedded in a
fixed surface S with sufficiently large edge-width. The value of w imposed
on the edge-width in Theorem 1.2 depends on Robertson and Seymour
Theorem 2.1, whose proof in [9] does not yield an explicit bound on w.
However, the description of the algorithm below suggests how to overcome
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this trouble by a direct approach, which yields an explicit bound w = 2O(g),
where g is the Euler genus of S.

All steps in the proof of Theorem 1.2 can be performed in polynomial
time. The only step, which is not obvious, is how to find the initial subgraph
H0 surrounded by a wall of height 30 and width 70. Actually, this can be
done by an algorithm of Robertson amd Seymour in their series of Graph
Minors papers [10]. But there is also a simpler direct way: First we find
a planarizing collection of cycles which are far apart. This can be done
rather easily if the edge-width is at least 2Θ(g), see, e.g., [8, Section 5.11]
for more details. Next, repeat the following procedure starting with the
graph formed by the planarizing cycles, until the resulting graph becomes
connected. Let P be a shortest path in G joining distinct components of
the current graph. Then add this path to the current graph, thus reducing
the number of components by one. The final resulting subgraph L of G has
the property that there is a large wall surrounding it, and inside this wall
we can find a cubic subgraph H0 surrounded by a wall W0 whose width
and height satisfy requirements imposed in the proof of Theorem 1.2.

Similarly to the 5-choosability of arbitrary planar graphs, it can be shown
easily that planar graphs of girth at least 4 are 4-choosable, and those of
girth at least 6 are 3-choosable. Thomassen [15] strengthened the latter
fact by showing that all planar graphs of girth 5 are 3-choosable. These
results can be generalized to the setting of locally planar graphs.

Proposition 5.1. For every surface S there exists an integer w such
that every triangle-free graph G embedded in S with edge-width at least w
is 4-choosable. Similarly, every graph of girth at least 6 embedded in S with
edge-width at least w is 3-choosable.

Let us observe that the value of w in Proposition 5.1 is of order O(log g),
where g is the genus of S. Compare this with the constant from Theorem
1.2 which is much bigger.

We shall only sketch the proof of Proposition 5.1 since it only needs
Euler’s formula and an application of a theorem of Gallai. This was actually
proved in [5] for usual colorings. Fisk and Mohar proved in [5] that a graph
of girth 4 and minimum degree 4 whose edge-width is bigger than c log g
(where c is a constant), contains a vertex of degree 4 contained in four
faces of size 4, all of whose vertices have degree 4. Similarly, for girth 6 and
minimum degree 3, there is a vertex of degree 3 surrounded by hexagons,
all of whose vertices have degree 3. Assuming that the graph G is critical
for 4-list or 3-list-colorings (respectively), the list coloring version of Gallai
theorem (see [7]) tells us that every block of the subgraph of G induced on
vertices of degree 4 or 3 (respectively) is either a clique or an odd cycle.
This yields a contradiction to the result of [5] stated above.
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Thomassen [15] proved that for each surface S, there are only finitely
many 3-critical graphs of girth at least 5 that can be embedded in S. This
implies that graphs of large edge-width on S having girth at least 5 are
3-colorable and raises the following question: Is it true that graphs of girth
5 and with sufficiently large edge-width on a fixed surface are 3-choosable?
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3. T. Böhme, B. Mohar, and M. Stiebitz, Dirac’s map-color theorem for choosability,
J. Graph Theory 32 (1999) 327–339.

4. P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34–38.

5. S. Fisk, B. Mohar, Coloring graphs without short non-bounding cycles, J. Combin.
Theory Ser. B 60 (1994) 268–276.

6. S. Gutner, The complexity of planar graph choosability, Discrete Math. 159 (1996)
119–130.

7. A. Kostochka and M. Stiebitz, A new lower bound on the number of edges in color-
critical graphs and hypergraphs, J. Combin. Theory Ser. B 87 (2003) 274–302.

8. B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins Univ. Press, Bal-
timore, MD, 2001.

9. N. Robertson and P.D. Seymour, Graph minors VII. Disjoint paths on a surface,
J. Combin. Theory Ser. B 45 (1988) 212–254.

10. N. Robertson and P.D. Seymour, Graph minors XIII. The disjoint paths problem,
J. Combin. Theory Ser. B 63 (1995) 65–110.

11. N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-colour theorem, J. Com-
bin. Theory Ser. B 70 (1997) 2–44.

12. C. Thomassen, Five-coloring maps on surfaces, J. Combin. Theory Ser. B 59 (1993)
89–105.

13. C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62
(1994) 180–181.

14. C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B 70
(1997) 67–100.

15. C. Thomassen, The chromatic number of a graph of girth 5 on a fixed surface,
J. Combin. Theory Ser. B 87 (2003) 38–71.

16. M. Voigt, List colourings of planar graphs, Discrete Math. 120 (1993) 215–219.

17. Z. Tuza, Graph colorings with local constraints—a survey, Discuss. Math. Graph
Theory 17 (1997) 161–228.


