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Abstract

Let A = (A1, . . . , Am) be a sequence of finite subsets from an additive abelian

group G. Let Σ�(A) denote the set of all group elements representable as a sum of �

elements from distinct terms of A, and set H = stab(Σ�(A)) = {g ∈ G : g + Σ�(A) =

Σ�(A)}. Our main theorem is the following lower bound:

|Σ�(A)| ≥ |H|
(
1 − � +

∑
Q∈G/H

min
{
�,#{i ∈ {1, . . . ,m} : Ai ∩ Q �= ∅}}

)
.

In the special case when m = � = 2, this is equivalent to Kneser’s addition theorem,

and indeed we obtain a new proof of this result. The special case when every Ai has size

one is a new result concerning subsequence sums which extends some recent work of

Bollobás-Leader, Hamidoune, Hamidoune-Ordaz-Ortuño, Grynkiewicz, and Gao, and

resolves two recent conjectures of Gao, Thangadurai, and Zhuang.
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1 Introduction

Throughout we shall assume that G is a (possibly infinite) additive abelian group. Let

A, B ⊆ G and g ∈ G. We define the sumset A + B = {a + b : a ∈ A, b ∈ B} and we define

g + A = A + g = {g} + A. Any set of the form g + A is called a shift of A. We define

the stabilizer of A to be stab(A) = {g ∈ G | g + A = A}. Note that stab(A) ≤ G. The

starting point for our subject is the following classical result of Cauchy [5] and Davenport

[6] (see also [17]), which gives a lower bound on |A + B| for groups of prime order. Here we

let Zn = Z/nZ.

Theorem 1.1 (Cauchy-Davenport) If p is prime and A, B ⊆ Zp are nonempty, then

|A + B| ≥ min{p, |A| + |B| − 1}.

This theorem was generalized by Kneser [16] to all abelian groups as follows.

Theorem 1.2 (Kneser) If A, B ⊆ G are finite and nonempty and H = stab(A + B), then

|A + B| ≥ |A + H| + |B + H| − |H|.

Our principal subject matter is sequences of sets. If A = (A1, A2, . . . , Am) is a sequence

of finite subsets of G, and � ≤ m, we define

Σ�(A) = {ai1 + · · · + ai� : 1 ≤ i1 < · · · < i� ≤ m and aij ∈ Aij for every 1 ≤ j ≤ �}.

So Σ�(A) is the set of all elements which can be represented as a sum of � terms from distinct

members of A. The following is our main result.

Theorem 1.3 Let A = (A1, . . . , Am) be a sequence of finite subsets of G, let � ≤ m, and

let H = stab(Σ�(A)). If Σ�(A) is nonempty, then

|Σ�(A)| ≥ |H|
(
1 − � +

∑
Q∈G/H

min
{
�, #{i ∈ {1, . . . , m} : Ai ∩ Q �= ∅}}

)
.

In the special case when m = � = 2, our result is equivalent to Kneser’s Theorem, and our

argument gives a new proof of this theorem. In fact, this new proof was found by the first

author somewhat earlier than this more general argument, and will be published elsewhere.
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A rich subject closely related to sumsets is the study of subsequence sums. Given a

sequence a = (a1, a2, . . . , am) of elements of G, we define

Σ�(a) = {ai1 + ai2 + · · · + ai� : 1 ≤ i1 < i2 < · · · < i� ≤ m}.

So Σ�(a) is the set of all group elements representable as a sum of an �-term subsequence of

a. The following pretty theorem of Erdős, Ginzburg, and Ziv [7] brought great interest to

this topic.

Theorem 1.4 (Erdős, Ginzburg, Ziv) If |G| = � and a = (a1, a2, . . . , a2�−1) is a se-

quence of elements from G, then 0 ∈ Σ�(a).

This theorem has recently been generalized in a number of different directions, some of

which we will discuss shortly. However, first let us point out that the special case of our

theorem when each Ai has size one gives a natural lower bound for subsequence sums. This

is stated below as Corollary 1.5. This corollary may be used to derive Theorem 1.4, so we

may view this as another generalization of Erdős-Ginzburg-Ziv. However, as we shall show,

this corollary is strong enough to imply several other generalizations of it. See Figure 1.

Corollary 1.5 If a = (a1, a2, . . . , am) is a sequence of elements of G, � ≤ m, and H =

stab(Σ�(a)), then

|Σ�(a)| ≥ |H|
(
1 − � +

∑
Q∈G/H

min
{
�, #{i ∈ {1, . . . , m} : ai ∈ Q}}

)
. (1)

Note that if a = (a1, . . . , am) and � ≤ m, then it follows immediately that Σm−�(a) =

(
∑m

i=1 ai) − Σ�(a). Thus, the sets Σm−�(a) and −Σ�(a) are shifts of one another, and in

particular, these two sets have the same size and the same stabilizer. As such, our theorem

may be applied in two different ways to a given sequence a, and generally these two bounds

will be different.

Let us remark that Corollary 1.5 is a slight strengthening of a result in [12] which follows

from Grynkiewicz’s “partition analogue of the Cauchy-Davenport Theorem” (hereafter called

Grynkiewicz’s partition theorem). This theorem of Grynkiewicz concerns a refinement of a

partition of a sequence into sets, and we shall not state it in full, but a key consequence of it

is as follows. If a = (a1, . . . , am) is a sequence of elements from G, then there exists a subset
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C ⊆ Σ�(a) and a subgroup H ≤ stab(C) for which inequality (1) holds with the left hand

side replaced by |C|.

Now let us commence with our tour of generalizations of the Erdős-Ginzburg-Ziv Theo-

rem. In this theorem, the authors study only sequences of length 2|G| − 1 and subsequences

of length |G|. Perhaps the most obvious attempt at generalization would be to consider

what happens when we consider different length sequences and subsequences (although it

is not obvious how the conclusion should be modified). Indeed, Bollobás and Leader [3]

found a nice generalization of Theorem 1.4 by considering subsequences of length |G| from

an arbitrary sequence. Hamidoune [14] further generalized this with the following theorem,

where subsequences of arbitrary length are considered. Here N denotes the set of nonnegative

integers.

Theorem 1.6 (Hamidoune) Let a = (a1, . . . , am) be a sequence of elements from G, let

� ∈ N, and assume 1 ≤ � ≤ m ≤ 2� − 1. Then one of the following holds:

(i) |Σ�(a)| ≥ m − � + 1.

(ii) There exists i ∈ {1, . . . , m}, so that �ai ∈ Σ�(a).

Both Grynkiewicz’s partition theorem and our Corollary 1.5 imply Theorem 1.6. To

derive Theorem 1.6 from Corollary 1.5, note that if there is an H-coset Q ∈ G/H so that

#{1 ≤ i ≤ m : ai ∈ Q} ≥ �, then Σ�(a) contains the H-coset �Q, so �ai ∈ Σ�(a) for every

1 ≤ i ≤ m with ai ∈ Q. Otherwise, our bound immediately implies |Σ�(a)| ≥ m − � + 1.

Indeed, perhaps the most obvious way to limit the size of Σ�(a) is to choose a so that all

or almost all of its entries are the same. Accordingly, a number of authors have studied the

effect of limiting the maximum multiplicity

ρ(a) = max
g∈G

#{i ∈ {1, . . . , m} : ai = g}

among elements in a. Next we state a two-part conjecture due to Gao, Thangadurai, and

Zhuang (Conjectures 1 and 2 in [11]) on this theme. We use the notation Σ(a) = ∪m
i=0Σ

i(a).

Conjecture 1.7 (Gao, Thangadurai, Zhuang) Let � > 1 be an integer, let p be the

smallest prime divisor of �, and let a = (a1, a2, . . . , am) be a sequence of elements from

Z�. If m ≥ � + �
p
− 1 and ρ(a) ≤ m − �, then both of the following hold.
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(1) 0 ∈ Σ�(a).

(2) If 0 appears exactly m − � times in a, then Σm−�(a) = Σ(a).

The proposers prove this conjecture in the case where � is a prime power. More recently,

Cao [4] verified part (1) when � is the product of two prime powers, and Gao [10] proved a

slightly weaker form of part (1) for general �. Conjecture 1.7 follows from our next corollary

(proved in Section 3).

Corollary 1.8 Let G be a nontrivial finite abelian group and let p be the smallest prime

divisor of |G|. Let a = (a1, . . . , am) be a sequence of elements from G, let � ≤ m and set

H = stab(Σ�(a)). If m ≥ � + �
p
− 1 and ρ(a) ≤ m − �, then one of the following holds.

(i) |Σ�(a)| ≥ �.

(ii) H �= {0} and there exists Q ∈ G/H so that #{i ∈ {1, . . . , m} : ai ∈ Q} > �.

Let us pause to show that the above corollary implies Conjecture 1.7. With the assump-

tions of Conjecture 1.7, both parts (1) and (2) follow from Corollary 1.8 if conclusion (i) holds

(as then Σ�(a) = Σm−�(a) = Z�), so we may assume that (ii) holds. Then H = �Q ⊆ Σ�(a)

and part (1) follows. For part (2), note that since 0 appears m − � times, Q must equal

H , so the image of a under the canonical quotient mapping from Z� to Z�/H , call it b, is a

sequence with fewer than m − � nonzero terms. Thus Σm−�(b) = Σ(b). It follows from this

that Σm−�(a) = Σ(a).

Bialostocki and Dierker [2] generalized the Erdős-Ginzburg-Ziv theorem by studying se-

quences of length 2|G|−2 and characterizing those without zero-sum subsequences of length

|G|. They prove that (for nontrivial groups), such sequences can only occur when G is cyclic,

and the sequence contains exactly two group elements, each occurring exactly |G| − 1 times.

Stated another way, every sequence of length 2|G|−2 with at least three distinct terms must

have a zero-sum subsequence of length |G|. Indeed, the assumption that a sequence has

many distinct terms also tends to increase the number of distinct subsequence sums, and a

number of authors have studied this phenomenon. Next we state a theorem of Grynkiewicz

[13] which exploits a distinctness assumption. This theorem resolved a conjecture of Hami-

doune [14], and extended some earlier results of Hamidoune [14], and Hamidoune, Ordaz,

and Ortuño [15], in addition to the Bialostocki-Dierker theorem mentioned above.
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Theorem 1.9 (Grynkiewicz) Let G be an abelian group of order � and let a = (a1, . . . , am)

be a sequence of elements from G with m > �. If a contains at least k distinct terms and

ρ(a) ≤ � − k + 2, then one of the following holds.

(i) |Σ�(a)| ≥ min{�, m − � + k − 1}.

(ii) There is a nontrivial subgroup H ≤ stab(Σ�(a)) with H ⊆ Σ�(a), there is an H-coset Q

which contains all but at most t terms of a where t ≤ min{�m−�+k−2
|H| � − 1, [G : H ]− 2}

and |Σ�(a)| ≥ (t + 1)|H|.

Our Corollary 1.5 can also be used to derive Theorem 1.9. Indeed, it implies the following

stronger result where the dependence on the order of the group has been removed.

Corollary 1.10 Let m, k, � ∈ N with � < m, let a = (a1, . . . , am) be a sequence of elements

from G with H = stab(Σ�(a)). If a contains at least k distinct terms, and ρ(a) ≤ � − k + 2,

then one of the following holds.

(i) |Σ�(a)| ≥ min{� + 1, m − � + k − 1} .

(ii) H �= {0}, there exists Q ∈ G/H so that #{i ∈ {1, . . . , m} : ai ∈ Q} > �.

Next, let us indicate how the above corollary implies Theorem 1.9. Given the assumptions

of Theorem 1.9 and applying Corollary 1.10, we are done immediately if conclusion (i) holds,

so we may assume that conclusion (ii) holds. Assuming further that |Σ�(a)| < � (otherwise

we are done) the bound from Corollary 1.5 shows that Q is the only H-coset containing ≥ �

terms of a, and further, setting t = #{1 ≤ i ≤ m : ai �∈ Q} we have |Σ�(a)| ≥ |H|(t + 1).

Assuming |Σ�(a)| < min{�, m − � + k − 1} (otherwise we are done), this yields the upper

bound on t given in Theorem 1.9.

Finally, we introduce a fundamental result of Gao [9]. For every finite abelian group G,

the Davenport constant of G, denoted s(G), is the smallest positive integer k so that every

sequence of elements of G with length ≥ k has a nontrivial subsequence which sums to 0.

Similarly, we define s′(G) to be the smallest positive integer k so that every sequence of

elements of G with length ≥ k has a subsequence of length |G| which sums to 0. So the

Erdős-Ginzburg-Ziv theorem asserts that s′(G) ≤ 2|G| − 1 for every finite abelian group G.
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It is an easy exercise to show that s(G) ≤ |G| for every G. In light of this, the following

theorem of Gao [9] may also be viewed as a generalization of Theorem 1.4.

Theorem 1.11 (Gao) s′(G) = s(G) + |G| − 1 for every finite abelian group G.

In the third section of our paper we will use Corollary 1.5 to obtain a new proof of Gao’s

Theorem. Although our proof of Gao’s Theorem is no shorter than existing proofs, we have

included it since it follows naturally from our result in a manner similar to that of the other

generalizations of Erdős-Ginzburg-Ziv.

Bialostocki and Dierker [1] took the Erdős-Ginzburg-Ziv theorem in a different direction

by introducing an underlying geometry in the form of a graph. Let X be a graph and let

w : E(X) → G be a map. We define w(X) = {∑e∈E(T ) w(e) : T is a spanning tree of X}.

Theorem 1.12 (Bialostocki-Dierker) Let p be prime, let X be a complete graph on p+1

vertices, and let w : E(X) → Zp be a map. Then 0 ∈ w(X).

This theorem suggested a rather different type of zero-sum problem, and was soon ex-

tended in a number of different directions. Füredi and Kleitman [8] proved that a similar

result holds for arbitrary (even nonabelian) groups. More precisely, they prove that for every

multiplicative group G of order n, and every edge-labeling of the complete graph on n + 1

vertices with elements of G, there exists a spanning tree whose edges may be ordered so

that the product of the labels (in this order) is the identity. Schrijver and Seymour [19]

generalized the Bialostocki-Dierker theorem to hypergraphs, thus obtaining a new proof of

the Füredi-Kleitman theorem for abelian groups.

Perhaps even more excitingly, Schrijver and Seymour [18] generalized the underlying

geometry further to matroids. If M is a matroid on E, and w : E → G is a map, we define

w(M) = {∑b∈B w(b) : B is a base of M}.

Conjecture 1.13 (Schrijver-Seymour) Let M be a matroid on E with rank function rk.

Let w : E → G where G is an abelian group. If H = stab(w(M)), then

|w(M)| ≥ |H|
(
1 − rk(M) +

∑
Q∈G/H

rk(w−1(Q))
)
.
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We consider this conjecture to be very important. Indeed, our main theorem is a very

special case of it. Corollary 1.5 is equivalent to the above conjecture for uniform matroids.

Our main theorem is equivalent to the above conjecture for matroids obtained from uniform

matroids by adding parallel elements.

Schrijver and Seymour [18] proved their conjecture in the special case when |G| is prime.

In their paper, they state “we have convinced ourselves that it is true when |G| is a power

of a prime, or the product of two primes. But this last, if it is correct, will appear in a later

paper.” Unfortunately, this later paper was never written. In the final section of our paper,

we prove their conjecture for two special types of groups.

Theorem 1.14 Conjecture 1.13 holds whenever |G| = pq for primes p, q or G ∼= Zpn for a

prime p and a positive integer n.

There is a unifying framework for some above-mentioned results. If a matroid M of order

n has two disjoint cocircuits and w : E(M) → {0, 1} ⊆ Zn is a weighting whose support is

one of these cocircuits, then 0 /∈ w(M). Schrijver and Seymour [18] (essentially) observe

that Conjecture 1.13 implies a converse to this statement.

Proposition 1.15 (Schrijver-Seymour) Let G be an abelian group. Let M be a matroid

of rank |G| in which every two cocircuits meet. If Conjecture 1.13 holds for G and the dual

matroid M∗, then for any map w : E(M) → G we have 0 ∈ w(M).

We have already seen two matroids to which this proposition applies. When M is the

uniform matroid with rank |G| on 2|G|−1 points, we obtain the Erdős-Ginzburg-Ziv theorem,

since M∗ is uniform and satisfies Conjecture 1.13 by Corollary 1.5. When M is a complete

graph on |G| + 1 vertices and |G| is prime, we obtain the Bialostocki-Dierker theorem, as

was observed in [18]. Both of these matroids are minimal in the sense that deleting any

element results in a matroid with two disjoint cocircuits. It appears hopeless to characterize

such minimal matroids. For example, M is a dual-paving matroid if all its cocircuits have

size at least |M | − rk(M). Such matroids are easily constructed by modifying a uniform

matroid, and they form a very rich class (it is suspected [20] that most matroids of a given

size are paving matroids). When constructing a dual-paving matroid M of size 2 rk(M) or

2 rk(M) + 1, it is easy to arrange that M is minimal with respect to not containing disjoint

cocircuits. This shows the existence of a large class of minimal matroids M to which we can
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apply Theorem 1.14; if G is a cyclic group and rk(M) = |G| is a prime power or the product

of two primes, then 0 ∈ w(M) for every w : M → G.

G

vi
a 
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  1
.1
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Main
Thm 1.3

Cor 1.5

Cor 1.10
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Grynkiewicz
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Figure 1: Implications among statements in in Section 1. New results have bold borders.

The remainder of this paper is organized as follows. We prove our main theorem in the

next section. We prove three consequences of the main theorem for sequences (Corollaries

1.8, 1.10, and Theorem 1.11) in Section 3. Then, in the final section, we prove our matroidal

result, Theorem 1.14.

2 Main Theorem

The goal of this section is to prove our main theorem. In fact, for the purpose of our induction,

we will prove a slightly stronger statement. We continue with some further notation.

If K ≤ G and � ∈ N, we call a map μ : G/K → N a K-pattern of weight � if∑
Q∈G/K μ(Q) = �. If A = (A1, A2, . . . , Am) is a sequence of finite subsets of G and μ

is a K-pattern of weight �, we call a sequence (b1, b2, . . . , b�) μ-feasible (in A) if there exist

1 ≤ i1 < i2 < · · · < i� ≤ m which satisfy the following properties:

• bj ∈ Aij for every 1 ≤ j ≤ �.
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• μ(Q) = |{j ∈ {1, . . . , �} : bj ∈ Q}| for every Q ∈ G/K.

Expanding our earlier notation, we now make the following definition.

Σμ(A) = {b1 + · · ·+ b� : (b1, b2, . . . , b�) is μ-feasible in A}.

For every � ∈ N and H ≤ G we define

Ξ�
H(A) =

∑
Q∈G/H

min{�, #{1 ≤ i ≤ m : Ai ∩ Q �= ∅}}.

We are now ready to state our main result in its most general form.

Theorem 2.1 Let A = (A1, . . . , Am) be a sequence of finite subsets of G, let K ≤ G and

let μ : G/K → N be a K-pattern of weight �. If Σμ(A) �= ∅ and stab(Σμ(A)) = J , then

|Σμ(A)| ≥ |J |(Ξ�
J(A) − � + 1) − |K|(Ξ�

K(A) − �).

Before we prove Theorem 2.1, let us show that it implies our main theorem. To see

this, let A = (A1, . . . , Am) be a sequence of subsets of G and let � be a positive integer.

Now set K = G and define μ : G/K → N by the rule μ(G) = �. Then Σ�(A) = Σμ(A)

and Ξ�
K(A) = �. Now it is obvious that the bound in Theorem 2.1 implies Theorem 1.3. In

particular, Theorem 2.1 implies Kneser’s Theorem. In our proof, we will argue by considering

a counterexample which is in some sense minimal, and we will use the fact that our main

theorem (and hence Kneser’s Theorem) hold for all smaller examples.

Proof: We shall assume (for a contradiction) that the theorem is false and choose a coun-

terexample A = (A1, . . . , Am) so that

(i) |Σμ(A)| is minimum.

(ii)
∑m

i=1 |Ai| is minimum (subject to (i)).

(iii)
∑m

i=1 |Ai|2 is maximum (subject to (i),(ii)).

(iv) m is minimum (subject to (i), (ii), (iii)).

It follows from (iv) that Ai is nonempty for every 1 ≤ i ≤ m. Next we will show that

our assumptions imply J = {0}. It is immediate that Σμ(A) is contained in the K-coset∑
Q∈G/K μ(Q)Q, so in particular J ≤ K. Suppose (for a contradiction) that J �= {0} and

let φ : G → G/J be the canonical homomorphism. Let Aφ = (φ(A1), . . . , φ(Am)), let
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Kφ = φ(K) and let μφ : (G/J)/Kφ → N be given by the rule μφ(Q) = μ(∪Q) for every

Q ∈ (G/J)/Kφ. Then Σμφ(Aφ) = φ(Σμ(A)) has trivial stabilizer, so by the minimality of

our counterexample we have

|Σμ(A)| = |J | · |Σμφ(Aφ)|
≥ |J |

(
Ξ�
{0}(Aφ) − � + 1 − |Kφ|(Ξ�

Kφ
(Aφ) − �)

)

= |J |(Ξ�
J(A) − � + 1) − |K|(Ξ�

K(A) − �).

This contradiction implies that J = {0} as desired.

The next step in our proof is to handle one rather special case, when � = m, and there

exists 1 ≤ j ≤ m so that |Aj + K| > |K|. Although the induction we will apply here is

different than that used in the general case, the remainder of the argument is similar (but

much easier in this special case). The idea is to iteratively build nested subsets of Σμ(A) with

increasing size and decreasing stabilizers. We will call the subsets produced in this process

“convergents” – a term borrowed from approximations to continued fractions. Define a set

C ⊆ Σμ(A) with H = stab(C) to be a convergent if it satisfies the following property

|C| ≥ |H|(Ξ�
H(A) − � + 1) − |K|(Ξ�

K(A) − �).

As in the general argument, we will first show (using an inductive application of our theorem)

that a convergent exists. Choose a μ-feasible sequence (a1, . . . , am) and for every 1 ≤ i ≤ m

let A′
i = Ai ∩ (ai + K). Then set C0 =

∑m
i=1 A′

i and H0 = stab(C0). Note that |A′
j | < |Aj|,

so we can apply our theorem to the sequence A′
1, A

′
2, . . . , A

′
m to find that |C0| ≥

∑m
i=1 |A′

i +

H0| − (m − 1)|H0|. Now we have

|K|(Ξm
K(A) − m) =

m∑
i=1

|(Ai \ A′
i) + K|

≥
m∑

i=1

|(Ai \ A′
i) + H0|

= |H0|(Ξm
H0

(A)) −
m∑

i=1

|A′
i + H0|.

Thus, |C0| ≥
∑m

i=1 |A′
i + H0| − (m − 1)|H0| ≥ |H0|(1 − m + Ξm

H0
(A)) − |K|(Ξm

K(A) − m).

It follows from this that C0 is a convergent, and we may now choose a convergent C with

H = stab(C) minimal. If H = {0}, then since Σμ(A) ⊇ C our proof is complete. Thus, we

may assume that H is nontrivial.
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Since J = {0}, we may choose a μ-feasible sequence (b1, b2, . . . , bm) for which
∑m

i=1 bi +

H �⊆ Σμ(A). Let ν : G/H → N be the H-pattern of weight � = m given by the rule

ν(R) = #{1 ≤ i ≤ m : bi + H = R}. Now set D = Σν(A) and H ′ = stab(D), and note that

stab(C ∪ D) = H ′ < H since D is properly included in some H-coset disjoint from C. By

the assumption that C is a convergent and an application of our bound to D = Σν(A) we

have

|C ∪ D| = |C| + |D|
≥ |H|(Ξ�

H(A) − � + 1) − |K|(Ξ�
K(A) − �)

+ |H ′|(Ξ�
H′(A) − � + 1) − |H|(Ξ�

H(A) − �)

> |H ′|(Ξ�
H′(A) − � + 1) − |K|(Ξ�

K(A) − �).

It follows that C ∪ D is a convergent with stabilizer H ′ < H contradicting our choice of C.

This completes the proof of this special case.

For the general argument, we shall arrange (after some adjusting) that our first two sets

A1 and A2 satisfy A1 \ A2 �= ∅ and A2 \ A1 �= ∅. Further, we will arrange that the sequence

A′ = (A1∩A2, A1∪A2, A3, . . . , Am) satisfies Σμ(A′) �= ∅. It will then follow from our choice of

A that the theorem applies (nontrivially) to A′. This application will be our initial building

block (giving us the existence of a convergent). The preparation for this intersection-union

operation is slightly different depending on whether � = m or � < m so we shall consider

these two cases separately.

First suppose that � < m. For every 1 ≤ i ≤ m let Ai = (A1, . . . , Ai−1, Ai+1, . . . , Am).

By possibly rearranging our sequence, we may assume that A1 has minimum size over all

sets Ai for which Σμ(Ai) �= ∅. If A1 ⊆ Ai for every 1 ≤ i ≤ m, then Σμ(A) = Σμ(A1),

Ξ�
K(A) = Ξ�

K(A1), and Ξ�
{0}(A) = Ξ�

{0}(A
1) so A1 contradicts the choice of A for (ii).

Thus, by rearranging (keeping A1 fixed), we may assume that A1 �⊆ A2. If A2 ⊂ A1, then

Σμ(A2) ⊇ Σμ(A1) �= ∅ contradicting our choice of A1. Hence, A2 �⊆ A1. Thus, we have

A1 \ A2 �= ∅, A2 \ A1 �= ∅, and defining A′ = (A1 ∩ A2, A1 ∪ A2, A3, . . . , Am), we have

Σμ(A′) ⊇ Σμ(A1) �= ∅ as desired.

Next suppose that � = m. Since we have already handled the case when |Ai + K| > |K|
for some 1 ≤ i ≤ m we may further assume that every Ai is included in a K-coset. Thus

Σμ(A) = Σm(A) =
∑m

i=1 Ai and we may assume that K = G since this has no effect on the

bound. By possibly rearranging our sets, we may assume that |A1| ≤ |A2|. If A1 = {a} for
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some a ∈ G then the result follows by applying the theorem to the sequence (A2, A3, . . . , Am).

Otherwise, choose distinct a, a′ ∈ A1. Note that stab(A2) ⊆ stab(Σm(A)) = {0}. Therefore,

a′−a /∈ stab(A2), so there exists b ∈ A2 so that b+a′−a �∈ A2. Now replace A2 by A2−b+a

(and use the notation A2 for this shifted set henceforth). This has the effect of shifting

Σm(A), but does not affect the size of this set or its stabilizer. By construction, a ∈ A1∩A2,

a′ ∈ A1 \ A2, and A2 \ A1 �= ∅ (this last fact follows from the second and |A1| ≤ |A2|). Now

setting A′ = (A1 ∩ A2, A1 ∪ A2, A3, . . . , Am) we have Σμ(A′) �= ∅ as desired.

Let us observe that in both cases, the new sequence A′ satisfies ∅ �= Σμ(A′) ⊆ Σμ(A).

Further, since A1 \ A2 �= ∅ and A2 \ A1 �= ∅ our theorem applies to A′ by minimality

assumption (i) or (iii).

Now we will redefine our notion of convergent. We define a set C to be a convergent if

Σμ(A′) ⊆ C ⊆ Σμ(A) and if setting H = stab(C) we have

|C| ≥ |H|(Ξ�
H(A′) − � + 1) − |K|(Ξ�

K(A) − �).

Next we will show that C0 = Σμ(A′) �= ∅ is a convergent. To see this, let H0 = stab(C0) and

apply the theorem inductively to A′ to get the following:

|C0| ≥ |H0|(Ξ�
H0

(A′) − � + 1) − |K|(Ξ�
K(A′) − �)

≥ |H0|(Ξ�
H0

(A′) − � + 1) − |K|(Ξ�
K(A) − �).

Thus, C0 is a convergent, and we may now choose a convergent C with stabilizer H so that

H is minimal. If H = {0}, then we have

|Σμ(A)| ≥ |C|
≥ Ξ�

{0}(A
′) − � + 1 − |K|(ΞK(A) − �)

= Ξ�
{0}(A) − � + 1 − |K|(ΞK(A) − �).

This contradiction implies that H �= {0}.
Our plan is to construct three new sets C1, C2, and C12, each of which will be a superset

of C with stabilizer ≤ H . We will then derive a contradiction under the assumption that

none of them is a convergent with strictly smaller stabilizer than C.

Since Σμ(A) has trivial stabilizer and stab(C) = H �= {0} we may choose a μ-feasible

sequence (b1, b2, . . . , b�) so that R =
∑�

j=1 bj +H �⊆ Σμ(A). Note that R∩C = ∅. Further, it
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follows from Σμ(A′) ⊆ C that b1 ∈ A1 and b2 ∈ A2. Let ν : G/H → N be the H-pattern of

weight � given by the rule ν(Q) = #{j ∈ {1, . . . , �} : bj +H = Q} and note that Σν(A) ⊆ R.

Next, let A∗ = (A3, A4, . . . , Am) and let ν∗ be the H-pattern of weight � − 2 given by the

rule ν∗(Q) = #{j ∈ {3, . . . , �} : bj + H = Q}. Then, for δ = 1, 2, set Aδ
1 = A1 ∩ (bδ + H)

and set Aδ
2 = A2 ∩ (b3−δ + H) (here the reader should note a deliberate “crossing” of our

indices). Note further that b1 ∈ A1
1 and b2 ∈ A1

2 so A1
1 �= ∅ �= A1

2. Then set B1 = A1
1 + A1

2,

set B2 = A2
1 + A2

2 and set B12 = B1 ∪ B2. Next we give a few definitions, culminating with

C1, C2, and C12.

D12 = B12 + Σν∗
(A∗), H12 = stab(D12).

Now for δ = 1, 2 we define the set Dδ and name its stabilizer as follows.

Dδ = Bδ + Σν∗
(A∗) + H12, Hδ = stab(Dδ).

Finally, for ε = 1, 2, 12 we define the set Cε as follows (for clarity, we will continue to let δ

be a variable ranging over 1, 2 and let ε range over 1, 2, 12)

Cε = C ∪ Dε.

Let us make a few simple observations concerning these newly defined sets. First, note that

by construction, D1 �= ∅ and D12 �= ∅. Further, Dε ⊆ Σν(A) ⊂ R for every ε = 1, 2, 12 so

each of these sets is disjoint from C. Since each Dε is a proper subset of the H-coset R, it

follows that stab(Cε) = Hε whenever Dε �= ∅. Figure 2 shows the containment relationships

among the sets Cε and their stabilizers Hε.

11

12

2

C

C

C

C

12
H

H
2

H

H

Figure 2: Containment relations among the sets Cε and their stabilizers.

Let us pause to note that by (i) of our choice of A, and the observation that |Σμ(A)| >

|C| ≥ |H|, it follows that our theorem holds true (and Kneser’s theorem holds) whenever

the associated sumset is contained in some H-coset. This fact will be used repeatedly in the

remainder of the argument.
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Next we shall make two claims which hold for ε = 1, 12 and also hold for ε = 2 if D2 �= ∅.
Both of these claims will help us to simplify the equations which result from inductive

applications of our theorem.

Claim 1: |Σν∗
(A∗) + Hε| ≥ |Hε|(Ξ�−2

Hε (A∗) − � + 3) − |H|(Ξ�−2
H (A∗) − � + 2).

Proof of Claim: Set B = (A3+Hε, A4+Hε, . . . , Am+Hε) and note that Σν∗
(B) = Σν∗

(A∗)+

Hε. Further, it follows from the definition of Dε and Hε that stab(Σν∗
(B)) = Hε. Thus, by

applying our theorem inductively to Σν∗
(B) we have

|Σν∗
(A∗) + Hε| = |Σν∗

(B)|
≥ |Hε|(Ξ�−2

Hε (B) − � + 3) − |H|(Ξ�−2
H (B) − � + 2)

= |Hε|(Ξ�−2
Hε (A∗) − � + 3) − |H|(Ξ�−2

H (A∗) − � + 2)

as desired.

For ε = 1, 2, 12 we define Xε and Y ε as follows:

Xε = (b1 + H) \ ((A1
1 ∪ A2

2) + Hε),

Y ε = (b2 + H) \ ((A2
1 ∪ A1

2) + Hε).

Claim 2: |H|(Ξ�
H(A′) − Ξ�−2

H (A∗)) − |Hε|(Ξ�
Hε(A′) − Ξ�−2

Hε (A∗)) ≥ |Xε ∪ Y ε|.

Proof of Claim: First observe that contribution of an H-coset Q to |H|(Ξ�
H(A′)−Ξ�−2

H (A∗))

(which must be either 0, |H|, or 2|H|) is always at least the contribution of the Hε-cosets

contained in Q to |Hε|(Ξ�
Hε(A′) − Ξ�−2

Hε (A∗)). Next, consider the coset b1 + H . If this coset

has nontrivial intersection with A1∩A2 or has nontrivial intersection with > �−2 members of

A∗, then Σν(A′) �= ∅. However, this contradicts the assumption that Σν(A) ⊆ R is disjoint

from C since Σν(A) ⊇ Σν(A′) ⊆ Σμ(A′) ⊆ C. It follows that the contribution of b1 + H

to |H|(Ξ�
H(A′) − Ξ�−2

H (A∗)) is exactly |H|. By a similar argument, the contribution of the

Hε-cosets contained in b1 +H to |Hε|(Ξ�
Hε(A′)−Ξ�−2

Hε (A∗)) is exactly |(A1
1∪A2

2)+Hε|. Thus,

the contribution of b1 +H and its Hε-cosets to the left hand side of the equation in the claim

is |Xε|. Similarly, the coset b2 + H contributes |Y ε|. Whether or not b1 + H = b2 + H , our

claim follows immediately.
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The next equation holds for ε = 1, 12 and for ε = 2 if D2 �= ∅. It follows from the

assumption that C is a convergent, but Cε is not.

|Dε| = |Cε| − |C|
< |Hε|(Ξ�

Hε(A′) − � + 1) − |H|(Ξ�
H(A′) − � + 1) (2)

On the other hand, Dε is defined by a sumset to which we may apply our theorem inductively.

In the following equation, we have repeatedly applied our theorem inductively in the form

of Kneser’s theorem, and we have also applied Claim 1. This equation holds for ε = 1, 12

and also holds for ε = 2 if D2 �= ∅.

|Dε| = |Bε + Σν∗
(A∗) + Hε|

≥ |Bε + Hε| + |Σν∗
(A∗) + Hε| − |Hε|

≥ |Bε + Hε| + |Hε|(Ξ�−2
Hε (A∗) − � + 2) − |H|(Ξ�−2

H (A∗) − � + 2) (3)

Combining equations 2 and 3 and applying Claim 2 gives us the following equation which

holds for ε = 1, 12 and also holds for ε = 2 if D2 �= ∅.

|H| > |Bε + Hε| + |Xε ∪ Y ε| + |Hε| (4)

Using equation (4) and an inductive application of our theorem (again in the form of

Kneser’s theorem) gives us the following equation which holds for δ = 1 and holds for δ = 2

if D2 �= ∅.
|H| > |Aδ

1 + Hδ| + |Aδ
2 + Hδ| + |Xδ ∪ Y δ|.

Consider the above equation with δ = 1. If A2
2 = ∅, then |X1| = |H| − |A1

1 + H1| and

we have a contradiction. Thus A2
2 �= ∅. We get a similar contradiction (by considering Y 1)

under the assumption that A1
2 = ∅. It follows that D2 �= ∅, so equations (2), (3), and (4)

hold for ε = 2, and the above equation holds for δ = 2. If b1 + H = b2 + H , then A1
2 = A2

2 so

|X1| = |(b1 +H)\ ((A1
1∪A1

2)+H1)| ≥ |H|−|A1
1 +H1|−|A1

2 +H1|, but again this contradicts

the above equation for δ = 1. Thus b1 + H �= b2 + H , and we have that Xε and Y ε are

disjoint for ε = 1, 2, 12.

Our next equation follows from the previous equation, and the observation that |H|,
|Aδ

1 + Hδ|, and |Aδ
2 + Hδ| are all multiples of |Hδ|. It holds for δ = 1, 2:

|H| ≥ |Aδ
1 + Hδ| + |Aδ

2 + Hδ| + |Hδ|
≥ |Aδ

1 + H12| + |Aδ
2 + H12| + |Hδ| (5)
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The next equation follows from equation (4) for ε = 12 and another application of

Kneser’s theorem. Here the application of Kneser’s theorem requires the observation that

the stabilizer of the sumset (Aδ
1 + H12) + (Aδ

2 + H12) = Bδ + H12 is a subgroup of Hδ - a

fact which follows from the definition of Dδ.

|H| ≥ |B12 + H12| + |X12 ∪ Y 12|
≥ |Bδ + H12| + |X12| + |Y 12|
≥ |Aδ

1 + H12| + |Aδ
2 + H12| − |Hδ| + |X12| + |Y 12| (6)

Summing the four inequalities obtained by taking equations 5 and 6 for δ = 1, 2 and then

dividing by two yields

2|H| > |A1
1 + H12| + |A2

1 + H12| + |A1
2 + H12| + |A2

2 + H12| + |X12| + |Y 12|.

However, b1 +H = X12∪(A1
1 +H12)∪(A2

2 +H12) and b2 +H = Y 12∪(A2
1 +H12)∪(A1

2 +H12).

This yields the final contradiction and completes the proof. �

3 Corollaries

In this section use our main corollary for subsequence sums (Corollary 1.5) to derive Corol-

laries 1.8 and 1.10, and to give a new proof of Gao’s Theorem (1.11). We use the follow-

ing notation. If a = (a1, . . . , am) is a sequence of elements from G and S ⊆ G, we let

ρS(a) = #{1 ≤ i ≤ m : ai ∈ S}. Similarly, if g ∈ G we define ρg(a) = ρ{g}(a). The

function ρ defined in the introduction (the maximum multiplicity of an element) is then

ρ(a) = maxg∈G ρg(a). For convenience we have restated Corollary 1.5 below with this new

notation.

Corollary 1.5 If a = (a1, . . . , am) is a sequence of elements of G and H = stab(Σ�(a)),

then

|Σ�(a)| ≥ |H|
(
1 − � +

∑
Q∈G/H

min
{
�, ρQ(a)

})
.

Proof of Corollary 1.8: Recall that the sets Σ�(a) and Σm−�(a) have the same size and

the same stabilizer (one is just a shift of the (additive) inverse of the other), so we may
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apply Corollary 1.5 both for Σ�(a) and Σm−�(a). Let H = stab(Σ�(a)) = stab(Σm−�(a)). If

H = {0}, then applying Corollary 1.5 to Σm−�(a) shows that |Σ�(a)| = |Σm−�(a)| ≥ � + 1

(since ρ(a) ≤ m−�), so (i) holds. Otherwise, applying this bound to Σ�(a) shows that either

(ii) holds, or |Σ�(a)| ≥ |H|(1 + m − �) ≥ |H| · �/p ≥ � which implies (i). �

Proof of Corollary 1.10: We shall assume that neither (i) nor (ii) holds and derive a contradic-

tion. Set h = |H| and set t = #{Q ∈ G/H : ρQ(a) ≥ m−�}. If t = 0, then Corollary 1.5 (ap-

plied with m−� in place of �) shows that |Σ�(a)| = |Σm−�(a)| ≥ h(1−(m−�)+m) = h(1+�),

so (i) holds. Thus t ≥ 1.

Suppose that H = {0}. If t = 1, then let g0 ∈ G be the unique element with ρg0(a) ≥
m − �, and note that since ρg0(a) ≤ � − k + 2, we must have

∑
g∈G min{m − �, ρg(a)} =

m− (ρg0(a)− (m− �)) ≥ 2m− 2� + k − 2. If t ≥ 2, then since a contains at least k distinct

terms, we have
∑

g∈G min{m−�, ρg(a)} ≥ t(m−�)+k−t = t(m−�−1)+k ≥ 2m−2�+k−2.

Since this inequality holds for all possible values of t, Corollary 1.5 shows that |Σm−�(a)| ≥
1 − (m − �) + (2m − 2� + k − 2) = m − � + k − 1 and conclusion (i) holds.

Thus H �= {0}, i.e., h > 1. Assuming that (i) and (ii) do not hold, Corollary 1.5 gives

m − � + k > |Σ�(a)|
≥ |H|

(
1 − � +

∑
Q∈G/H

ρQ(a)
)

= h(m − � + 1)

so we have

k − h > (h − 1)(m − �). (7)

Note that this implies in particular that k ≥ h + 2. Since t ≥ 1, we may choose R ∈ G/H

so that ρR(a) ≥ m − �. Then our bound gives

|Σm−�(a)| ≥ h
(
1 − m + � +

∑
Q∈G/H

min{m − �, ρQ(a)}
)

= h
(
1 +

∑
Q∈(G/H)\{R}

min{m − �, ρQ(a)}
)
. (8)

First suppose that m− � ≥ h. Then the Σ-term in the right hand side of equation (8) must

be at least the number of distinct elements in G\R which appear at least once in a. Thus, in
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this case we have |Σm−�(a)| ≥ h(1 + k − |R|) = h(1 + k − h). Combining this with Equation

(7) and the assumption that (i) does not hold we have

(k − h)/(h − 1) > m − �

> |Σ�(a)| − k

= |Σm−�(a)| − k

≥ h(1 + k − h) − k

= (k − h)(h − 1).

However, this is contradictory since k ≥ h + 2 and h ≥ 2.

Thus we may now assume m− � < h. Again let us consider the Σ-term in the right hand

side of equation (8). There are at least k − |R| = k − h distinct elements in G \ R which

appear in a. If Q ∈ G/H \ {R} contains s distinct elements of G which appear in a, then

the contribution of this coset to the Σ-term will be at least min{s, m − �} ≥ m−�
h

s. Thus,

the Σ-term in the right hand side of (8) is at least m−�
h

(k − h). Combining this with the

assumption that (i) does not hold we have

(m − �) + (k − h) > |Σm−�(a)| − h

≥ (k − h)(m − �).

Since we have already observed that k ≥ h + 2, the above equation implies that m = � + 1

(recall that m > � by assumption). But then |Σ1(a)| ≥ k since a contains k distinct terms,

so we find |Σ�(a)| = |Σ1(a)| ≥ k = m − � + k − 1 and conclusion (i) holds. This completes

the proof. �

Proof of Theorem 1.11: To see that s′(G) ≥ s(G) + |G| − 1, choose a sequence a of length

s(G) − 1 without a nontrivial subsequence which sums to 0 and append |G| − 1 copies of 0

to a. This new sequence demonstrates s′(G) ≥ s(G) + |G| − 1.

Next we shall prove s′(G) ≤ s(G)+|G|−1 by induction on |G|. Let m = s(G)+|G|−1 and

let a = (a1, a2, . . . , am) be a sequence of elements from G. We need to show that 0 ∈ Σ|G|(a).

Set H = stab(Σ|G|(a)). If H �= {0}, then let φ : G → G/H be the canonical homomorphism

and consider the sequence aφ = (φ(a1), φ(a2), . . . , φ(am)). Since s(G/H) ≤ s(G), we may

apply our theorem inductively to get a subsequence of length [G : H ] and sum zero in G/H .

After removing this subsequence from aφ, we apply the theorem again to get another such
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sequence. After |H| repetitions, we have |H| disjoint subsequences of aφ each with length

[G : H ] and sum equal to zero in G/H . Combining the corresponding subsequences of a

gives a subsequence of length |G| whose sum is in H . Since H = stab(Σ|G|(a)), it follows

that 0 ∈ Σ|G|(a). Thus, we may assume that H = {0}.
If ρ(a) < s(G), then by Corollary 1.5 we have

|Σs(G)−1(a)| ≥ 2 − s(G) +
∑
g∈G

min{s(G) − 1, ρg(a)} ≥ |G| + 1

which is contradictory. It follows that there exists g ∈ G so that ρg(a) ≥ s(G). By replacing a

by (a1−g, a2−g, . . . , am−g) we do not affect the set Σ|G|(a) but may now assume that ρ0(a) ≥
s(G). By rearranging our sequence, we may further assume that a|G|+1, a|G|+2, . . . a|G|+s(G)−1

are all 0. Now, by the definition of the Davenport constant s(G), we may repeatedly choose

disjoint subsequences of (a1, a2, . . . , a|G|) each of which has zero sum, so that the number of

leftover elements is at most s(G) − 1. By concatenating these sequences, and then adding

an appropriate number of zero terms ai with i > |G|, we obtain a subsequence of length |G|
with zero sum, as required. �

4 Matroids

The goal of this section is to prove Theorem 1.14. Fix an abelian group G, a matroid M on E

with rank function rk, and let B(M) denote the set of bases of M . Departing from the original

treatment of Schrijver and Seymour, we let W be a weight function which assigns to each

element e ∈ E a nonempty set W (e) ⊆ G. For every S ⊆ G let ES = {e ∈ E : S∩W (e) �= ∅}
and abbreviate Eg = E{g}. We define

W (M) =
⋃

B∈B(M)

∑
b∈B

W (b).

With this notation we restate Theorem 1.14.

Theorem 4.1 Let p, q be primes and assume that G ∼= Zpn or G ∼= Zp × Zq. If H =

stab(W (M)), then

|W (M)| ≥ |H|
(
1 − rk(M) +

∑
Q∈G/H

rk(EQ)
)
.
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Proof: We proceed by induction on |E|. We may assume that M has no loops or parallel

elements (if e, f ∈ E are parallel, then replace W (e) by W (e) ∪ W (f), delete f and apply

induction). If rk(M) = 1, then the result is trivial, so we may further assume that rk(M) ≥ 2.

For every e ∈ E, we define the subgroup

He = stab(W (e)).

By possibly replacing W (e) with a superset, we may assume that for every e ∈ E and every

g ∈ G\W (e), the weight function W ′ obtained from W by the adjustment W ′(e) = W (e)∪{g}
satisfies W ′(M) �= W (M). The inequality below follows from this maximality assumption.

H ≤ He for every e ∈ E. (9)

If g ∈ G and Eg spans e, then replacing W (e) by W (e)∪{g} does not change the set W (M).

To see this let h ∈ g +
∑

b∈B−e W (b) where B is a basis containing e. Then B − e + f is

a basis for some f ∈ Eg\B, whence h ∈ ∑
b∈B−e+f W (b). By repeating this process, we

may assume that W (e) = {g ∈ G : Eg spans e} for every e ∈ E. Equivalently (in light of

equation (9)), we have

W (e) = ∪{Q ∈ G/H : EQ spans e} (10)

Let M/e denote the matroid obtained from M by contracting e and consider the set W (e)+

W (M/e). By construction, this is a subset of W (M) and has stabilizer ≥ He = stab(W (e)).

However, the maximality of W (e) further implies that

He = stab(W (e) + W (M/e)). (11)

Suppose now that G ∼= Zp × Zq. If there exist e, f ∈ E with He and Hf being distinct

nontrivial subgroups, then we may choose a base B containing e and f , and we find that

stab
(∑

b∈B W (b)
) ≥ He + Hf = G so W (M) = G, and we have H = G which contradicts

either H ≤ He or H ≤ Hf . It follows from this argument that the subgroups {He : e ∈ E} are

nested when G ∼= Zp ×Zq. Since any two subgroups of Z)pn are nested, the same conclusion

also holds for this case. Thus, we may choose f ∈ E so that Hf ≤ He for every e ∈ E.

It follows immediately from this that Hf ≤ stab(W (M)) = H , and Hf ≤ stab(W (M/f)).

The first of these inequalities and (9) imply that Hf = H . It follows from the second

and equation (11) that stab(W (M/f)) = Hf = H . So, all three sets W (M), W (M/f),
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and W (f) + W (M/f) have stabilizer H . Now, applying Kneser’s Theorem (Theorem 1.2),

equation (10), and the induction hypothesis, we have:

|W (M)| ≥ |W (f) + W (M/f)|
≥ |W (f)|+ |W (M/f)| − |H|
≥ |H|

(
#{Q ∈ G/H : EQ spans f } + 1 − rk(M/f) +

∑
Q∈G/H

rkM/f (EQ)
)
− |H|

= |H|
(
1 − rk(M) +

∑
Q∈G/H

rkM(EQ)
)

which completes the proof. �
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[8] Z. Füredi, D. J. Kleitman, On zero-trees. J. Graph Theory 16 (1992), 107–120.

[9] W. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996),

100–103.



23

[10] W. D. Gao, Three addition Theorems on Zn, preprint.

[11] W. D. Gao, R. Thangadurai, J. Zhuang, Addition Theorems on the cyclic groups Zpn ,

preprint.

[12] D. Grynkiewicz, On a partition analog of the Cauchy-Davenport Theorem, Acta Math.

Hungar. 107 (2005), 167–181.

[13] D. Grynkiewicz, On a conjecture of Hamidoune for subsequence sums, Integers: Electr.

J. Comb. Number Theory 5 (2) (2005) A07.

[14] Y. O. Hamidoune, Subsequence sums, Combin. Probab. Comput. 12 (2003), 413–425.

[15] Y. O. Hamidoune, O. Ordaz, A. Ortuño, On a combinatorial theorem of Erdős,
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