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Abstract

D. Gernert conjectured that the sum of two largest eigenvalues of
the adjacency matrix of any simple graph is at most the number of
vertices of the graph. This can be proved, in particular, for all regular
graphs. Gernert’s conjecture was recently disproved by one of the
authors [4], who also provided a nontrivial upper bound for the sum
of two largest eigenvalues. In this paper we improve the lower and
upper bounds to near-optimal ones, and extend results from graphs to
general non-negative matrices.

1 Introduction

It is of interest to know which symmetric matrices have “extremal” eigen-
value behavior. In this paper we consider the sum of two largest eigenvalues
of a symmetric matrix of order n, and we ask how large can this sum be, and
what can we say about (nearly) “extremal” matrices. Gernert [1] proposed
the following:
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Conjecture 1.1 (Gernert [1]) If G is a simple graph of order n and λ1

and λ2 are the two largest eigenvalues of G, then λ1 + λ2 ≤ n.

Gernert proved that the inequality λ1 + λ2 ≤ n holds for all regular
graphs and has verified it for several other classes of graphs, such as planar,
toroidal, complete multipartite and triangle-free graphs.

We will study the sum of largest eigenvalues in a more general setting by
considering the set of non-negative symmetric n× n matrices whose entries
are between 0 and 1. We will denote this set by

Mn = {A ∈ R
n×n | AT = A, 0 ≤ aij ≤ 1 for 1 ≤ i, j ≤ n}.

We let λi = λi(A) be the ith largest eigenvalue (counting multiplicities) of
the matrix A ∈ Mn and define

τ2(A) =
1
n

(λ1(A) + λ2(A)).

We will be interested in extremal values of the quantity

τ2(n) = sup{τ2(A) | A ∈ Mn}

and its asymptotic behavior

τ2 = lim sup
n→∞

τ2(n).

First of all, we shall extend Gernert’s result mentioned above by proving
that for every matrix A ∈ Mn with constant row sums we have τ2(A) ≤ 1.
In particular, for any regular graph G of order n we have λ1 + λ2 ≤ n − 2,
with equality if and only if the complement of the graph G has a connected
component that is bipartite; cf. Corollary 3.2.

Next, a construction of simple graphs of order n (where n ≡ 0 (mod 7))
with λ1 + λ2 = 8

7n − 2 is given. Apparently, this is a counterexample to
Conjecture 1.1. Such counterexamples were found earlier by one of the
authors [4], but they were not as tight as the current one for which we
believe that it might be the extreme case. The same author also found a
non-trivial upper bound in [4]; he proved that for every n, τ2(n) ≤ 2/

√
3.

In this paper we provide an improved upper bound that is very close to
our lower bound. We also show that the same bounds hold for arbitrary
matrices in Mn.
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Theorem 1.2 If A ∈ Mn, then

τ2(A) ≤ 1
2 +

√
5
12 <

8.0185
7

.

For every n ≡ 0 (mod 7), there exists a graph Gn of order n with λ1(Gn) +
λ2(Gn) = 8

7n − 2. In particular, τ2 ≥ 8
7 .

The proof of the upper bound is provided in Section 4 and the construc-
tion of graphs claimed for in Theorem 1.2 is given in Section 2.

Recently one of the authors [3] considered the problem of how large can
be the sum of k largest eigenvalues of a graph (or a symmetric matrix). As
shown in [3], the bounds of Theorem 1.2 can be used, by shifting and scaling
the matrices, to get a result which holds for the sum of the largest (or the
smallest) two eigenvalues of an arbitrary symmetric matrix.

Corollary 1.3 Let a, b are real numbers, where a < b, and let A be a sym-
metric matrix, all of whose entries are between a and b. Then

τ2(A) ≤ 1
2

(
1 +

√
5
3

)
(b − a) + max{0, a}.

2 Graphs with extreme eigenvalue sum

In this section we will present a family of graphs on 7n vertices with λ1+λ2 =
8n − 2. We believe that these graphs are extremal examples for the value
of τ2(7n).

Let n ≥ 1 be an integer. Let Gn = K7n − E(K2n,2n) be the graph on
7n vertices, which is obtained from the complete graph on the vertex set
V = X ∪ Y ∪ Z with |X| = 3n and |Y | = |Z| = 2n by removing all edges
between Y and Z. We will show that the sum of two largest eigenvalues of
Gn is 8n − 2.

Theorem 2.1 The eigenvalues of the graph Gn defined above are λ1 = 6n−
1, λ2 = 2n − 1, λ7n = −n − 1, and λi = −1 for i = 3, 4, . . . , 7n − 1. In
particular, λ1 + λ2 = 8n − 2.

Proof. Let X,Y,Z be as above. It is convenient to consider the matrix
B = A(Gn) + I, whose rank is three since its rows corresponding to the
vertices in X (resp. in Y or Z) are the same. Thus it suffices to see that B
has eigenvalues 6n, 2n, and −n.
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Suppose that f : V → R is a function whose values are constant on each
part X,Y,Z. Let f(v) = x for v ∈ X, f(v) = y for v ∈ Y , and f(v) = z for
v ∈ Z. Then f is an eigenfunction corresponding to an eigenvalue μ of B if
and only if the following equations hold:

μx = 2nx + 3ny

μy = 2nx + 3ny + 2nz

μz = 3ny + 2nz.

This homogeneous system of linear equations has three solutions for μ such
that {x, y, z} 	= {0}. They are μ1 = 6n, μ2 = 2n, and μ3 = −n. This gives
three solutions 6n− 1, 2n− 1, and −n− 1 for eigenvalues of Gn, as claimed.

3 Matrices with constant row sums

Suppose that A ∈ Mn is a matrix with constant row sums, i.e.,

n∑
j=1

aij = r

holds for some constant r (0 ≤ r ≤ n) and for every i = 1, . . . , n. For
example, the adjacency matrix of an r-regular graph of order n is such a
matrix.

For A ∈ Mn, define the matrix A′ = J − A, where J is the all-1-matrix
of order n. Let j = (1, 1, . . . , 1)T ∈ R

n. One can easily see that j is an
eigenvector of both matrices, A and A′, corresponding to the eigenvalues r
and n− r, respectively. Moreover, these are the largest eigenvalues of these
two matrices.

Since A is symmetric, there is an orthogonal basis B for R
n consisting

of eigenvectors of A. Without loss of generality, we can assume that B
contains j. Suppose that u is another element of B. Since u is orthogonal
to j and J = j jT , we have:

Au + A′u = Ju = j jT u = 0.

This implies that Au = −A′u. The same argument works if we interchange
the role of A and A′. Hence, the second largest eigenvalue of A is not
bigger than the negative of the smallest eigenvalue of A′. On the other
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hand, the Perron-Frobenius Theorem implies that the smallest eigenvalue
of A′ has absolute value not larger than the largest eigenvalue n − r of A′.
Hence, the second largest eigenvalue of A is at most n − r and therefore
τ2(A) ≤ 1

n(r + (n − r)) = 1. This proves the following proposition:

Proposition 3.1 If A ∈ Mn has constant row sums, then τ2(A) ≤ 1.

Corollary 3.2 If G is a regular graph of order n, then the sum of two largest
eigenvalues λ1, λ2 of G is at most n − 2. Moreover, λ1 + λ2 = n − 2 if and
only if the complement of G has a connected component which is bipartite.

Proof. Apply the previous proposition to the matrix A + I where A is the
adjacency matrix of G and I is the identity matrix of size n.

It remains to verify the claim when equality holds. Let r be the vertex
degree in G. Let q = n − r − 1. The complement H of G is q-regular. If it
has a bipartite component, then H has eigenvalues λ′

1 = q and λ′
n = −q. An

eigenvector of λ′
n is easily seen to be an eigenvector of G for the eigenvalue

λ = q − 1. Therefore, τ2(G) ≥ r + λ = n − 2, and so we have equality.
Conversely, the proof of Proposition 3.1 shows that when equality occurs, the
smallest eigenvalue of H is −(n− r), and by the Perron-Frobenius Theorem
we conclude that a connected component of H is bipartite.

4 Upper bound

For A ∈ Mn, let us denote by σ2(A) the �2-norm of A,

σ2(A) =
(1

2

n∑
i=1

n∑
j=1

a2
ij

)1/2
.

Since (A2)ii =
∑n

j=1 a2
ij , we have

2σ2(A)2 = tr(A2) =
n∑

i=1

λ2
i , (1)

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of A in decreasing order.
Let A′ = J − A, where J is the all-1 matrix of order n, and let λ′

1 ≥
λ′

2 ≥ · · · ≥ λ′
n be the eigenvalues of A′.

The following inequalities are special cases of Weyl inequalities (cf., e.g.,
[2, Theorem 4.3.1]) applied to matrices A, A′, and J = A + A′.
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Lemma 4.1 (a) λ2 + λ′
n ≤ 0. (b) λi + λ′

n−i+1 ≥ 0, for i = 1, . . . , n.

We shall need two additional ingredients. The first one shows that matri-
ces with extreme values of τ2 are adjacency matrices of graphs (with loops),
whose complement is bipartite.

Lemma 4.2 Let A ∈ Mn. Then there exists a graph G of order n (with the
loop at each vertex) whose complement is a bipartite graph, and such that
τ2(G) ≥ τ2(A).

Proof. Let V = {1, . . . , n} and let x and y be orthonormal eigenvectors
for λ1(A) and λ2(A), respectively, whose entries are indexed by V . Let
B = {v ∈ V | yv = 0}, C = {v ∈ V | yv > 0}, and D = {v ∈ V | yv < 0}.
Let G be the graph with vertex set V , whose edges are all pairs {u, v}
(including loops) for which one of the following holds:

(1) u, v ∈ B ∪ C, or
(2) u, v ∈ B ∪ D, or
(3) u ∈ C, v ∈ D and xuxv + yuyv ≥ 0.

Clearly, the complement of G has only edges joining vertices of C and D,
and is thus bipartite. By the Perron-Frobenius Theorem, we have xv ≥ 0
for every v ∈ V . Therefore, the definition of the sets B, C, and D implies
that

xT A(G)x + yT A(G)y = 2 ·
∑

uv∈E(G)

(xuxv + yuyv) ≥ xT Ax + yTAy.

Using this inequality and the Ky Fan inequality (see [2, Corollary 4.3.18])
for the sum of two largest eigenvalues of A(G), we get:

λ1(G) + λ2(G) = max
‖z‖=1,‖w‖=1,z⊥w

(zT A(G)z + wT A(G)w)

≥ xT A(G)x + yT A(G)y
≥ xT Ax + yTAy

= λ1(A) + λ2(A),

which we were to prove.

Lemma 4.3 If a graph G of order n ≥ 4 has bipartite complement, then

λ1(G) + λ2(G) + λn−1(G) + λn(G) ≤ n.
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Proof. Using Lemma 4.1(b), we can estimate:

n ≥ tr(A(G)) = λ1 + λ2 + λn−1 + λn +
n−2∑
i=3

λi

≥ λ1 + λ2 + λn−1 + λn +
n−2∑
i=3

λ′
n−i+1

= λ1 + λ2 + λn−1 + λn.

The last equality is a consequence of the fact that λ′
i = λ′

n−i+1 for every i,
since the complement of G is bipartite.

We are now ready for the proof of Theorem 1.2. By Lemma 4.2, we may
assume that A is the adjacency matrix of a graph G, with a loop at each
vertex, whose complement is bipartite. We will use the notation introduced
above.

We may assume that λ2 ≥ 0, since otherwise τ2(A) ≤ 1. Equation (1)
applied to matrices A and A′ shows that

n∑
i=1

λ2
i +

n∑
i=1

λ′2
i = 2σ2(A)2 + 2σ2(A′)2

=
n∑

i=1

n∑
j=1

(
a2

ij + (1 − aij)2
)

= n2. (2)

Since λ2 ≥ 0, Lemma 4.1(a) and bipartiteness of the complement imply
that λ2

2 ≤ λ′2
n = λ′2

1 . Let us first assume that λn−1 ≤ 0. Then, similarly as
above, Lemma 4.1(b) applied with i = n− 1 shows that λ2

n−1 ≤ λ′2
2 = λ′2

n−1.
Combining these inequalities and (2), we get:

λ2
1 + 3λ2

2 + 3λ2
n−1 + λ2

n ≤ λ2
1 + λ2

2 + λ2
n−1 + λ2

n + λ′2
1 + λ′2

n + λ′2
2 + λ′2

n−1

≤ n2. (3)

For i = 1, . . . , n, let ti := 1
nλi. Lemma 4.3 gives

t1 + t2 + tn−1 + tn ≤ 1. (4)

From (3) we see that

t21 + 3t22 + 3t2n−1 + t2n ≤ 1, (5)
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while our goal is to maximize τ := t1+t2. By the Cauchy-Schwartz inequality
we have

τ2 = (t1 + t2)2 ≤ (1 + 1
3)(t21 + 3t22) = 4

3(t21 + 3t22) (6)

and similarly (by assuming τ ≥ 1 and using (4) first):

(τ − 1)2 ≤ (tn−1 + tn)2 ≤ 4
3(3t2n−1 + t2n). (7)

Using (5)–(7), we conclude that τ2 + (τ − 1)2 ≤ 4
3 . Solving this quadratic

inequality, we obtain τ ≤ 1/2 +
√

5/12. This completes the proof of Theo-
rem 1.2 when λn−1 ≤ 0.

Suppose now that λn−1 ≥ 0 and that τ2(A) ≥ 8
7 . Then Lemma 4.3

implies that |λn| ≥ 1
7n. Thus,

λ2
1 + 3λ2

2 ≤ λ2
1 + λ2

2 + λ′2
1 + λ′2

n ≤ n2 − λ2
n ≤ 48

49n2.

Consequently,

τ2 = (t1 + t2)2 ≤ 4
3(t21 + 3t22) ≤ 4

3 · 48
49 = (8

7)2.

The proof is now complete.
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