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ABSTRACT
The crossing number of a graph is the minimum number of
crossings in a drawing of the graph in the plane. Our main
result is that every graph G that does not contain a fixed
graph as a minor has crossing number O(∆n), where G has
n vertices and maximum degree ∆. This dependence on n
and ∆ is best possible. This result answers an open question
of Wood and Telle [New York J. Mathematics, 2007], who
proved the best previous bound of O(∆2n).

In addition, we prove that every K5-minor-free graph G
has crossing number at most 2

P
v deg(v)2, which again is

the best possible dependence on the degrees of G. We also
study the convex and rectilinear crossing numbers, and prove
an O(∆n) bound for the convex crossing number of bounded
pathwidth graphs, and a

P
v deg(v)2 bound for the rectilin-

ear crossing number of K3,3-minor-free graphs.
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1. INTRODUCTION
The crossing number of a graph1 G, denoted by cr(G),

is the minimum number of crossings in a drawing2 of G in
the plane; see [16, 33, 51] for surveys. The crossing number
is an important measure of non-planarity of a graph [50],
with applications in discrete and computational geometry

1We consider graphs G that are undirected, simple, and fi-
nite. Let V (G) and E(G) respectively be the vertex and
edge sets of G. Let |G| := |V (G)| and ‖G‖ := |E(G)|. For
each vertex v of G, let NG(v) := {w ∈ V (G) : vw ∈ E(G)}
be the neighbourhood of v in G. The degree of v, denoted
by degG(v), is |NG(v)|. When the graph is clear from the
context, we write deg(v). Let ∆(G) be the maximum degree
of G.
2A drawing of a graph represents each vertex by a distinct
point in the plane, and represents each edge by a simple
closed curve between its endpoints, such that the only ver-
tices an edge intersects are its own endpoints, and no three
edges intersect at a common point (except at a common
endpoint). A drawing is rectilinear if each edge is a line-
segment, and is convex if, in addition, the vertices are in
convex position. A crossing is a point of intersection be-
tween two edges (other than a common endpoint). A draw-
ing with no crossings is crossing-free. A graph is planar if it
has a crossing-free drawing.
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[32, 49], VLSI circuit design [3, 26, 27], and in several other
areas of mathematics and theoretical computer science; see
[50] for details. In information visualisation, one of the most
important measures of the quality of a graph drawing is the
number of crossings [37, 36, 38].

Computing the crossing number is NP-hard [18], and re-
mains so for simple cubic graphs [22, 35]. Moreover, the ex-
act or even asymptotic crossing number is not known for spe-
cific graph families, such as complete graphs [42], complete
bipartite graphs [29, 40, 42], and cartesian products [1, 5,
20, 41]. On the other hand, for every fixed k, Kawarabayashi
and Reed [25] developed a linear-time algorithm that decides
whether a given graph has crossing number at most k, and
if this is the case, produces a drawing of the graph with at
most k crossings.

Given that the crossing number seems so difficult, it is
natural to focus on asymptotic bounds rather than exact
values. The ‘crossing lemma’, conjectured by Erdős and
Guy [16] and first proved by Leighton [26] and Ajtai et al. [2],
gives such a lower bound. It states that every graph G with
average degree greater than 6 + ε has

cr(G) ≥ cε
‖G‖3

|G|2 .

Other general lower bound techniques that arose out of the
work of Leighton [26, 27] include the bisection/cutwidth
method [14, 31, 47, 48] and the embedding method [46, 47].

Upper bounds on the crossing number of general families
of graphs have been less studied, and are the focus of this
paper. Obviously cr(G) ≤

`‖G‖
2

´
for every graph G. A family

of graphs has linear crossing number if cr(G) ≤ c |G| for
some constant c and for every graph G in the family. The
following theorem of Pach and Tóth [34] shows that graphs
of bounded genus3 and bounded degree have linear crossing
number.

Theorem 1.1 ([34]). For every integer γ ≥ 0, there
are constants c and c′, such that every graph G with ori-
entable genus γ has crossing number

cr(G) ≤ c
X

v∈V (G)

deg(v)2 ≤ c′∆(G) · |G|.

Böröczky et al. [9] extended Theorem 1.1 to graphs of
bounded non-orientable genus. Djidjev and Vrt’o [15] greatly
improved the dependence on γ in Theorem 1.1, by proving
that cr(G) ≤ cγ · ∆(G) · |G|. Wood and Telle [52] proved
that bounded-degree graphs that exclude a fixed graph as a
minor4 have linear crossing number.

3Let Sγ be the orientable surface with γ ≥ 0 handles. An
embedding of a graph in Sγ is a crossing-free drawing in Sγ .
A 2-cell embedding is an embedding in which each region of
the surface (bounded by edges of the graph) is an open disk.
The (orientable) genus of a graph G is the minimum γ such
that G has a 2-cell embedding in Sγ . In what follows, by
a face we mean the set of vertices on the boundary of the
face. Let F (G) be the set of faces in an embedded graph
G. See the monograph by Mohar and Thomassen [28] for a
thorough treatment of graphs on surfaces.
4Let vw be an edge of a graph G. Let G′ be the graph ob-
tained by identifying the vertices v and w, deleting loops,
and replacing parallel edges by a single edge. Then G′ is
obtained from G by contracting vw. A graph H is a minor
of a graph G if H can be obtained from a subgraph of G by
contracting edges. A family of graphs F is minor-closed if

Theorem 1.2 ([52]). For every graph H, there is a con-
stant c = c(H), such that every H-minor-free graph G has
crossing number

cr(G) ≤ c∆(G)2 · |G|.

Theorem 1.2 is stronger than Theorem 1.1 in the sense
that graphs of bounded genus exclude a fixed graph as a
minor, but there are graphs with a fixed excluded minor and
arbitrarily large genus. On the other hand, Theorem 1.1 has
better dependence on ∆ than Theorem 1.2. For other recent
work on minors and crossing number see [6, 7, 8, 17, 19, 21,
22, 30, 35].

Note that for any reasonably general class of graphs to
have linear crossing number, excluding a fixed minor and
bounding the maximum degree (as in Theorem 1.2) is un-
avoidable. For example, K3,n has no K5-minor, yet its cross-
ing number is Ω(n2) [40, 29]. Conversely, bounded degree
does not by itself guarantee linear crossing number. For ex-
ample, a random cubic graph on n vertices has Ω(n) bisec-
tion width [10, 12], which implies that its crossing number
is Ω(n2) [14, 26].

Pach and Tóth [34] proved that the upper bound in The-
orem 1.1 is best possible, in the sense that for all ∆ and
n, there is a toroidal graph with n vertices and maximum
degree ∆ whose crossing number is Ω(∆n). In Section 2
we extend this Ω(∆n) lower bound to graphs with no K3,3-
minor, no K5-minor, and more generally, with no Kh-minor.
Our main result is to prove a matching upper bound for all
graphs excluding a fixed minor. That is, we improve the
quadratic dependence on ∆(G) in Theorem 1.2 to linear.

Theorem 1.3. For every graph H there is a constant c =
c(H), such that every H-minor-free graph G has crossing
number

cr(G) ≤ c∆(G) · |G|.

For a graph G, let D2(G) :=
P
v∈V (G) deg(v)2. While our

upper bound in Theorem 1.3 is optimal in terms of ∆(G)
and |G|, it remains open whether every graph excluding a
fixed minor has O(D2(G)) crossing number, as is the case for
graphs of bounded genus. Note that a D2(G) upper bound
is stronger than a ∆(G) · |G| upper bound. In particular, for
every graph G with bounded average degree (such as graphs
with bounded genus or those excluding a fixed minor),

D2(G) ≤ ∆(G)
X

v∈V (G)

deg(v) = 2∆(G) · ‖G‖ ≤ c∆(G) · |G|.

Wood and Telle [52] conjectured that every graph excluding
a fixed minor has crossing number O(D2(G)). In Section 4,
we establish this conjecture for K5-minor-free graphs, and
prove the same bound on the rectilinear crossing number5

G ∈ F implies that every minor of G is in F . F is proper if
it is not the family of all graphs. A deep theorem of Robert-
son and Seymour [45] states that every proper minor-closed
family can be characterised by a finite family of excluded
minors. Every proper minor-closed family is a subset of the
H-minor-free graphs for some graph H. We thus focus on
minor-closed families with one excluded minor.
5The rectilinear crossing number of a graph G, denoted by
cr(G), is the minimum number of crossings in a rectilin-
ear drawing of G. The convex crossing number, denoted
by cr?(G), is the minimum number of crossings in a convex
drawing of G.
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of K3,3-minor-free graphs. In addition to these results, we
establish in Section 5 optimal bounds on the convex cross-
ing number of interval graphs, chordal graphs, and bounded
pathwidth graphs.

It is worth noting that our proof is constructive, assum-
ing a structural decomposition (Theorem 6.2) by Robert-
son and Seymour [44] is given. Demaine et al. [11] gave a
polynomial-time algorithm to compute this decomposition.
Consequently, our proof can be converted into a polynomial-
time algorithm that, given a graph G excluding a fixed mi-
nor, finds a drawing of G with the claimed number of cross-
ings.

2. LOWER BOUNDS
In this section we describe graphs that provide lower bounds

on the crossing number. The constructions are variations on
those by Pach and Tóth [34]. We include them here to moti-
vate our interest in matching upper bounds in later sections.

Lemma 2.1. For all positive integers ∆ and n, such that
∆ ≡ 0 (mod 4) and n ≡ 0 (mod 5(∆/2 − 1)), there is a
(chordal) K3,3-minor-free graph G with |G| = n, ∆(G) = ∆,
and

cr(G) =
∆n

40

“
1 +

2

∆− 2

”
>

∆n

40
.

Proof Sketch. Start with K5 as the base graph. For
each edge vw of K5, add ∆/4 − 1 new vertices, each ad-
jacent to v and w. The resulting graph G′ is chordal and
K3,3-minor-free, ∆(G′) = ∆, and |G′| = 5(∆/2 − 1). Take

n
5(∆/2−1)

disjoint copies of G′ to obtain a K3,3-minor-free

graphG on n vertices and maximum degree ∆. Thus cr(G) =
cr(G′) n

5(∆/2−1)
. A standard technique proves that cr(G′) =

(∆/4)2. Thus cr(G) = (∆/4)2 n
5(∆/2−1)

= ∆n
40

(1 + 2
∆−2

), as

claimed.

A similar technique gives the following lemma.

Lemma 2.2. For every set D = {2, d1, . . . , dp} of positive
integers such that di ≡ 0 (mod 4) for i = 1, . . . , p, there
are infinitely many (chordal) K3,3-minor-free graphs G such
that the degree set of G is D and

cr(G) >
D2(G)

200
.

Proof. For each di ∈ D \ {2}, let ni = 5
2
di − 5. By

Lemma 2.1, there is a (chordal) K3,3-minor-free graph Gi
with five vertices of degree di and ni − 5 vertices of degree
2, such that

cr(Gi) >
dini
40

>
5d2
i + (ni − 5)22

200
=
D2(Gi)

200
.

Every graph G created by taking one or more disjoint copies
of each of G1, . . . , Gp is K3,3-minor-free with degree set D,
and cr(G) ≥ 1

200
D2(G).

The above results generalize to Kh-minor-free graphs, for
h ≥ 5.

Lemma 2.3. For every integer h ≥ 5 and every ∆ such
that ∆ ≡ 0 (mod h − 2) for h ≥ 6 and ∆ ≡ 0 (mod 3) for
h = 5, there exists infinitely many Kh-minor-free graphs G
with ∆(G) = ∆ and

cr(G) ≥ c h∆ · |G|,

for some absolute constant c. Moreover, G is chordal for
h ≥ 6.

Proof Sketch. For h = 5, use K3,3 as the starting
graph. For h ≥ 6, use Kh−1. The remaining arguments fol-
low the proof of Lemma 2.1 and use the fact that cr(K3,3) =
1 and cr(Kh−1) ∈ Θ(h4).

3. LINEAR BOUNDING FUNCTIONS
In this section we give some sufficient conditions for a

graph to satisfy certain linear bounds on the crossing num-
ber. The derived bounds will be used in subsequent sections.

Lemma 3.1. Let X be a class of graphs closed under tak-
ing subdivisions. Suppose that

cr(G) ≤ c
X

vw∈E(G)

deg(v) deg(w)

for every graph G ∈ X. Then

cr(G) ≤ 2cD2(G)

for every graph G ∈ X.

Proof. Let G ∈ X. Let G′ be the graph obtained from
G by subdividing every edge once. By assumption, G′ ∈ X
and

cr(G′) ≤ c
X

vw∈E(G′)

deg(v) deg(w)

= c
X

vw∈E(G)

(2 deg(v) + 2 deg(w))

= 2c
X

vw∈E(G)

(deg(v) + deg(w))

= 2c
X

v∈V (G)

deg(v)2.

The result follows since cr(G) = cr(G′).

We can also conclude a O(∆(G) · |G|) bound fromP
vw∈E(G) deg(v) deg(w).

Lemma 3.2. Let G be a graph with bounded arboricity. In
particular, every subgraph of G on n vertices has at most kn
edges. ThenX
vw∈E(G)

deg(v) deg(w) ≤ 16k·∆(G)·‖G‖ ≤ 16k2·∆(G)·|G|.

Proof. Let i, j ≥ 0 be integers. Let

∆i := ∆(G)/2i

Vi := {v ∈ V (G) : ∆i+1 < deg(v) ≤ ∆i}
ni := |Vi|

Ei,j := {vw ∈ E(G) : v ∈ Vi, w ∈ Vj}
ei,j := |Ei,j | .
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Let Si := {j ≥ 0 : nj ≤ ni}. ThusX
vw∈E(G)

deg(v) deg(w) ≤
X
i≥0

X
j∈Si

X
vw∈Ei,j

deg(v) deg(w)

≤
X
i≥0

X
j∈Si

ei,j∆i∆j

≤ k
X
i≥0

X
j∈Si

(ni + nj)∆i∆j

≤ 2k
X
i≥0

X
j≥0

ni∆i∆j

≤ 2k
X
i≥0

ni∆i

X
j≥0

∆j .

Since
P
j≥0 ∆j < 2 ·∆(G),X

vw∈E(G)

deg(v) deg(w) < 4k ·∆(G)
X
i≥0

ni∆i .

Observe that

2‖G‖ =
X
i≥0

X
v∈Vi

deg(v) >
X
i≥0

ni∆i+1 = 1
2

X
i≥0

ni∆i .

Thus X
vw∈E(G)

deg(v) deg(w) < 16k ·∆(G) · ‖G‖ .

4. DRAWINGS BASED ON
PLANAR DECOMPOSITIONS

Let G and D be graphs, such that each vertex of D is a
set of vertices of G (called a bag). For each vertex v of G, let
D(v) be the subgraph of D induced by the bags that contain
v. Then D is a decomposition of G if:

• D(v) is connected and nonempty for each vertex v of
G, and

• D(v) and D(w) touch6 for each edge vw of G.

Decompositions, when D is a tree, were introduced by
Robertson and Seymour [43]. Diestel and Kühn [13] first
generalised the definition for arbitrary graphs D.

Let D be a decomposition of a graph G. The width of D
is the maximum cardinality of a bag. Let v be a vertex of G.
The number of bags in D that contain v is the spread of v in
D. The spread of D is the maximum spread of a vertex of G.
A decomposition D of G is a partition if every vertex of G
has spread 1. The order of D is the number of bags. D has
linear order if |D| ≤ c |G| for some constant c. If the graphD
is a tree, then the decomposition D is a tree decomposition.
If the graph D is a path, then the decomposition D is a path
decomposition. The decomposition D is planar if the graph
D is planar.

A decomposition D of a graph G is strong if D(v) and
D(w) intersect for each edge vw of G. The treewidth (path-
width) of G, is 1 less than the minimum width of a strong
tree (path) decomposition of G. Treewidth is particularly
important in structural and algorithmic graph theory; see
the surveys [4, 39].

6Let A and B be subgraphs of a graph G. Then A and B
intersect if V (A) ∩ V (B) 6= ∅, and A and B touch if they
intersect or v ∈ V (A) and w ∈ V (B) for some edge vw of G.

Wood and Telle [52] showed that planar decompositions
were closely related to crossing number. The next result
improves a bound in [52] from (p − 1) ∆(G) ‖G‖ to (p −
1)D2(G).

Lemma 4.1. Every graph G with a planar partition H of
width p has a rectilinear drawing in which each edge crosses
at most 2 ∆(G) (p − 1) other edges. The total number of
crossings,

cr(G) ≤ (p− 1)D2(G).

Proof. The following drawing algorithm is in [52]. By
the Fáry-Wagner Theorem, H has a rectilinear drawing with
no crossings. Let ε > 0. Let Dε(B) be the disc of radius ε
centred at each bag B of H. For each edge BC of H, let
Dε(BC) be the union of all line-segments with one endpoint
in Dε(B) and one endpoint in Dε(C). For some ε > 0, we
have Dε(B) ∩ Dε(C) = ∅ for all distinct bags B and C of
H, and Dε(BC) ∩Dε(PQ) = ∅ for all edges BC and PQ of
H that have no endpoint in common. For each vertex v of
G in bag B of H, position v inside Dε(B) so that V (G) is
in general position (no three collinear). Draw every edge of
G straight. Thus no edge passes through a vertex.Suppose
that two edges e and f cross. Then e and f have distinct
endpoints in a common bag, as otherwise two edges in H
would cross. (The analysis that follows is new.) Say vi is an
endpoint of e and vj is an endpoint of f , where {v1, . . . , vp}
is some bag with deg(v1) ≤ · · · ≤ deg(vp). Without loss of
generality i < j. Charge the crossing to vj . The number of
crossings charged to vj is at mostX

i<j

deg(vi) · deg(vj) ≤ (p− 1) deg(vj)
2

So the total number of crossings is as claimed.

Wood and Telle [52] proved that every K3,3-minor-free
graph has a planar partition of width 2. Thus Lemma 4.1
implies the following theorem.

Theorem 4.2. Every graph G with no K3,3-minor has
rectilinear crossing number

cr(G) ≤ D2(G).

We now extend Lemma 4.1 from planar partitions to pla-
nar decompositions.

Lemma 4.3. Suppose that D is a planar decomposition of
a graph G with width p, in which each vertex v of G has
spread at most s(v). Then G has crossing number

cr(G) ≤ 4p
X

v∈V (G)

s(v) · deg(v)2 .

Moreover, G has a drawing with the claimed number of cross-
ings, in which each edge vw is represented by a polyline with
at most s(v) + s(w)− 2 bends.

Proof. For each vertex v of G, let X(v) be a bag of D
that contains v. For each edge vw of G, let P (vw) be a
minimum length path in D between X(v) and X(w), such
that v or w is in every bag in P (vw). Let G′ be the subdi-
vision of G obtained by subdividing each edge vw of G once
for each internal bag in P (vw). Then D defines a planar
partition D′ of G′, where each original vertex v is in X(v),
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and each division vertex is in the corresponding bag. We
say a division vertex x of vw belongs to v and v owns x, if x
corresponds to a bag in D that contains v. If x corresponds
to a bag that contains both v and w, then arbitrarily choose
v or w to be the owner of x.

Apply the drawing algorithm in Lemma 4.1 to the planar
partition D′ of G′. We obtain a rectilinear drawing of G′,
which defines a drawing of G since G′ is a subdivision of
G. Each edge vw of G is represented by a polyline with
max{|P (vw)|−2, 0} bends, which is at most s(v)+s(w)−2.
We now bound the number of crossings in the drawing of G′,
which in turn bounds the number of crossings in the drawing
of G.

Let � be a total order on V (G) such that if deg(v) <
deg(w) then v ≺ w for all v, w ∈ V (G).

Say edges e and f of G′ cross. As proved in Lemma 4.1,
e and f have distinct endpoints in a common bag B′. Let
x and y be these endpoints of e and f respectively. Let v
and w be the vertices of G that own x and y respectively.
Without loss of generality, v � w. Charge the crossing to
the pair (w,B), where B is the bag in D corresponding to
B′.

Consider a bag B = {v1, . . . , vp} in D, where v1 ≺ · · · ≺
vp. Thus deg(v1) ≤ · · · ≤ deg(vp). Consider a vertex vi ∈
B. If X(vi) = B then deg(vi) edges of G′ are incident to
vi, which is the only vertex in B′ that belongs to vi. If
X(vi) 6= B then there are at most deg(vi) division vertices
in B′ that belong to vi, and there are at most 2 deg(vi) edges
of G′ incident to a division vertex in B′ that belongs to vi
(since each division vertex has degree 2 in G′). Thus the
number of crossings charged to (vi, B) is at most

iX
j=1

2 deg(vj) · 2 deg(vi) ≤ 4i deg(vi)
2 ≤ 4p deg(vi)

2.

For each vertex v of G, since v is in at most s(v) bags of
D, the number of crossings charged to some pair (v,B) is at
most 4p · s(v) · deg(v)2. Hence the total number of crossings
is at most

4p
X

v∈V (G)

s(v) · deg(v)2.

Lemma 4.4. Let D be a planar decomposition of a graph
G, such that every bag in D is a clique in G, and every pair
of adjacent vertices in G are in at most c common bags in
D. Then

cr(G) ≤ c
X

vw∈E(G)

deg(v) deg(w).

Proof. Draw G as in the proof of Lemma 4.3. We now
count the crossings in G between edges vw and xy that have
no common endpoint. Each crossing between vw and xy can
be charged to a bag B that contains distinct vertices p and q,
where p ∈ {v, w} and q ∈ {x, y}. Since B is a clique, pq is an
edge of G. Charge the crossing to the pair (pq,B). At most
one crossing between vw and xy is charged to (pq,B). Thus
at most deg(p) deg(q) crossings are charged to (pq,B). Since
p and q are in at most c common bags, the number of cross-
ings charged to pq is at most cdeg(p) deg(q). Thus the total
number of crossings between edges with no common end-
point is at most c

P
pq deg(p) deg(q). It is folklore that cr(G)

equals the minimum, taken over all drawings of G, of the

number of crossings between pairs of edges of G with no end-
point in common. Hence cr(G) ≤ c

P
pq deg(p) deg(q).

Wood and Telle [52] constructed planar decompositions of
K5-minor-free graphs as follows.

Lemma 4.5 ([52]). Let G be a K5-minor-free graph. Then
G has a set of at most |G| − 2 edges E such that if V is
the set of vertices of G that are not incident to an edge in
E, then G has a planar decomposition D of width 2 with
V (D) = {{v} : v ∈ V } ∪ {{v, w} : vw ∈ E} with no dupli-
cate bags.

Since the bags of D correspond to vertices and edges of
G (with no duplicates) each vertex of G has spread s(v) ≤
deg(v). Thus Lemmas 4.3 and 4.5 imply that every graph
G with no K5-minor has crossing number

cr(G) ≤ 8
X

v∈V (G)

deg(v)3.

This result represents a qualitative improvement over the
O(∆(G)2|G|) bound in [52]. But we can do better. In par-
ticular, Lemmas 4.5 and 4.4 with c = 1 imply that

cr(G) ≤
X

vw∈E(G)

deg(v) deg(w).

Thus Lemma 3.1 implies:

Theorem 4.6. Every graph G with no K5-minor has cross-
ing number

cr(G) ≤ 2D2(G).

5. INTERVAL GRAPHS AND
CHORDAL GRAPHS

A graph is chordal if every induced cycle is a triangle. An
interval graph is the intersection graph of a set of intervals
in R. Every interval graph is chordal.

Theorem 5.1. Every interval graph G has convex cross-
ing number

cr?(G) ≤ 1
2
(ω(G)− 2)

X
v∈V (G)

deg(v)(deg(v)− 1)

≤ (ω(G)− 2)(ω(G)− 1)(∆(G)− 1)|G|.

Proof. Jamison and Laskar [23] proved that G is an in-
terval graph if and only if there is a linear order � of V (G)
such that if u ≺ v ≺ w and uw ∈ E(G) then uv ∈ E(G).
Orient the edges of G left to right in �. Position V (G) on
a circle in the order of �, with the edges drawn straight.
Say edges xy and vw cross. Without loss of generality,
x ≺ v ≺ y ≺ w. Thus vy ∈ E(G). Charge the crossing
to vy. Say the out-neighbours of v are w1, . . . , wd. The in-
neighbourhood of each wi is a clique including v. Hence each
wi has at most ω(G)− 2 in-neighbours to the left of v. Now
v has d− i neighbours to the right of wi. Thus the number
of crossings charged to vwi is at most (ω(G) − 2)(d − i).
Hence the number of crossings charged to outgoing edges
at v is at most 1

2
(ω(G) − 2)(d − 1)d. Therefore the total

number of crossings is at most 1
2

P
v(ω(G) − 2)(dv − 1)dv,

where dv is the out-degree of v. The other claims follow
since ‖G‖ < (ω(G)− 1)|G|.
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It is well known that the pathwidth of a graph G equals
the minimum k such that G is a spanning subgraph of an
interval graph G′ with ω(G′) ≤ k + 1.

Theorem 5.2. Every graph G with pathwidth k has con-
vex crossing number

cr?(G) ≤ k2 ·∆(G) · |G|.

Proof. G is a spanning subgraph of an interval graph
G′ with ω(G′) ≤ k + 1. Apply the drawing algorithm in
the proof of Theorem 5.1 to G′. Say edges xy and vw of G
cross. Without loss of generality, x ≺ v ≺ y ≺ w. Thus vy ∈
E(G′). Charge the crossing to vy. Now v has at most ∆(G)
neighbours in G to the right of y. The in-neighbourhood
of y is a clique in G′ including v. Hence y has at most k
neighbours to the left of v. Thus the number of crossings
charged to vy is at most k · ∆(G). Since G′ has less than
k · |G| edges, the total number of crossings is at most k2 ·
∆(G) · |G|.

Lemma 5.3. Let D be an outerplanar decomposition of a
graph G. Then G has a convex drawing such that if two
edges e and f cross then some bag of D contains both an
endpoint of e and an endpoint of f .

Proof. Assign each vertex v of G to a bag B(v) that
contains v. Fix a crossing-free convex drawing of D. Replace
each bag B of D by the set of vertices of G assigned to B.
Draw the edges of G straight. Consider two edges vw and
xy of G. Thus there is a path P in D between B(v) and
B(w) and every bag in P contains v or w. Similarly, there
is a path Q in D between B(x) and B(y) and every bag
in Q contains x or y. Now suppose that vw and xy cross.
Without loss of generality, the endpoints are in the cyclic
order (v, x, w, y). Thus in the crossing-free convex drawing
of D, the vertices (B(v), B(x), B(w), B(y)) appear in this
cyclic order. Since D is crossing-free, P and Q have a bag
X of D in common. Thus X contains v or w, and x or y.

Theorem 5.4. Every chordal graph G has convex cross-
ing number

cr?(G) ≤
X

vw∈E(G)

deg(v) deg(w).

Proof. It is well known that every chordal graph has a
strong tree decomposition in which each bag is a clique. By
Lemma 5.3, G has a convex drawing such that if two edges
vw and xy of G cross then some bag B of D contains v or
w, and x or y. Say B contains v and x. Since B is a clique,
vx is an edge. Charge the crossing to vx. In every crossing
charged to vx, one edge is incident to v and the other edge is
incident to x. Since edges are drawn straight, no two edges
cross twice. Thus the number of crossings charged to vx is
at most deg(v) deg(x). Hence the total number of crossings
is as claimed.

Theorem 5.5. Every chordal graph G with no (k + 2)-
clique (which includes every k-tree) has convex crossing num-
ber

cr?(G) ≤ 16k2 ·∆(G) · |G|.

Proof. It is well known that G has less than kn edges.
Thus the claim follows from Lemma 3.2 and Theorem 5.4.

6. EXCLUDING A FIXED MINOR
In this section we prove our main result (Theorem 1.3):

for every graph H there is a constant c = c(H), such that
every H-minor-free graph G has a crossing number at most
c∆(G)·|G|. The proof is based on Robertson and Seymour’s
rough characterization of H-minor-free graphs, which we
now introduce. For an integer h ≥ 1 and a surface S, Robert-
son and Seymour [44] defined a graph G to be h-almost em-
beddable in S if G has a set X of at most h vertices (called
apices) such that G−X can be written as G0∪G1∪· · ·∪Gh
such that:

• G0 has an embedding in S.

• The graphs G1, . . . , Gh (called vortices) are pairwise
disjoint.

• There are faces7 F1, . . . , Fh of the embedding of G0 in
S, such that each Fi = V (G0) ∩ V (Gi).

• If Fi = (ui,1, ui,2, . . . , ui,|Fi|) in clockwise order about
the face, then Gi has a strong |Fi|-path decomposition
Qi of width at most h, such that each vertex ui,j is in
the j-th bag of Qi.

Theorem 6.1. For all integers h ≥ 1 and γ ≥ 0, there is
a constant k = k(h, γ) ≥ h, such that every graph G that is
h-almost embeddable in some surface whose Euler genus is
at most γ, has crossing number at most k∆(G) · |G|.

Proof. Let X and {G0, G1, . . . , Gh} be the parts of G as
specified in the definition of h-almost embeddable graphs.
Let ∆ := ∆(G) and n := |G|. Start with an embedding of
G0 in S. For each i ∈ {1, . . . , h}, draw vortex Gi inside of
the face Fi on S, as prescribed in Theorem 5.2. Then the
resulting drawing of G − X in S has at most h2∆n cross-
ings. Replace each crossing by a dummy degree-4 vertex.
The resulting graph G′ has Euler genus at most γ. By The-
orem 1.1, cr(G′) ≤ cD2(G′) ≤ cD2(G) + c42h2∆n. Since
cr(G−X) ≤ h2∆n+ cr(G′), we conclude that cr(G−X) ≤
cD2(G) + (16c+ 1)h2∆n.

Consider a drawing of G − X in the plane that achieves
at most this many crossings. Add each vertex of X to the
drawing at some arbitrary position and draw its incident
edges to obtain a drawing of G. Since |X| ≤ h, there are
at most h∆ edges in G that are not in G − X. Each such
edge crosses at most ‖G‖ edges in the drawing of G. Recall
that in the H-minor-free graph G, the number of edges is at
most c′ |G|, where c′ = c′(H) is a constant. Thus cr(G) ≤
cr(G−X) + h∆‖G‖ ≤ k∆(G)|G|.

Let G1 and G2 be disjoint graphs. Suppose that C1 and
C2 are cliques of G1 and G2 respectively, each of size k, for
some integer k ≥ 0. Let C1 = {v1, v2, . . . , vk} and C2 =
{w1, w2, . . . , wk}. Let G be a graph obtained from G1 ∪G2

by identifying vi and wi for each i ∈ {1, . . . , k}, and possibly
deleting some of the edges vivj . Then G is a k-clique-sum
of G1 and G2 joined at C1 = C2. An `-clique-sum for some
` ≤ k is called a (≤ k)-clique-sum.

The following rough characterization ofH-minor-free graphs
is a deep theorem by Robertson and Seymour [44]; see the
recent survey [24].

7Recall that we identify a face with the set of vertices on its
boundary.
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Theorem 6.2. (Graph Minor Structure Theorem [44])
For every graph H, there is a positive integer h = h(H),
such that every H-minor-free graph G can be obtained by
(≤ h)-clique-sums of graphs that are h-almost embeddable in
some surface in which H cannot be embedded.

By the graph minor structure theorem, Theorem 1.3 is
directly implied by the following theorem.

Theorem 6.3. For all integers h ≥ 1 and γ ≥ 0 there is
a constant c = c(h, γ) ≥ h, such that every graph G that
can be obtained by (≤ h)-clique-sums of graphs that are h-
almost embeddable in some surface of Euler genus at most
γ has crossing number at most c∆(G) · |G|.

The remainder of this section is dedicated to proving The-
orem 6.3. Let ∆ := ∆(G). Let U be the set of integers
{1, 2, . . . , |U |}, such that {Gi : i ∈ U} is the set (of the
minimum cardinality) of graphs such that for all i ∈ U , Gi
is h-almost embeddable in some surface of Euler genus ≤ γ,
and G is obtained by (≤ h)-clique-sums of graphs in the set.
These graphs can be ordered G1, . . . , G|U|, such that for all
j ≥ 2, there is a minimum integer i < j, such that Gi and
Gj are joined at some clique C in the construction of G. We
say Gj is a child of Gi, Gi is a parent of Gj , and Pj := V (C)
is the parent clique of Gj . We consider the parent clique of
G1 to be the empty set; that is, P1 = ∅. This defines a
rooted tree T with vertex set U where ij is an edge of T
if and only if Gj is a child of Gi. Let Ui denote the set of
children of i in T . Let Ti denote the subtree of T rooted at
i. For S ⊆ V (T ), let G[S] be the graph induced in G byS
{V (G`) : ` ∈ S}. For example, for S = {i}, then G[S] is

a spanning subgraph of Gi.
The proof outline is as follows. For each Gi, i ∈ U , we

define an auxiliary graph Ki (closely related to Gi), such
that

‖Ki‖ = O(
X

v∈V (Gi)\Pi

degG(v)).

We draw each Ki in the plane with at most f(h)∆‖Ki‖
crossings, where f is some function of the parameter h. We
then join the drawings of K1, . . . ,K|U| into a drawing of G,
where the price of the joining is at most an additional f(h)∆
crossings for each edge of Ki, i ∈ U . Thus the crossing
number of G is at most f1(h)∆

P
i∈U ‖Ki‖, which, by the

above claim on the number of edges of Ki, is at most

f2(h) ∆
X
i∈U

X
v∈V (Gi)\Pi

degG(v)

≤ f2(h) ∆
X

v∈V (G)

degG(v)

= 2f2(h) ∆ ‖G‖
≤ f3(h) ∆ |G|,

which is the desired result.

Defining Ki. For each i ∈ U , let G−i := Gi − Pi. Note
that, for each v ∈ V (G), there is precisely one value t ∈ U for
which v ∈ G−t . Thus {V (G−1 ), . . . , V (G−|U|)} is a partition

of V (G). For each i ∈ U , define Ki as follows. Start with
G−i . For each child Gj of Gi (that is, for each j ∈ Ui),
add a new vertex cj to G−i . For each edge vw ∈ E(G) such
that v ∈ V (G−i ) ∩ Pj (that is, v ∈ Pj \ Pi) and w ∈ G−`
where ` ∈ V (Tj), connect v and cj by an edge. Subdivide

that edge once and label the subdivision vertex by the triple
(v, w,Pvw), where Pvw is the path in T from i to ` (thus,
Pvw = (i, j, . . . , `)). The resulting graph is Ki. Note that
for each v in G−i , degKi

(v) = degG−Pi
(v).

Drawing Ki. Suppose that for each i ∈ U , we remove each
cj , j ∈ Ui, from Ki. Consider the union of the resulting
graphs, over all i ∈ U . Suppose that, for each vertex labelled
(v, w,Pvw) in the union, we connect this vertex and w by an
edge. The resulting graph is a subdivision of G. This is the
strategy that we will follow when constructing a drawing of
G. Namely, first draw each Ki, and then take the (disjoint)
union of all the drawings. Next, remove all cj ’s. Finally,
to obtain a drawing of G, route each missing edge of G.
In particular, for a missing edge between (v, w,Pvw) and w
with Pvw = (i, j, . . . , `), we route that edge from (v, w,Pvw)
in the drawing of Ki, through the drawing of Kj , etc., until
we finally reach w in the drawing of K`.

We first claim that the number of edges in Ki is as stated
in the outline. In addition to the edges in E(G−i ), Ki con-
tains two edges for each edge vw ∈ E(G), such that v ∈ G−i
and w ∈ G−` , where ` ∈ V (Ti) \ i. Thus

‖Ki‖ ≤ 2
X

v∈V (G−i )

degG(v) = 2
X

v∈V (Gi)\Pi

degG(v).

Lemma 6.4. For each i ∈ U , the crossing number of Ki

is at most f(h)∆‖Ki‖.
Proof. For each Gi, let Ai denote the set of apex ver-

tices of Gi that are not in Pi. Remove all the vertices of Ai
from Ki. We now prove that the resulting graph Ki − Ai
can be drawn in some surface S of Euler genus at most γ
with at most f(h)∆‖Ki−Ai‖ crossings. That will complete
the proof since Theorem 1.1 implies that cr(Ki − Ai) ≤
f(h)∆‖Ki −Ai‖, the same way it did in the proof of Theo-
rem 6.1. Then we add back each vertex of Ai to the drawing
of Ki−Ai at some arbitrary position in the plane and draw
its incident edges to obtain a drawing of Ki. As in the
proof of Theorem 6.1, cr(Ki) ≤ cr(Ki − Ai) + h∆‖Ki‖ ≤
f2(h)∆‖Ki‖.

Thus it remains to prove that Ki − Ai can be drawn in
S with at most f(h)∆‖Ki −Ai‖ crossings. The graph Q :=
G−i − Ai is an apex-free h-almost embeddable graph on S,
with parts {Q0, Q1, . . . , Qh}, where Q0 is the subgraph of Q
embedded in S and {Q1, . . . , Qh} are its vortices. For each
j ∈ Ui, let Cj denote the subgraph of Ki − Ai induced by
cj and the vertices at distance at most two from cj . The
vertices at distance 2 from cj form a clique C ⊆ (Pj \ Pi) \
Ai ⊆ Ki − Ai. It is simple to verify that Cj has a strong
tree decomposition J of width at most h + 2, where J is
a rooted star whose root bag contains C ∪ {cj}; for each
(v, w,Pvw) ∈ Cj (where v ∈ C), J contains a leaf bag with
{w, cj , (v, w,Pvw)}; if v /∈ C, then v is in Ai and the leaf
bag contains {cj , (v, w,Pvw)}.

We now add the vortices and Cj ’s to Q0 to obtain a draw-
ing of Ki −Ai in S while creating at most f(h)∆‖Ki −Ai‖
crossings in S.

For each j ∈ Ui, Cj is joined to a clique C of Q. If C
contains a vertex v of a vortex Q`, where ` ∈ {1, . . . , h}, then
each vertex of C is inQ`. In that case, we say that Cj belongs
to the face F` of the embedding of Q0 in S. Otherwise, all
the vertices of C are in Q0. In that case, an extended version
of the graph minor decomposition theorem (see [24]) states
that |C| ≤ 3 and moreover, if |C| = 3, then the 3-cycle
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induced by C is a face in Q0. In that case, we say that Cj
belongs to that face. If |C| ≤ 2 we assign Cj to any face of
Q0 incident to all the vertices of C.

Now consider a face F of Q0. If F = F` for some ` (1 ≤
` ≤ h), take its vortex Q`, and all Cj , j ∈ Ui, that belong
to F . Let F ′ be the subgraph of Ki − Ai induced by the
union of F and all of these. If F is not one of the vortex
faces, then we define F ′ similarly by taking the union of
F and all Cj , j ∈ Ui, that belong to F . If F ′ contains
a vortex Q`, consider a strong path decomposition PF of
F ∪Q`, as defined by the h-almost embedding. If F has no
vortex, then its strong path decomposition PF is just a bag
containing |F | ≤ 3 vertices of F in it. For each Cj in F ′,
the join clique C of Cj is in some bag of PF . Extend the
decomposition PF and J by adding an edge between that
bag of PF and the root of J . It is simple to verify that the
resulting strong tree decomposition of F ′ can be converted
into a strong path decomposition of width at most h + 3.
Thus by Theorem 5.2, F ′ can be drawn inside of F with at
most (h+3)2∆|F ′| crossings. Accounting for all the faces of
Q0 gives f4(h)∆‖Ki−Ai‖ bound on the number of crossings
in the resulting drawing of Ki −Ai in S, as required.

In addition to having at most as many crossings as proved
in Lemma 6.4, we will need a drawing of Ki that has the
following additional properties.

Lemma 6.5. For each i ∈ U , there is a drawing of Ki

with at most f(h)∆‖Ki‖ crossings such that:

(1) No pair of vertices in Ki has the same x-coordinate.

(2) For each j ∈ Ui, there is a square8 Dj such that Dj ∩
Ki = cj, and cj is an internal point of the top side
of Dj, and no vertex in V (Ki) \ {cj} has the same x-
coordinate as any point of Dj.

(3) For any two j, t ∈ Ui, there is no line parallel to the
y-axis that intersects both Dj and Dt.

(4) Moreover, given a circular ordering σj of the edges in-
cident to each vertex cj in Ki, j ∈ Ui, there is a draw-
ing of Ki that satisfies (1)–(3) such that the circular
ordering of the edges incident to each cj respects σj.

Proof. Apply Lemma 6.4 to Ki to obtain a drawing of
Ki with at most s := f(h)∆‖Ki‖ crossings. Clearly, the
edges incident to cj can be bent without changing the num-
ber of crossings such that there is a small enough square
Dj that satisfies all the properties imposed on Dj , as stated
in (2). Similarly, condition (3) is satisfied by shrinking the
squares further, if necessary. By an appropriate rotation, the
conditions on the x- and y-coordinates imposed in (1)–(3)
are satisfied.

Consider a disk Cj centered at cj , such that cj is the only
vertex of Ki that intersects Cj , and the only edges of Ki that
intersect Cj are the edges incident to cj . Order the edges
around cj with respect to σj by moving (that is, bending)
the edges incident to cj within Cj \Dj . This may introduce
new crossings. Each new crossing point is in Cj\Dj and thus
it occurs between a pair of edges incident to cj . There are
at most h∆ edges incident to cj . Thus each edge incident to
cj gets at most h∆ new crossings. Therefore, the resulting
drawing of Ki satisfies conditions (1)–(4) and has at most
s+ h∆‖Ki‖ ≤ f ′(h)∆‖Ki‖ crossings.

8By a square, we mean a 4-sided regular polygon together
with its interior.

Joining the Ki’s into a drawing of G. We obtain a
drawing of G from the union of the drawings of Ki, i ∈ U ,
as follows. Join the drawings of these graphs in the order
determined by a breath-first search on T , as follows. For
each Gi, consider a drawing of Ki together with the squares
incident to its children, as defined in Lemma 6.5. For each
j ∈ Ui, place the drawing of Kj strictly inside of the square
Dj of Ki (while scaling the drawing of Kj , if necessary).
Denote by K the resulting drawing of

S
iKi. This procedure

introduces no new crossings, thus by Lemma 6.5, the number
of crossings in K is at most

P
i∈U f

′(h)∆‖Ki‖.
We still have the freedom to choose an arbitrary ordering

σj (cf. Lemma 6.5(4)) to be used in the drawing of Kj .
Define the ordering σj of edges around each vertex cj (j ∈
U \ {1}) as follows. Consider an edge e1 joining cj and
(v, w,Pvw), and an edge e2 joining cj and (a, b,Pab). Define
e1 ≤σj e2 if the x-coordinate of w in K is less than the x-
coordinate of b in K. If w = b, order e1 and e2 according to
the x-coordinates of v and a. Since no pair of vertices in K
have the same x-coordinate, σj is a linear order of the edges
incident to cj .

For each j ∈ U \ {1}, we may assume that the graph
induced in K by cj and its neighbours (the subdivision ver-
tices), is a crossing-free star in K; that is, no edge of this
star is crossed by any other edge of K.

For each i ∈ U , remove each cj , j ∈ Ui, from K. The
subdivision vertices of K become degree-1 vertices. For each
such subdivision vertex (v, w,Pvw), where Pvw = (i, j, . . . , `),
draw an edge from (v, w,Pvw) to the point on the top side of
the square Dj that has the same x-coordinate as the vertex
w in K. Since w ∈ G[Tj ] − Pj , it is drawn inside Dj , and
thus such a point on the top side of Dj exists. If w is an
endpoint of s ≥ 2 such edges, draw s points very close to-
gether on the top side of Dj and connect each of the s edges
to one of these s points in the order σj . (In fact, imagine
that these points are almost overlapping; that is, their x-
coordinates are almost the same as that of w in K). Since
the star incident to cj is crossing-free in K, this can be done
so that the resulting drawing K−i has the same number of
crossings as Ki. Label each point on the top side of Dj
by the same label as the subdivision vertex it is adjacent
to. (In fact, consider that point on the top side of Dj to
be the subdivision vertex instead of the old one). Draw a
line-segment between each subdivision vertex (v, w,Pvw) on
the top side of Dj and w. Call these segments vertical seg-
ments. This defines a drawing of G. We now prove that the
number of crossings in G does not increase much compared
to the number of crossings in K. Specifically, it increases by
at most f(h)∆

P
i∈U ‖Ki‖.

Note that Lemma 6.5 does not define the square D1. Let
D1 be the whole plane. For each i ∈ U , let D−i be the region
Di \ {

S
j∈Ui

Dj}. Denote by di the number of crossings in

the drawing of G restricted to D−i . Then cr(G) ≤
P
i di.

We now prove that for each i ∈ U , di ≤ f(h)∆‖Ki‖, which
will complete the proof. Quantity di is at most the number
of crossings in K−i plus the number of crossings caused by
the vertical segments intersecting D−i . By construction (cf.
properties (2) and (3) of Lemma 6.5), each vertical segment
that intersects D−i is a part of an edge that has one endpoint
in G−s where i ∈ V (Ts)\s (that is, G−s is an ancestor of G−i )
and its other endpoint is either in G−i (and, thus in K−i ) or
is in a descendent G−` of G−i . Thus the number of vertical
segments that cross D−i is at most f(h)∆. No pair of vertical
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segments cross in D−i due to their ordering. Thus each new
crossing in D−i (that is, a crossing not present in the drawing
of K−i ) occurs between a vertical segment and an edge of
K−i . Thus each edge of K−i accounts for at most f(h)∆
new crossings, and thus di ≤ f(h)∆‖K−i ‖ ≤ f(h)∆‖Ki‖, as
desired. This completes the proof of Theorem 6.3.
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Székely, and Imrich Vrt’o. Graph minors and the
crossing number of graphs. Electron. Notes Discrete
Math., 28:169–175, 2007.

[7] Drago Bokal, Gašper Fijavž, and Bojan
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minor hierarchies. Discrete Appl. Math.,
145(2):167–182, 2005.

[14] Hristo N. Djidjev and Imrich Vrt’o. Crossing
numbers and cutwidths. J. Graph Algorithms Appl.,
7(3):245–251, 2003.

[15] Hristo N. Djidjev and Imrich Vrt’o. Planar
crossing numbers of genus g graphs. In Michele

Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener, editors, Proc. 33rd Int. Colloquium
on Automata, Languages and Programming (ICALP
’06), vol. 4051 of Lecture Notes in Comput. Sci., pp.
419–430, 2006.
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