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Abstract

A graph is 1-planar if it can be drawn on the plane so that each
edge is crossed by no more than one other edge. A non-1-planar
graph G is minimal if the graph G − e is 1-planar for every edge e of
G. We construct two infinite families of minimal non-1-planar graphs
and show that for every integer n ≥ 63, there are at least 2(n−54)/4

nonisomorphic minimal non-1-planar graphs of order n. It is also
proved that testing 1-planarity is NP-complete.
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1 Introduction

A graph drawn in the plane is 1-immersed in the plane if any edge is crossed
by at most one other edge. A graph is 1-planar if it can be 1-immersed
into the plane. It is easy to see that if a graph has 1-immersion in which
two edges e, f with a common endvertex cross, then the drawing of e and f
can be changed so that these two edges no longer cross. Consequently, we
may assume that adjacent edges are never crossing each other and that no
edge is crossing itself. We take this assumption as a part of the definition of
1-immersions since this limits the number of possible cases when discussing
1-immersions.

The notion of 1-immersion of a graph was introduced by Ringel [14] when
trying to color the vertices and faces of a plane graph so that adjacent or
incident elements receive distinct colors. In the last two decade this class of
graphs received additional attention because of its relationship to the family
of map graphs, see [6, 7] for further details.

Little is known about 1-planar graphs. Borodin [1, 2] proved that every 1-
planar graph is 6-colorable. Some properties of maximal 1-planar graphs are
considered in [15]. It was shown in [3] that every 1-planar graph is acyclically
20-colorable. The existence of subgraphs of bounded vertex degrees in 1-
planar graphs is investigated in [9]. It was shown in [4, 5] that a 1-planar
graph with n vertices has at most 4n − 8 edges and that this upper bound
is tight. In the paper [8] it was observed that the class of 1-planar graphs is
not closed under the operation of edge-contraction.

Much less is known about non-1-planar graphs. The basic question is how
to recognize 1-planar graphs. This problem is clearly in NP, but it is not clear
at all if there is a polynomial time recognition algorithm. We shall answer
this question by proving that 1-planarity testing problem is NP-complete.

The recognition problem is closely related to the study of minimal ob-
structions for 1-planarity. A graph G is said to be a minimal non-1-planar
graph (MN-graph, for short) if G is not 1-planar, but G − e is 1-planar for
every edge e of G. An obvious question is:

How many MN-graphs are there? Is their number finite? If not,
can they be characterized?

The answer to the first question is not hard: there are infinitely many. This
was first proved in [12]. Here we present two additional simple arguments
implying the same conclusion.
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Example 1. Let G be a graph such that t = �cr(G)/|E(G)|� − 1 ≥ 1,
where cr(G) denotes the crossing number of G. Let Gt be the graph obtained
from G by replacing each edge of G by a path of length t. Then |E(Gt)| =
t|E(G)| < cr(G) = cr(Gt). This implies that Gt is not 1-planar. However,
Gt contains an MN-subgraph H . Clearly, H contains at least one subdivided
edge of G in its entirety, so |V (H)| > t. Since t can be arbitrarily large, this
shows that there are infinitely many MN-graphs.

Example 2. Let K ∈ {K5, K3,3} be one of Kuratowski graphs. For each
edge xy ∈ E(K), let Lxy be a 5-connected triangulation of the plane and u, v
be adjacent vertices of Lxy whose degree is at least 6. Let L′

xy = Lxy − uv.
Now replace each edge xy of K with L′

xy by identifying x with u and y with
v. It is not hard to see that the resulting graph G is not 1-planar (since
two of graphs L′

xy must “cross each other”, but that is not possible since
they come from 5-connected triangulations). Again, one can argue that they
contain large MN-graphs.

The paper [12] and the above examples prove the existence of infinitely
many MN-graphs but do not give any concrete examples. They provide no
information on properties of MN-graphs. Even the most basic question if
there are infinitely many MN-graphs whose minimum degree is at least three
cannot be answered by considering these constructions. In [12], two specific
MN-graphs of order 7 and 8, respectively, are given. One of them, the graph
K7 − E(K3), is the unique 7-vertex MN-graph and since all 6-vertex graphs
are 1-planar, the graph K7 − E(K3) is the MN-graph with the minimum
number of vertices. Surprisingly enough, the two MN-graphs in [12] are the
only explicit MN-graphs known in the literature.

The main problem when trying to construct 1-planar graphs is that we
have no characterization of 1-planar graphs. The set of 1-planar graphs is
not closed under taking minors, so 1-planarity can not be characterized by
forbidding some minors.

In the present paper we construct two explicit infinite families of MN-
graphs whose minimum degree is at least three and, correspondingly, we give
two different approaches how to prove that a graph has no plane 1-immersion.

In Sect. 2 we construct MN-graphs based on the Kuratowski graph K3,3.
To obtain them, we replace six edges of K3,3 by some special subgraphs.
The minimality of these examples is easy to verify, but their non-1-planarity
needs long and somewhat technical arguments. Using these MN-graphs, we
show that for every integer n ≥ 63, there are at least 2(n−54)/4 nonisomorphic
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minimal non-1-planar graphs of order n. In Sect. 3 we describe a class of
3-connected planar graphs that have no plane 1-immersions with at least one
crossing point (PN-graphs, for short). Every 3-connected PN-graph has a
unique plane 1-immersion, namely, its unique plane embedding. Hence, if
a 1-planar graph G contains a PN-graph H as a subgraph, then in every
plane 1-immersion of G the subgraph H is 1-immersed in the plane in the
same way. Having constructions of PN-graphs, we can construct 1-planar
and non-1-planar graphs with some desired properties: 1-planar graphs that
have exactly k > 0 different plane 1-immersions; MN-graphs, etc.

In Sect. 4 we construct MN-graphs based on PN-graphs. Each of these
MN-graphs G has as a subgraph a PN-graph H and the unique plane 1-
immersion of H prevents to 1-immerse the remaining part of G in the plane.

Despite the fact that minimal obstructions for 1-planarity (i.e., the MN-
graphs) have diverse structure, and despite the fact that discovering 1-immer-
sions of specific graphs can be very tricky, it turned out to be a hard problem
to establish hardness of 1-planarity testing. A solution is given in Sect. 5,
where we show that 1-planarity testing is NP-complete, see Theorem 5. The
proof is geometric in the sense that the reduction is from 3-colorability of
planar graphs (or similarly, from planar 3-satisfiability).

An extended abstract of this paper was published in Graph Drawing 2008
[13].

2 Chain graphs based on K3,3

Two cycles of a graph are adjacent if they share a common edge. If a graph
G is drawn in the plane, then we say that a vertex x lies inside (resp. outside)
an embedded (that is, non-self-intersecting) cycle C, if x lies in the interior
(resp. exterior) of C, and does not lie on C. Having two embedded adjacent
cycles C and C ′, we say that C lies inside (resp. outside) C ′ if every point
of C either lies inside (resp. outside) C ′ or lies on C ′. From this point on,
by a 1-immersion of a graph we mean a plane 1-immersion. We assume that
in 1-immersions, adjacent edges do not cross each other and no edge crosses
itself. Thus, every 3-cycle of a 1-immersed graph is embedded in the plane.
Hence, given a 3-cycle of a 1-immersed graph, we can speak about its interior
and exterior. We say that an embedded cycle separates two vertices x and y
on the plane, if one of the vertices lies inside and the other one lies outside
the cycle. Two edges e and e′ of a graph G separate vertices x and y of
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Figure 1: Links.

the graph if x and y belong to different connected components of the graph
G − e − e′.

Throughout the paper we will deal with 1-immersed graphs. When an
immersion of a graph G is clear from the context, we shall identify ver-
tices, edges, cycles and subgraphs of G with their image in R

2 under the
1-immersion. Then by a face of a 1-immersion of G we mean any connected
component of R

2 \ G.
By using Möbius transformations combined with homeomorphisms of the

plane it is always possible to exchange the interior and exterior of any em-
bedded cycle and it is possible to change any face of a given 1-immersion into
the outer face of a 1-immersion. Formally, we have the following observation
(which we will use without referring to it every time):

(A) Let C be a cycle of a graph G. If G has a 1-immersion ϕ in which C
is embedded, then G has a 1-immersion ϕ′ with the same number of crossings
as ϕ, in which C is embedded and all vertices of G, which lie inside C in ϕ,
lie outside C in ϕ′ and vice versa.

Now we begin describing a family of MN-graphs based on the graph K3,3.
By a link L(x, y) connecting two vertices x and y we mean any of the

graphs shown in Fig. 1 where {z, z} = {x, y}. We say that the vertices x
and y are incident with the link. The links in Figs. 1(A) and (B) are called
A-link and B-link, respectively, and the one in Fig. 1(C) is called a base link.
Every link has a free cycle: both 3-cycles in an A-link are its free cycles,
while every B-link or base link has exactly one free cycle (the cycle indicated
by thick lines in Fig. 1).

By an A-chain of length n ≥ 2 we mean the graph shown in Fig. 2(a).
By a B-chain of length n ≥ 2 we mean the graph shown in Fig. 2(c) and, for
n ≥ 3, every graph obtained from that graph in the following way: for some
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Figure 2: A- and B-chains.

integers h1, h2, . . . , ht, where t ≥ 1 and 1 ≤ h1 < h2 < · · · < ht ≤ n − 2, we
replace the link at the left of Fig. 2(e) by the link shown at the right, for
i = 1, 2, . . . , t. Note that, by definition, A- and B-chains have length at least
2. We say that the chains in Figs. 2(a) and (c) connect the vertices v(0) and
v(n) which are called the end vertices of the chain. Two chains are adjacent if
they share a common end vertex. A-chains and B-chains will be represented
as shown in Figs. 2(b) and (d), respectively, where the arrow points to the
end vertex incident with the base link. The vertices v(0), v(1), v(2), . . . , v(n)
are the core vertices of the chains. Every free cycle of a link contains exactly
one core vertex. The two edges of a free cycle C incident to the core vertex
are the core-adjacent edges of C. It is easy to see that two edges e and e′ of
a chain separate the end vertices of the chain if and only if the edges are the
core-adjacent edges of a free cycle of a link of the chain.

By a subchain of a chain shown in Figs. 2(a) and (c) we mean a subgraph
of the chain consisting of links incident with v(i) and v(i + 1) for all i =
m, m + 1, . . . , m′ − 1 for some 0 ≤ m < m′ ≤ n. We say that the subchain
connects the vertices v(m) and v(m′).

A chain graph is any graph obtained from K3,3 by replacing three of
its edges incident with the same vertex by A-chains and three edges incident
with another vertex by B-chains, where the chains can have arbitrary lengths
≥ 2. These changes are to be made as shown in Fig. 3(a). The vertices Ω(1),
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Figure 3: A chain graph G and 1-planarity of the graph G − e.

Ω(2), and Ω(3) are the base vertices of the chain graph. The edges joining
the vertex Ω to the base vertices are called the Ω-edges.

We will show that every chain graph is an MN-graph.

Lemma 1 Let G be a chain graph and e ∈ E(G). Then G − e is 1-planar.

Proof. If e is an Ω-edge, then G − e is planar and hence 1-planar. Suppose
now that e is not an Ω-edge. By symmetry, we may assume that e belongs
to an A- or B-chain incident to Ω(2). If e is the “middle” edge of a B-link,
then Fig. 3(b) shows that the corresponding B-chain can be crossed by an
A-chain, and it is easy to see that this can be made into a 1-immersion of
G−e. In all other cases, 1-immersions are made by crossing the link L whose
edge e is deleted with the edges incident with the vertex Ω. The upper row
in Fig. 3(c) shows the cases when L is a base link. The lower row covers the
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cases when L is an A-link or a B-link. The edge e is shown in all cases as
the dotted edge. �

Our next goal is to show that chain graphs are not 1-planar. In what
follows we let G be a chain graph and ϕ a (hypothetical) 1-immersion of G.

Lemma 2 Let ϕ be a 1-immersion of a chain graph G such that the number
of crossings in ϕ is minimal among all 1-immersions of G. If L is a link in
an A- or B-chain of G, then no two edges of L cross each other in ϕ.

Proof. The first thing to observe is that whenever edges ab and bc cross,
there is a disk D having a, c, b, d on its boundary, and D contains these two
edges but no other points of G. In 1-immersions with minimum number of
crossings this implies that no other edges between the vertices a, c, b, d are
crossed. Similarly, if L = L(z, z̄) is a link in a chain, and an edge incident
with z crosses an edge incident with z̄, the whole link L can be drawn in D
without making any crossings. This shows that the only possible cases for
a crossing of two edges e, f in L are the following ones, where we take the
notation from Figure 1 and we let u be the vertex of L that is not labeled in
the figure:

(a) L is a B-link and e = zv, f = uw.
(b) L is a B-link and e = z̄v, f = uw.
(c) L is a base link and e = zv, f = uw.
(d) L is a base link and e = vw, f = z̄u.
(e) L is a base link and e = vu, f = z̄w.

Let D be a disk as discussed above corresponding to the crossing of e and f .
In cases (b), (d) and (e), the vertex u has all neigbors on the boundary of
D, so the crossing between e and f can be eliminated by moving u inside D
onto the other side of the edge f .

It remains to consider cases (a) and (c). Observe that the boundary of D
contains vertices z, u, v, w in this order and that u and v both have precisely
one additional neighbor z̄ outside of D. Therefore, we can turn ϕ into another
1-immersion of G by switching u and v and only redraw the edges inside D.
However, this eliminates the crossing in D and yields a 1-immersion with
fewer crossings, a contradiction. �

Lemma 3 Let G and ϕ be as in Lemma 2. If Π and Π′ are nonadjacent
A- and B-chain, respectively, then in ϕ the following holds for every 3-cycle
C of Π:
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(i) The core vertices of Π′ either all lie inside or all lie outside C.

(ii) If all core vertices of Π′ lie inside (resp. outside) C, then at most one
vertex of Π′ lies outside (resp. inside) C.

Proof. First we show (ii). By (A), we may assume that all core vertices
of Π′ lie inside C. By inspecting Fig. 1, it is easy to check that for every
link L, for every set W of noncore vertices of L such that |W | ≥ 2, there
are at least four edges joining W with of V (L) \ W . Hence, if at least two
noncore vertices belonging to the same link of Π′ lie outside C, then at least
four edges join them with the vertices of Π′ lying inside C, a contradiction.
Every noncore vertex of Π′ has valence at least 3. Hence if exactly n (n ≥ 2)
noncore vertices of Π′ lie outside C and if they all belong to different links,
then at least 3n ≥ 6 edges join them with the vertices of Π′ lying inside C,
a contradiction.

Now we prove (i). If C does not contain the vertex A, then every two core
vertices of Π′ are connected by four edge-disjoint paths not passing through
the vertices of C, hence (i) holds for C.

Suppose now that C contains the vertex A and that core vertices of Π′

lie inside and outside C. Then there is a link L(z, z) of Π′ such that the
vertex z lies inside and the vertex z lies outside C. We may assume without
loss of generality that Π and Π′ are incident to the base vertices Ω(1) and
Ω(2), respectively, and (taking (A) into account) that the vertex z (if z �= B)
separates the vertices B and z in Π′ (see Fig. 4(a), where in L(z, z) the dotted
line indicates that the link has either edge εz or εz; also if z̄ = Ω(2), then
the link indicated in Fig. 4(a) is a base link).

The 3-cycle C crosses at least two edges of L(z, z). The vertex z (resp. z)
is connected to each of the vertices Ω(1) and Ω(3) (resp. to the vertex Ω(2))
by two edge-disjoint paths not passing through V (C) or through the noncore
vertices of L(z, z). Hence, Ω(1) and Ω(3) lie inside C (resp. Ω(2) lies outside
C). It follows that the vertex Ω lies inside C and the edge (Ω, Ω(2)) is the
third edge that crosses C. We conclude that C crosses exactly two edges of
L(z, z) and the two edges separate z from z in L(z, z). Thus, the two edges
are the core-adjacent edges of the free cycle of L(z, z). Hence, in ϕ, the link
L(z, z) is 1-immersed as shown in Fig. 4(b), where the dotted edges indicate
alternative possibilities.

Let v, v̄ be the vertices of C different from A and let x be the fourth
vertex of the link containing C. The vertex x is connected to Ω(1) by two
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Figure 4: Cases in the proof of Lemma 3.

edge-disjoint paths not passing through the vertices of C, hence x lies inside
C. At most two vertices of C lie inside the free cycle of L(z, z). If only one
of the vertices v and v of C lies inside the free cycle, then we see that in the
case of L(z, z) at the bottom of Fig. 4(b), the path vxv can not lie inside
C, a contradiction. In the case of L(z, z) at the top of Fig. 4(b), if the path
vxv lies inside C, then x must lie inside a 3-cycle Q of L(z, z) incident to z,
whereas A lies outside Q, a contradiction, since Q is not incident to B and
in G there are two edge-disjoint paths connecting x to A and not passing
through the vertices v, v, and the vertices of Q.
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Figure 5: Cases in the proof of Lemma 4.

If either both v and v or none of them lie inside the free 4-cycle, then in
the case of Fig. 4(c) (resp. (d)), where we depict the two possible placements
of the nonbase link L(z, z), there are two edge-disjoint paths of G connecting
A and Ω(3) (resp. A and Ω(2)) and not passing through z (resp. z), a contra-
diction. Reasoning exactly in the same way, we also obtain a contradiction
when L(z, z) is a base link. �

Lemma 4 Let G and ϕ be as in Lemma 2. If Π and Π′ are nonadjacent
A- and B-chain, respectively, then Π does not cross Π′ in ϕ.

Proof. Suppose, for a contradiction, that Π crosses Π′. Then an edge of a
link L(z, z) of Π′ crosses a 3-cycle C = xvv̄ of a link L of Π. Let C = x̄vv̄ be
a 3-cycle that is adjacent to C in L. (If L is not a base link, then L = C ∪C
and x, x̄ are the core vertices of L.) By Lemma 3, we may assume that all
core vertices of Π′ lie outside C and that exactly one vertex u of Π′ lies inside
C. The vertex u is 3-valent. By (A) we may also assume that all core vertices
of Π′ lie outside C. Since the edge vv̄ in C∩C is crossed by an edge of L(z, z̄),
also C contains precisely one vertex u′ of L(z, z̄) and u′ has degree 3 and is
not a core vertex. In particular, C lies outside C, and C lies outside C.

Adjacent trivalent vertices u, u′ cannot be contained in a base link. There-
fore, L(z, z) is not a base link. Let L(z, z) be depicted as shown in Fig. 5(a).
Because of symmetry, we may assume that u = w and u′ = ε, and that the
crossings are as shown in Fig. 5(b) and (c).

In the case of Fig. 5(b) the adjacent vertices z and w of L(z, z) are
separated by the 3-cycle zwε, whose edges are crossed by three edges different
from the edge zw, a contradiction.
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Consider the case in Fig. 5(c). If x and x are core vertices of Π, then they
are separated by the 3-cycle zwε of Π′, a contradiction.

Suppose that x and x are not two core vertices. This is possible only
when L is a base link. The vertex v is separated by the 3-cycle zwε from
the three vertices x, v, x of L, hence v is not a core vertex and has valence 3.
The link L has exactly one noncore vertex v of valence 3 and the vertices x
and x are adjacent. Hence the 3-cycle xvx separates two core vertices z and
z of Π′, a contradiction. �

Theorem 1 Every chain graph is an MN-graph.

Proof. Let G be a chain graph. By Lemma 1, it suffices to prove that G is not
1-planar. Consider, for a contradiction, a 1-immersion ϕ of G and suppose
that ϕ has minimum number of crossings.

We know by Lemma 4 that non-adjacent chains do not cross each other.
In the sequel we will consider possible ways that the Ω-edges cross with one
of the chains. Let us first show that such a crossing is inevitable.

Claim 1 At least one of the chains contains a link L = L(x, y) such that
every (x, y)-path in L is crossed by an Ω-edge.

Proof. Suppose that for every link L = L(x, y), an (x, y)-path in L is not
crossed by any Ω-edge. Then every chain contains a path joining its end
vertices that is not crossed by the Ω-edges. All six such paths plus the Ω-
edges form a subgraph of G that is homeomorphic to K3,3. By Lemma 4,
the only crossings between subdivided edges of this K3,3-subgraph are among
adjacent paths. However, it is easy to eliminate crossings between adjacent
paths and obtain an embedding of K3,3 in the plane. This contradiction
completes the proof of the claim. �

Let L = L(x, y) be a link in an A- or B-chain Π whose (x, y)-paths are
all crossed by the Ω-edges. We may assume that L is contained in a chain
connecting the vertex Ω(1) with A or B and that x separates y and Ω(1) in
Π. By Lemma 2, the induced 1-immersion of L is an embedding. The vertex
Ω lies inside a face of L and all Ω-edges that cross L cross the edges of the
boundary of the face. Considering the possible embeddings of L, it is easy
to see that all (x, y)-paths are crossed by Ω-edges only in the case when Ω
lies inside a face of L whose boundary contains two core-adjacent edges of
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a free cycle C of L, and two Ω-edges cross the two core-adjacent edges. By
(A), we may assume that Ω lies inside C.

If C is a k-cycle, k ∈ {3, 4}, then L has another cycle C ′ that shares with
C exactly k − 2 edges and contains a core vertex not belonging to C. If C
lies inside C ′, then we consider the plane as the complex plane and apply the
Möbius transformation f(z) = 1/(z−a) with the point a taken inside C ′ but
outside C. This yields a 1-immersion of G such that C does not lie inside
C ′ and Ω lies inside C. Hence, we may assume that C does not lie inside
C ′, that Ω lies inside C and two Ω-edges h and h′ cross two core-adjacent
edges of C. Note that any two among the vertices A, B, Ω(2), Ω(3) are joined
by four edge-disjoint paths not using any edges in the chain Π containing L.
Therefore, these four vertices of G are all immersed in the same face of L.

Let the Ω-edges h and h′ join the vertex Ω with basic vertices Ω(i) and
Ω(j), respectively. If the third basic vertex Ω(�) is Ω(2) or Ω(3), then Ω(2)
and Ω(3) lie inside different faces of L, a contradiction, hence Ω(�) = Ω(1).

The vertex Ω(1) is connected to one of the vertices A and B by two edge-
disjoint paths, not passing the vertices of C. Hence Ω(1) does not lie inside
the 3-cycle C.

Now the embeddings of possible links L (so that we can join the vertices
Ω and Ω(1) by an edge not violating the 1-planarity) are shown in Figure 6.

Let us now consider particular cases (a)–(f) of Figure 6.
(a): In this case, L is a base link. Consider two edge-disjoint paths in a

chain Π joining Ω(1) with the vertex A or B which is not incident with Π.
These paths must cross the edges e and f indicated in the figure. Let a be
the edge crossing e and b be the edge crossing f . It is easy to see that a and b
cannot be both incident with Ω(1) since Ω(1) is incident with three edges of
the base link in the chain Π. The 1-planarity implies that the edges a, b and
the vertex Ω(1) separate the graph G. Therefore, a and b are core-adjacent
edges of a link in the chain Π. If the edge g (shown in the figure) is crossed
by an edge c of Π, then also a, c and Ω(1) separate the graph. Thus a, c
would be core-adjacent edges in a link in Π as well, a contradiction. But if g
is not crossed and a is not incident with Ω(1), then the edge a and the vertex
Ω(1) separate G, a contradiction. If a is incident with Ω(1), then b is not (as
proved above). Now we get a contradiction by considering the separation of
G by the edge b and the vertex Ω(1).

(b): In this case, L is a B-link, the cycle C ′ lies inside C and Ω(1) is
inside C. Again, consider two edge-disjoint paths in the A-chain Π joining
Ω(1) with the vertex A. Their edges a and b (say) must cross the edges e
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Figure 6: The Ω-edges crossing a link

and f , respectively. As in the proof of case (a), we see that the edges a, b
and the vertex Ω(1) separate G, thus a and b are core-adjacent edges of a
free cycle of a link of Π. This free cycle has length 3 and separates x from
Ω(1), a contradiction.

(c): In this case, L is a B-link, the cycle C ′ lies outside C and Ω(1) is inside
C. The vertex Ω(1) is connected by 4 edge-disjoint paths with vertices x and
A such that the paths do not cross noncore vertices of L, a contradiction.

(d) and (e): In this case, L is a B-link and Ω(1) lies inside a 3-cycle
of L. Two edge-disjoint paths cross the edges e and f of L. One of the
paths also crosses the edge g. Then the edges crossing e and g separate G, a
contradiction, since G is 3-edge-connected.

(f): In this case, L is an A-link and the chain Π is joining Ω(1) with
the vertex A. Again, consider two edge-disjoint paths in the B-chain Π
joining Ω(1) with B. Their edges a and b (say) must cross the edges e
and f , respectively. As in the proof of case (a), we see that the edges a, b
and the vertex Ω(1) separate G, thus a, b are core-adjacent edges in a link
L′ = L(z, z′) in Π. Let z be the core vertex of L′ incident with the edges
a = zp and b = zq. Note that in L′, vertices p, q have two common neighbors,
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a vertex r of degree 3 in G and the core vertex z′, and that z′ is adjacent
to r. Inside L we have the subchain Π′ of the A-chain Π connecting x with
Ω(1). Hence, the free cycle of L′ containing the edges a and b must have
length at least 4 (that is, L′ is not a base link) and z is immersed outside L,
while p, q, r, z′ are inside. The subchain Π′ has two edge-disjoint paths that
are crossed by the paths prq and pz′q. Each of the paths prq and pz′q crosses
core-adjacent edges in Π since the crossed edges and Ω(1) separate G. Thus,
they enter faces of these links that are bounded by free cycles of the links.
However, the edge rz′ would need to cross one edge of each of these two free
cycles, hence the two free cycles are adjacent, that is, they are the two free
cycles of an A-link of Π. Then the vertex z′ lies inside one of the two free
cycles and the free cycle separates z′ from Ω(1), a contradiction, since z′ is
connected with Ω(1) by a B-subchain. �

The following theorem shows how chain graphs can be used to construct
exponentially many nonisomorphic MN-graphs of order n.

Theorem 2 For every integer n ≥ 63, there are at least 2(n−54)/4 noniso-
morphic MN-graphs of order n.

Proof. The A-chain of length t has 3t + 2 vertices and a B-chain of length t
has 4t+1 vertices. Consider a chain graph whose three A-chains have length
2, 2, and � ≥ 2, respectively, and whose B-chains have length 2, 3, and t ≥ 4,
respectively. The graph has 35 + 3� + 4t vertices. Applying the modification
shown in Fig. 2(e) to links of the two B-chains of the graph which have length
at least 3, we obtain 2t−1 nonisomorphic chain graphs of order 35 + 3� + 4t,
where � ≥ 2 and t ≥ 4. We claim that for every integer n ≥ 63, there
are integers 2 ≤ � ≤ 5 and t ≥ 4 such that n = 35 + 3� + 4t. Indeed, if
n ≡ 0, 1, 2, 3 (mod 4), put � = 3, 2, 5, 4, respectively. If n = 35 + 3� + 4t,

where 2 ≤ � ≤ 5, then t ≥ n/4 − 50/4. Hence, there are at least 2
n
4
− 54

4

nonisomorphic chain graphs of order n ≥ 63. Since every chain graph is a
MN-graph, the theorem follows. �

3 PN-graphs

By a proper 1-immersion of a graph we mean a 1-immersion with at least one
crossing point. Let us recall that a PN-graph is a planar graph that does not
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have proper 1-immersions. In this section we describe a class of PN-graphs
and construct some graphs of the class. They will be used in Section 4 to
construct MN-graphs.

Two disjoint edges vw and v′w′ of a graph G are paired if the four vertices
v, w, v′, w′ are all four vertices of two adjacent 3-cycles. For every cycle C of
G, denote by N(C) the set of all vertices of the graph not belonging to C
but adjacent to C.

Following Tutte, we call a cycle C of a graph G peripheral if it is an
induced cycle in G and G − V (C) is connected. If G is 3-connected and
planar, then the face boundaries in its (combinatorially unique) embedding
in the plane are precisely its peripheral cycles.

Theorem 3 Suppose that a 3-connected planar graph G satisfies the follow-
ing conditions:

(C1) Every vertex has degree at least 4 and at most 6.

(C2) Every edge belongs to at least one 3-cycle.

(C3) Every 3-cycle is peripheral.

(C4) Every 3-cycle is adjacent to at most one other 3-cycle.

(C5) No vertex belongs to three mutually edge-disjoint 3-cycles.

(C6) Every 4-cycle is either peripheral or is the boundary of two adjacent
triangular faces.

(C7) For every 3-cycle C, any two vertices of V (G) \ (V (C) ∪ N(C)) are
connected by four edge-disjoint paths not passing through the vertices
of C.

(C8) If an edge vw of a nontriangular peripheral cycle C is paired with an
edge v′w′ of a nontriangular peripheral cycle C ′, then:

(i) C and C ′ have no vertices in common;
(ii) any two vertices a and a′ of C and C ′, respectively, such that

{a, a′} �⊆ {v, w, v′, w′} are non-adjacent and are not connected by
a path aba′ of length 2, where b does not belong to C and C ′.

(C9) G does not contain the subgraphs shown in Fig. 7 (in this figure, 4-valent
(resp. 5-valent) vertices of G are encircled (resp. encircled twice)).

Then G has no proper 1-immersion.
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Figure 7: Forbidden subgraphs.

Figure 8: Crossing two adjacent 3-cycles.

Proof. Denote by f the unique plane embedding of G. Suppose, for a
contradiction, that there is a proper 1-immersion ϕ of G. Below we consider
the 1-immersion and show that then G has a subgraph which is excluded by
(C8) and (C9), thereby obtaining a contradiction. In the figures below, the
encircled letter f (resp. ϕ) at the top left of a figure means that the figure
shows a fragment of the plane embedding f (resp. 1-immersion ϕ).

Lemma 5 In ϕ, there is a 3-cycle such that there is a vertex inside and a
vertex outside the cycle.

Proof. The 1-immersion ϕ has crossing edges e and e′. By (C2), the crossing
edges belong to different 3-cycles. If the 3-cycles are nonadjacent, then we
apply the following obvious observation:

(a) If two nonadjacent 3-cycles D and D′ cross each other, then there is
a vertex of D inside and outside D′.

If e = xy and e′ = x′y′ belong to adjacent 3-cycles xyy′ and x′yy′, respec-
tively (see Fig. 8), then, by (C4), there are nontriangular peripheral cycles
C and C ′ containing e and e′, respectively. The cycles C and C ′ intersect
at some point δ different from the intersection point of edges e and e′. By
(C8)(i), the two cycles do not have a common vertex, hence δ is the intersec-
tion point of two edges. By (C2), these two edges belong to some 3-cycles, D
and D′. Property (C8)(ii) implies that D and D′ are nonadjacent 3-cycles.
By (a), the proof is complete. �
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Lemma 6 If C = u1u2u3 is a 3-cycle such that there is a vertex inside and
a vertex outside C, then there is only one vertex inside C or only one vertex
outside C, respectively, and this vertex belongs to N(C).

Proof. By (C7), we may assume that all vertices of V (G) \ (V (C) ∪ N(C))
lie outside C. Then there can be only vertices of N(C) inside C. To prove
the lemma, it suffices to show the following:

(a) For every Q ⊆ N(C), |Q| ≥ 2, at least four edges join vertices of Q
to vertices in V (G) \ (V (C) ∪ Q).

By (C1), every vertex of Q has valence at least 4. By (C4), every vertex
of N(C) is adjacent to at most two vertices of C. We claim that if a vertex
v ∈ N(C) is adjacent to two vertices u1 and u2 of C, then v is not adjacent
to other vertices of N(C). Suppose, for a contradiction, that v is adjacent to
a vertex w ∈ N(C). Then, by (C4), the vertex w can be adjacent only to u3

and the 4-cycle vwu3u2 is not the boundary of two adjacent 3-cycles, hence,
by (C6), the 4-cycle is peripheral. Then, by (C3), any two of the three edges
u2v, u2u1, and u2u3 are two edges of a peripheral cycle, hence u2 has valence
3, contrary to (C1).

Now to prove (a) it suffices to prove the following claim:

(b) For every Q ⊆ N(C), |Q| = 1 (resp. |Q| ≥ 2), such that every vertex
of Q is adjacent to exactly one vertex of C, at least 2 (resp. 4) edges join
vertices of Q to vertices of V (G) \ (V (C) ∪ Q).

The claim is obvious for |Q| ∈ {1, 2}. For |Q| = 3, it suffices to show that
the three vertices of Q are not pairwise adjacent. Suppose, for a contradic-
tion, that the vertices v1, v2, and v3 of Q are pairwise adjacent. Then, by
(C4), the three vertices of Q are not adjacent to the same vertex of C. Let
v1 and v2 be adjacent to the vertices u1 and u2 of C, respectively. Then any
two of the edges v1u1, v1u2, and v1u3 are two edges of a 3-cycle (peripheral
cycle) or a 4-cycle which is not the boundary of two adjacent 3-cycles, so by
(C6), that 4-cycle is also peripheral. Hence, v1 has valence 3, contrary to
(C1).

For |Q| ≥ 4, it suffices to show that no vertex of Q is adjacent to three
other vertices in Q. Suppose, for a contradiction, that v ∈ Q is adjacent to
w1, w2, w3 ∈ Q. If v is adjacent to u1, then the edge vu1 belongs to three
cycles D1, D2, and D3 such that for i = 1, 2, 3, the cycle Di contains edges
vu1 and vwi, has length 3 or 4, and if Di has length 4, then Di is not the
boundary of two adjacent 3-cycles. By (C3) and (C6), these three cycles are
peripheral. This contradiction completes the proof of (b). �

19



Figure 9: The 3-cycle B separates x from y and z.

Suppose that a vertex h belongs to two adjacent 3-cycles hvw and hvw′.
Since deg(h) ≥ 4, h is adjacent to a vertex u �∈ {v, w, w′}. By (C2), the edge
hu belongs to a 3-cycle huu′. By (C4), u′ �∈ {v, w, w′, u}. Hence, we have
the following:

(B) If an edge e is contained in two 3-cycles of G, then both endvertices
of e have valence at least 5.

In the remainder of the proof of Theorem 3, we will show that any two
crossing edges of the proper 1-immersion ϕ belong to a subgraph that is
excluded by (C8) and (C9).

By Lemma 5, there is a 3-cycle C = xyz such that there is a vertex inside
and a vertex outside C. By Lemma 6, there is only one vertex v inside C
and v is adjacent to x.

Now we show that there is a 3-cycle B = vuw disjoint from C. Let
x, a1, a2, . . . , at (t ≥ 3) be all vertices adjacent to v. Suppose there is a 3-
cycle D = vaib, where b ∈ {x, y, z}. If b ∈ {y, z}, then the 3-cycle xvb is
adjacent to two 3-cycles C and D, contrary to (C4). Hence D = vaix. By
(C4), at most two vertices of {a1, a2, . . . , at} are adjacent to x. Hence, there
is a vertex aj such that a 3-cycle containing the edge vaj is disjoint from C.

Since there is only one vertex v inside C, exactly two edges of B cross
edges of C. First, suppose that B separates x from y and z (Fig. 9(a)). By
(C2), the edge xv belongs to a 3-cycle R = xva. If a �∈ {y, z, u, v}, then two
of the vertices y, z, u, w lie inside R and the other two vertices lie outside R
(see Fig. 9(b)), contrary to Lemma 6. So, we may assume, without loss of
generality, that a = z (Fig. 9(c)). Then the vertex x belongs to two adjacent
3-cycles, C and vxz, hence, by (B), deg(x) ≥ 5. By (C4), x is not adjacent
to u or w. Since x is the only vertex inside B, x has valence at most 4, a
contradiction. Hence, B can not separate x from y and z.

Now suppose that B separates the vertices y and z, and, without loss of
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Figure 10: The 3-cycle B separates y and z.

Figure 11: The edge uw belongs to two 3-cycles.

generality, let z lie inside B (Fig. 10(a)). If z is adjacent to v, then, by (B),
z has valence at least 5, hence z is adjacent to a vertex b ∈ {u, w}. But then
the 3-cycle xzv is adjacent to two 3-cycles, C and vuz, contrary to (C4). If z
is adjacent to u and w, then the edge xz belongs to three peripheral cycles,
C, xvuz, and xvwz, a contradiction, since every edge belongs to at most two
peripheral cycles. Hence, since z is the only vertex inside B, z has valence
4, z is not adjacent to v and is adjacent to exactly one of the vertices u and
w, say u (Fig. 10(b)).

Consider the vertex v. If v is adjacent to y, then (see Fig. 10(b)) x is
incident with exactly three peripheral cycles and has valence 3, a contra-
diction. Hence, v is not adjacent to y and since v is the only vertex inside
C, v has valence 4 (see Fig. 10(c)). By (C2), we obtain a subgraph shown
in Fig. 10(d). By (C9), at least one of the vertices u and x, say u, is not
4-valent. Then, by (C5), at least one of the edges au and uw belongs to two
3-cycles. Here we have two cases to consider.

Case 1: The edge uw belongs to two 3-cycles uwv and uwb (Fig. 11(a)).
Now, a is the only vertex inside the 3-cycle uwb (Fig. 11(b)). By (C4), a

is non-adjacent to w and b, hence a has valence 4. The edges yz and za (see
Fig. 11(a)) belong to a nontriangular peripheral cycle yzac . . .. The edge ac
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belongs to a 3-cycle acd and b is the only vertex inside the 3-cycle acd. The
vertex b is not adjacent to c, since the 4-cycle bcau can not be peripheral (see
Fig. 11(a)). Since b has valence at least 4, b is adjacent to d and has valence
4. The 4-cycle dbua is peripheral, so we obtain a subgraph of G shown in
Fig. 11(c). Note that, by (C3)–(C6), the vertex at the top of Figure 11(c) is
different from all other vertices shown in the figure. This contradicts (C9).

Case 2: The edge au belongs to two 3-cycles auz and aub (Fig. 12(a)).
Since b has valence at least 4, b lies outside the 3-cycle auz (Fig. 12(b)).

The edges yz and za (resp. wu and ub) belong to a nontriangular peripheral
cycle C1 (resp. C2). The cycles C1 and C2 are paired. In ϕ, the crossing
point of edges uw and az is an intersection point of C1 and C2. The cycles
C1 and C2 have at least one other crossing point, denote this intersection
point by δ. By (C8)(i), C1 and C2 are vertex-disjoint, hence, δ is the crossing
point of C1 and an edge h1h2 of C2 (Fig. 12(c)). The edge h1h2 is not the
edge uw and belongs to a 3-cycle h1h2h3. If h3 belongs to C2, then in the
embedding f the edge h1h3 is a chord of the embedded peripheral cycle C2

and thus {h1, h3} is a separating vertex set of G. But G is 3-connected, a
contradiction. Hence h3 does not belong to C2.

Now suppose that h1h2 �= bu. We have h2 �∈ {a, z, b, u}. By (C8)(ii),
h3 �= a, a is not adjacent to h2 and h3, and C1 does not pass through h3

(that is, h3 does not belong to C1 and C2). Hence, a vertex s of C1 lies inside
the 3-cycle h1h2h3 (see Fig. 12(c)). By (B), deg(a) ≥ 5. If s = a, then, since
s is the only vertex inside the 3-cycle h1h2h3, a is adjacent to at least one of
h2 and h3, a contradiction. Hence, s �= a. Since z is the only vertex inside
the 3-cycle B, and the 3-cycle h1h2h3 is not B (since h1h2 �= uw), we have
s �= z. Now, since s has valence at least 4, s is adjacent to at least one of the
vertices h1, h2, and h3, contrary to (C8)(ii). Hence h1h2 = bu and h3 = a.

We have C1 = yzah . . . and the edge ah belongs to a 3-cycle ahd (see
Figs. 12(d) and (e)). Considering Fig. 12(e), if there is a vertex inside the
3-cycle auz, the vertex has valence at most 3, a contradiction. Hence no edge
crosses the edge au. If h lies inside the 3-cycle aub, then, by (C4), h is not
adjacent to d and u, h has valence at most 3, a contradiction. Hence, h lies
outside the 3-cycle aub and b is the only vertex inside the 3-cycle ahd (see
Fig. 12(e)).

By (C4), b is not adjacent to d and h, hence b has valence 4 and belongs
to a 3-cycle btt′ disjoint from aub (Fig. 12(f)), where C2 = wubt . . .. Now d
is the only vertex inside the 3-cycle btt′ (Fig. 12(e)). By (C8)(ii), d is not
adjacent to t. Since d has valence at least 4, d is adjacent to t′ and has
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Figure 12: The edge au belongs to two 3-cycles.

valence 4. The 4-cycle dt′ba is peripheral. We obtain a subgraph of G shown
in Fig. 12(g), contrary to (C9). The obtained contradiction completes the
proof of the theorem. �

Denote by A the class of all 3-connected plane graphs G satisfying the
conditions (C1)–(C9) of Theorem 3. In what follows we show how to con-
struct some graphs in A and, as an example, we shall give two infinite families
of graphs in A, one of which will be used in Section 4 to construct MN-graphs.

First we describe a large family of 3-connected plane graphs satisfying
the conditions (C1)–(C6) and (C8) of Theorem 3.

Given a 4-valent vertex v of a 3-connected plane graph, two peripheral
cycles C and C ′ containing v are opposite peripheral cycles at v if C and C ′

have no edges incident with v in common.
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Denote by H the class of all 3-connected (simple) planar graphs H satis-
fying the following conditions (H1)–(H4):

(H1) Every vertex has valence 3 or 4.

(H2) H has no 3-cycles.

(H3) Every 4-cycle is peripheral.

(H4) For every 4-valent vertex v and for any two opposite peripheral cycles
C and C ′ at v, no edge joins a vertex of C − v to a vertex of C ′ − v.

A plane graph G is a medial extension of a graph H ∈ H if G is obtained
from H in the following way. The vertex set of G is the set {v(e) : e ∈ E(H)}.
The edge set of G is defined as follows. For every 3-valent vertex v of H , if
e1, e2, e3 are the edges incident with v, then in G the vertices v(e1), v(e2), and
v(e3) are pairwise adjacent (the three edges of G are said to be associated
with v). For every 4-valent vertex w of H , if (e1, e2, e3, e4) is the cyclic order
of edges incident to w around w in the plane, then G contains the edges of
the 4-cycle v(e1)v(e2)v(e3)v(e4), and contains either the edge v(e1)v(e3) or
the edge v(e2)v(e4); these five edges of G are said to be associated with the
4-valent vertex of H . Note that G can be obtained from the medial graph
of H by adding a diagonal to every 4-cycle associated with a 4-valent vertex
of H .

Lemma 7 Every medial extension G of any graph H ∈ H is a 3-connected
planar graph satisfying the conditions (C1)–(C6) and (C8) of Theorem 3.

Proof. By the construction of G, if {v(e), v(e′)} is a separating vertex set
of G, then the graph H − e − e′ is disconnected, a contradiction, since H is
3-connected. Hence G is 3-connected. Every peripheral cycle of H induces
a peripheral cycle of G. It is easy to see that all peripheral cycles of G that
are not induced by the peripheral cycles of H are the 3-cycles formed by the
edges associated with the vertices of H .

It is easy to see that G satisfies (C1)–(C5). To show that G satisfies
(C6), let J = v(e1)v(e2)v(e3)v(e4) be a 4-cycle of G. By the construction
of G, if vertices v(e) and v(e′) of G are adjacent, then the edges e and e′ of
H are adjacent, too. Since in H no three edges among e1, e2, e3, e4 form
a cycle (by (H2)), these four edges either form a 4-cycle (in this case J is
peripheral) or are the edges incident to a 4-valent vertex of H (in this case,
by the construction of G, J is the boundary of two adjacent faces of G).
Hence, G satisfies (C6).
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Figure 13: Two paths of G associated with a path of H .

It remains to show that G satisfies (C8). Let C and C ′ be nontriangular
peripheral cycles of G such that an edge a of C is paired with an edge a′ of C ′.
Then, by the construction of G, the peripheral cycles C and C ′ are induced
by peripheral cycles C and C

′
of H , respectively, that are opposite at some

4-valent vertex u. If C and C ′ have a common vertex v(e), then C and C
′

have a common edge e, hence H has a separating vertex set {u, w}, where
w is a vertex incident to e, a contradiction, since H is 3-connected. Now
suppose that G has an edge joining a vertex v(e) of C to a vertex v(e′) of C ′

such that at least one of the vertices v(e) and v(e′) is not incident to a and a′.
Then the edges e and e′ are incident to the same vertex w of H and the cycles
C and C

′
pass through w. It follows that {u, w} is a separating vertex set of

H , a contradiction. Next suppose that G has a path v(e)v(b)v(e′) connecting
a vertex v(e) of C to a vertex v(e′) of C ′ such that v(b) does not belong to
C and C ′, and at least one of the vertices v(e) and v(e′) is not incident to a
or a′. If in H the edges e, b, and e′ are incident to the same vertex w, then
{u, w} is a separating vertex set of H , a contradiction. If in H the edges a
and b (resp. b and e′) are incident to a vertex w (resp. w′) such that w �= w′,
then the edge b joins the vertex w of C with the vertex w′ of C

′
, contrary to

(H4). Hence G satisfies (C8). The proof is complete. �

There are medial extensions of graphs in H that do not satisfy conditions
(C7) and (C9). In the sequel we shall describe a way how to verify conditions
(C7) and (C9), and henceforth give examples of graphs satisfying (C1)–(C9).
To show that a medial extension G of H ∈ H satisfies (C7) it is convenient
to proceed in the following way. Subdivide every edge e of H by a two-valent
vertex v(e) of G. We obtain a graph H whose vertex set is V (H) ∪ V (G)
where the vertices of V (G) are all 2-valent vertices of H . We will consider
paths of G associated with paths of H connecting 2-valent vertices.

Two paths P and P ′ of H are H-disjoint if P ∩ P ′ ∩ V (H) = ∅, i.e.,
P ∩ P ′ ⊆ V (G).

Consider a path P = v(e1)w1v(e2)w2v(e3) . . . wn−1v(en) in H where w1,
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w2, . . . , wn−1 are the H-vertices on P . It is easy to see that the edges of G
associated with the vertices w1, w2, . . . , wn−1 of H contain two edge-disjoint
paths connecting in G the vertices v(e1) and v(en) (see Fig. 13); any two such
paths in G are said to be associated with the path P of H. Since H has no
multiple edges, every edge of G is associated with exactly one vertex of H .
Hence, if P and P ′ are H-disjoint paths in H , each of which is connecting
2-valent vertices, then every path in G associated with P is edge-disjoint
from every path in G associated with P ′. As a consequence, we have the
following conclusion:

(C) If H has a cycle containing 2-valent vertices v(e) and v(e′), then G
has four edge-disjoint paths connecting v(e) and v(e′).

The fact that a path in H gives rise to two edge-disjoint paths in G (paths
associated with the path of H) can be used to check the property (C7) of G.

For a 3-cycle C of G, a path of H is C-independent if the path does
not contain vertices of C. When checking (C7) for a medial extension G
of H ∈ H, given a 3-cycle C of G and two 2-valent vertices x, y ∈ V (G) \
(V (C) ∪N(C)) ⊂ V (H), four C-independent edge-disjoint paths P1, P2, P3,
and P4 of G connecting x and y in G will be represented in some subsequent
figures (see, e.g., Figure 15) in the following way. The edges of the paths
incident to vertices of N(C) are depicted as dashed edges joining 2-valent
vertices, the dashed edges are not edges of H (see, for example, Fig. 15(b),
where the edges of H are given as solid lines). All other edges of the paths are
represented by paths in H. If X is a subpath of Pi such that X is associated
with a path X in H, then X is represented by a dashed line passing near the
edges of X in H. If Xi and Xj are subpaths of Pi and Pj (where possibly
i = j), respectively, such that Xi and Xj are edge-disjoint paths associated
with a path X of H, then Xi and Xj are represented by two (parallel) dashed
lines passing near the edges of X in H. Using these conventions, the reader
will be able to check that the depicted dashed paths and edges in the figure
of H represent four C-independent edge-disjoint paths of G connecting x and
y.

Now we describe some graphs in A. Let us recall that graphs in A are
precisely those 3-connected planar graphs that satisfy conditions (C1)–(C9).
To simplify the arguments, we construct graphs with lots of symmetries so
that, for example, to check the condition (C7) we will have to consider only
two 3-cycles of a graph.

For n ≥ 6, let Hn ∈ H be the Cartesian product of the path P3 of length 2
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Figure 14: The graph Hn ∈ H and its extension Gn.

and the cycle Cn of length n (see 14(a)). Fig. 14(b) shows a medial extension
Gn of Hn. By Lemma 7, Gn satisfies (C1)–(C6) and (C8). Every 4-gonal
face of Gn is adjacent to a 6-valent vertex and Gn has no 5-valent vertices,
hence Gn satisfies (C9).

Now we show that Gn satisfies (C7). Consider a fragment of Hn shown
in Fig. 15(a) (in the figure we introduce notation for some vertices and also
depict in dashed lines some edges of Gn). Because of the symmetries of Gn,
it suffices to consider the following two cases for a 3-cycle C, when checking
(C7):

Case 1. V (C) = {6, 9, 10}.
Then N(C) = {2, 3, 5, 7, 8, 11, 12, 13, 14}. If we delete from Hn the ver-

tices 1, 2, . . . , 14, then the obtained graph has only one connected component
U with a vertex in Hn, and U is 2-connected. Hence, any two 2-valent ver-
tices x and y of U belong to a cycle in U and then, by (C), Gn has four
C-independent edge-disjoint paths connecting x and y. Fig. 15(b) shows
four C-independent edge-disjoint paths in Gn connecting vertices 1 and 4. If
we delete from Hn the vertices {1, 2, . . . , 18} \ {1, 4}, then in the resulting
non-trivial connected component, for every vertex x ∈ V (Hn)\{1, 4}, there is
a path P connecting the vertices 1 and 4, and passing through x; combining
two edge-disjoint paths of Gn associated with P and the two edge-disjoint
paths connecting 1 and 4, shown in Fig. 15(b), we obtain four C-independent
edge-disjoint paths connecting the vertices 4 and x (and, analogously, for the
vertices 1 and x). Now, because of the symmetries of Hn, it remains to show
that there are four C-independent edge-disjoint paths connecting the vertex
4 with each of the vertices 15, 16, 17, 18; Fig. 15(c) shows the paths (since
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Figure 15: Verifying (C7) for the graph Gn.

n ≥ 6).

Case 2: V (C) = {2, 3, 6}.
We have N(C) = {1, 4, 5, 7, 9, 10}. If we delete from Hn the vertices

1, 2, . . . , 7 and 9, 10, 13, then the obtained graph has only one connected
component U with at least two vertices and U is 2-connected. Hence any
two vertices x and y in Hn that are both in U belong to a cycle of U and
then, by (C), Gn has four C-independent edge-disjoint paths connecting x
and y. It remains to show that for every vertex x of Hn belonging to U , there
are four C-independent edge-disjoint paths connecting x and the vertex 13.
These four paths are shown in Figs. 15(d)–(f), depending on the choice of x.
We conclude that Gn satisfies (C1)–(C9), hence Gn is a PN-graph for every
n ≥ 6.

Fig. 16 gives another example of an extension G′
n of a graph H ′

n ∈ H.
By Lemma 7, G′

n satisfies (C1)–(C6) and (C8). Since G′
n has no 4-valent

vertices, it satisfies (C9). Using the symmetry of H ′
n, one can easily check

that for every 3-cycle C of G′
n, if we delete from H ′

n the vertices V (C)∪N(C)
of G′

n, then the obtained graph has only one connected component U with
at least two vertices and U is 2-connected. Then, by (C), any two vertices
of G′

n in U are connected by four C-independent edge-disjoint paths. Hence,
G′

n satisfies (C7) and is a PN-graph.
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Figure 16: The graph H ′
n ∈ H and its extension G′

n.

4 MN-graphs based on PN-graphs

In this section we construct MN-graphs based on the PN-graphs Gn described
in Section 3.

For m ≥ 2, denote by Sm, the graph shown in Fig. 17. The graph
has m + 1 disjoint cycles of length 12m − 2 labelled by B0, B1, . . . , Bm as
shown in the figure. The vertices of B0 are called the central vertices of Sm

and are labelled by 1, 2, . . . , 12m − 2 (see Fig. 17). For every central vertex
x ∈ {1, 2, . . . , 12m−2}, denote by x∗ its “opposite” vertex x+(6m−1) if x ∈
{1, 2, . . . , 6m−1} and the vertex x−(6m−1) if x ∈ {6m, 6m+1, . . . , 12m−2}.
In Sm, any pair {x, x∗} of central vertices is connected by a central path
P (x, x∗) of length 6m− 3 with 6m− 4 two-valent vertices. There are exactly
6m − 1 central paths.

For any integers m ≥ 4 and n ≥ 0, denote by Φm(n) the set of all (12m−
2)-tuples (n1, n2, . . . , n12m−2) of nonnegative integers such that n1 + n2 +
· · ·+n12m−2 = n. For every λ ∈ Φm(n), denote by Sm(λ) the graph obtained
from Sm by replacing, for every central vertex x ∈ {1, 2, . . . , 12m − 2}, the
eight edges marked by short crossings in Fig. 18(a) by 8(1 + nx) new edges
marked by crossings in Fig. 18(b) (the value x + 1 in that figure is to be
considered modulo 12m− 2). The graph Sm(λ) has m− 2 (12m− 2)-cycles
B0, B1, . . . , Bm−3 and three (12m − 2 + n)-cycles Bm−2, Bm−1, Bm.

We want to show that for every m ≥ 4 and for every λ ∈ Φm(n), n ≥ 0,
the graph Sm(λ) is an MN-graph.

Lemma 8 For every m ≥ 4 and λ ∈ Φm(n), the graph Sm(λ)−e is 1-planar
for every edge e.
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Figure 17: The graph Sm.

Proof. If we delete an edge of a central path, then the remaining 6m − 2
central paths, each with 6m−3 edges, can be 1-immersed inside B0 in Fig. 17.
If we delete one of the edges shown in Fig. 19(a) by a thick line, then the
central path P (x, x∗) can be drawn outside B0 with 6m − 3 crossing points
as shown in the figure and then the remaining 6m − 2 central paths can be
1-immersed inside B0. If we delete one of the two edges depicted in Fig. 19(a)
by a dotted line, then Fig. 19(b) shows how to place the central vertex x so
that the path P (x, x∗) can be drawn outside B0 with 6m− 3 crossing points
(analogously to Fig. 19(a)) and then the remaining 6m− 2 central paths can
be 1-immersed inside B0. This exhibits all possibilities for the edge e (up to
symmetries of Sm) and henceforth completes the proof. �

Given a 1-immersion of a graph G and an embedded cycle C, we say that
G lies inside (resp. outside) C, if the exterior (resp. interior) of C does not
contain vertices and edges of G.

Denote by Jm−2 the graph obtained from the graph Sm in Fig. 17 by
deleting the 2-valent vertices of all central paths and by deleting all vertices
lying outside the cycle Bm−2.
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Figure 18: Obtaining the graph Sm(λ).

Figure 19: The central path P (x, x∗) immersed outside B0.
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Lemma 9 For every m ≥ 4, Jm−2 is a PN-graph.

Proof. The graph Jm−2 contains m − 3 subgraphs L1, L2, . . . , Lm−3 isomor-
phic to the PN-graph G12m−2 such that for i = 1, 2, . . . , m− 1, the graph Li

contains the cycles Bi−1, Bi, and Bi+1. Consider an arbitrary 1-immersion
ϕ of Jm−2. Suppose that in the plane embedding of the PN-graph L1 in
ϕ, the cycle B2 is the boundary cycle of the outer (12m − 2)-gonal face of
the embedding. Then the embedding of L1 determines an embedding of the
subgraph of L2 bounded by the cycles B1 and B2. Since L2 is a PN-graph,
the subgraph of L2 bounded by B2 and B3 lies outside the cycle B2. Rea-
soning similarly, we obtain that for i = 3, 4, . . . , m − 3, the subgraph of the
PN-graph Li bounded by Bi and Bi+1 lies outside Bi. As a result, ϕ is a
plane embedding of Jm−2, hence Jm−2 is a PN-graph. �

Denote by Sm(λ) the graph obtained from Sm(λ), where m ≥ 4 and
λ ∈ Φm(n), by deleting the 2-valent vertices of all central paths.

Lemma 10 For every m ≥ 4 and λ ∈ Φm(n), Sm(λ) is a PN-graph.

Proof. The graph Sm(λ) contains a subgraph G isomorphic to the PN-graph
G12m−2+n and contains a subgraph G′ homeomorphic to the PN-graph Jm−2.
The graph G contains the cycles Bm−2, Bm−1, and Bm of Sm(λ), and the
graph G′ contains the cycles B0, B1, . . . , Bm−2 of Sm(λ) and is obtained from
Jm−2 by subdividing the edges of the cycle Bm−2 (by using n 2-valent vertices
in total).

Consider, for a contradiction, a proper 1-immersion ϕ of Sm(λ). In ϕ,
the graph G has a plane embedding and we shall investigate in which faces
of the embedding of G lie the vertices of G′. We shall show that they all lie
in the face of G bounded by the (subdivided) cycle Bm−2.

In the graph Sm(λ) the cycles Bm−2 and Bi, i ∈ {0, 1, . . . , m − 3} are
connected by 24m−4 edge-disjoint paths. This implies that no 3- or 4-gonal
face of G contains all vertices of Bi in its interior.

Any two vertices of Bi are connected by six edge-disjoint paths in G′ −
Bm−2. Therefore:

(a) No 3- or 4-gonal face of G contains any vertex of the cycles Bi, i =
0, 1, . . . , m − 3, in its interior.

Suppose that a vertex v of G′ does not belong to the cycles Bi, i =
1, 2, . . . , m − 2, and lies inside a 3- or 4-gonal face F of G. By construction
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Figure 20: The paths associated with a central vertex and the types of edges.

of G′, the vertex v is adjacent to two vertices w and w′ of some Bj , j ∈
{0, 1, . . . , m − 3}. By (a), w and w′ do not lie inside F , hence they lie,
respectively, in faces F1 and F2 of G adjacent to F . However, at least one
of F1 and F2 is 3- or 4-gonal, contrary to (a). This implies that all vertices
of G′ −Bm−2 lie inside the face of G bounded by Bm−2. Hence G′ lies inside
Bm−2 and has a proper 1-immersion in ϕ. If in this 1-immersion of G′ we
ignore the 2-valent vertices on the cycle Bm−2 of Sm(λ), then we obtain a
proper 1-immersion of the PN-graph Jm−2, a contradiction. �

By the paths of Sm(λ) associated with any central vertex x we mean
the two paths shown in Fig. 20; one of them is depicted in thick line and
the other in dashed line. Every edge of Sm(λ) not belonging to the cycles
B0, B1, . . . , Bm is assigned a type t ∈ {1, 2, . . . , 2m} as shown in Fig. 20 such
that for i = 1, 2, . . . , m, the edges of type 2i − 1 and 2i are all edges lying
between the cycles Bi−1 and Bi, and the edges of type 2i − 1 (resp. 2i) are
incident to vertices of Bi−1 (resp. Bi).

Suppose that there is a 1-immersion ϕ of Sm(λ). By Lemma 10, Sm(λ) is
a PN-graph. Thus, ϕ induces an embedding of this graph. We shall assume
that the outer face F0 of this embedding is bounded by the cycle Bm. We
shall first show that F0 is also a face of ϕ. To prove this, it suffices to see
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that no central cycle can enter F0.
Any central vertex x is separated from F0 by 3m− 1 edge-disjoint cycles:

m cycles B1, B2, . . . , Bm and 2m − 1 cycles C2, C3, . . . , C2m, where the cycle
Ci consists of all edges of type i (i = 2, 3, . . . , 2m). The central path P =
P (x, x∗) can have at most 6m − 3 crossing points, hence P cannot enter
F0. If P lies between B0 and Bm in ϕ, then it must cross 2(6m − 2) paths
associated either with 6m− 2 central vertices x + 1, x + 2, . . . , x∗ − 1 or with
6m−2 central vertices x∗+1, x∗+2, . . . , x−1 (here we interpret all additions
modulo 12m − 2), a contradiction. Hence, in ϕ any central path either lies
inside B0 or crosses some edges of Sm(λ) but does not lie entirely between
B0 and Bm.

The main goal of this section is to show that Sm(λ) has no 1-immersions
(see Theorem 4 in the sequel). Roughly speaking, the main idea of the proof
is as follows. Suppose, for a contradiction, that Sm(λ) has a 1-immersion.
Every central path can have at most 6m−3 crossing points, hence, all 6m−1
central paths can not be 1-immersed inside B0. Then there is a central path
which crosses some edges of Sm(λ). Let P be a central path with maximum
number of such crossings. Since P can have at most 6m− 3 crossing points,
some of the other 6m − 2 central paths do not cross P and have to “go
around” P and, in doing so, one of the paths has to cross more edges of
Sm(λ) than P does, a contradiction.

Before proving Theorem 4, we need some definitions and preliminary
Lemmas 11 and 12.

Consider a 1-immersion of Sm(λ) (if it exists). If a central path P =
P (x, x∗) does not lie inside B0, consider the sequence δ1, δ2, . . . , δr (r ≥ 2),
where δ1 = x and δr = x∗, obtained by listing the intersection points of
the path and B0 when traversing the path from the vertex x to the vertex
x∗ (here δ2, δ3, . . . , δr−1 are crossing points). By a piece of P we mean the
segment of P from δi to δi+1 for some i ∈ {1, 2, . . . , r − 1}; denote the piece
by P (δi, δi+1). A piece of P with an end point x or x∗ is called an end piece of
P at the vertex x or x∗, respectively. An outer piece of P is every piece of P
that is immersed outside B0. Clearly, either P (δ1, δ2), P (δ3, δ4), P (δ5, δ6), . . .
or P (δ2, δ3), P (δ4, δ5), P (δ6, δ7), . . . are all outer pieces of P . The end points
δ and δ′ of an outer piece Π of P partition B0 into two curves A and A′

such that the curve A lies inside the closed curve consisting of Π and A′ (see
Fig. 21). The central vertices belonging to A and different from δ and δ′ are
said to be bypassed by Π and P (cf. Fig. 21).
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Figure 21: The central vertices bypassed by an outer piece Π.

Figure 22: Transforming paths P (x, x∗) into paths P ′(x, x∗).

Lemma 11 If P (x, x∗) bypasses neither a central vertex y nor its oppo-
site vertex y∗, and P (y, y∗) bypasses neither x nor x∗, then P (x, x∗) crosses
P (y, y∗).

Proof. Suppose, for a contradiction, that P (x, x∗) does not cross P (y, y∗).
For every outer piece of the two paths we can replace a curve of a path
containing the piece by a new curve lying inside B0 so that the path P (x, x∗)
(resp. P (y, y∗)) becomes a new path P ′(x, x∗) (resp. P ′(y, y∗)) connecting
the vertices x and x∗ (resp. y and y∗) such that the two new paths lie inside
B0 and do not cross each other, a contradiction. How the replacements can
be done is shown in Fig. 22, where the new curves are depicted in thick line.
(Note that in Fig. 22(b), since P (y, y∗) does not bypass x, the depicted pieces
bypassing x belong to P (x, x∗).) �

By a type of an outer piece of a central path we mean the maximal type
of an edge of Sm(λ) crossed by the path.

For an outer piece Π of a central path P (x, x∗), denote by b(Π) the number
of central vertices bypassed by Π, and by Δ(Π) the number of intersection
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points of Π and Sm(λ), including the crossings at the end points of Π (except
if an end point is x or x∗).

Lemma 12 If Π is an outer piece of type t of a central path P , then

Δ(Π) − b(Π) ≥ 2t − τ,

where τ = 1 if Π is an end piece and τ = 0 otherwise.

Proof. The piece Π crossing an edge of type t has a point separated from
the interior of B0 by � t+1

2
�+ t edge-disjoint cycles: B0, B1, . . . , B� t+1

2
�−1, and

the cycles C1, C2, . . . , Ct, where the cycle Ci consists of all edges of type i
(i = 1, 2, . . . , t). Thus, Π crosses each of these cycles twice, except that
for an end piece, we may miss one crossing with C1. The piece Π bypasses
b(Π) central vertices, hence Π crosses 2b(Π) paths associated with those b(Π)
vertices. Hence we obtain two inequalities

Δ(Π) ≥ 2
⌊

t+1
2

⌋
+ 2t − τ, (1)

and
Δ(Π) ≥ 2

⌊
t+1
2

⌋
+ 2b(Π) − τ. (2)

By (1), we have

Δ(Π) − b(Π) ≥ 2t − τ + 2
⌊

t+1
2

⌋ − b(Π) ≥ 2t − τ

for 2� t+1
2
� ≥ b(Π). By (2), we have

Δ(Π) − b(Π) ≥ 2t − τ + 2
⌊

t+1
2

⌋ − 2t + b(Π) ≥ 2t − τ

for b(Π) ≥ 2t − 2� t+1
2
�. Since 2t − 2� t+1

2
� ≤ 2� t+1

2
� + 1, the lemma follows.

�

By the type of a central path not lying (entirely) inside B0 we mean the
maximal type of the outer pieces of the path. If t different central paths
bypass a central vertex x, then all the paths cross edges of the same path T
associated with x and since the edges of T have pairwise different types, we
obtain that one of the central paths crosses an edge of type at least t. Hence
we have:

(D) If t different central paths bypass the same central vertex, then one
of the paths has type at least t.
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Theorem 4 For every m ≥ 4 and λ ∈ Φm(n), the graph Sm(λ) is not 1-
planar.

Proof. Consider, for a contradiction, a 1-immersion ϕ of Sm(λ) and a path
P = P (x, x∗) of maximal type t > 0.

As above, let Δ(P ) be the number of crossing points of P and Sm(λ),
and let b(P ) be the number of distinct central vertices bypassed by P and
different from x and x∗.

There are 6m − 2 − b(P ) different pairs {y, y∗} ({y, y∗} �= {x, x∗}) of
central vertices such that P does not bypass y and y∗; denote by P the set of
the corresponding 6m− 2− b(P ) paths P (y, y∗). If P (x, x∗) does not bypass
y and y∗, then P (y, y∗) either does not bypass x and x∗ (in this case P (y, y∗)
crosses P (x, x∗) by Lemma 11) or bypasses at least one of the vertices x and
x∗. Hence, we have

6m − 2 − b(P ) = β + γ + ε, (3)

where: β (resp. γ) is the number of paths of P that cross P and do not bypass
x or x∗ (resp. that bypass x or x∗ and do not cross P ); ε is the number of
paths of P that cross P and bypass x or x∗. We are interested in the number
γ + ε of paths of P that bypass x or x∗.

The path P has at most 6m − 3 crossing points, hence

6m − 3 − Δ(P ) ≥ β + ε

and, by (3), we obtain

γ = 6m − 2 − b(P ) − (β + ε) ≥ Λ(P ) − b(P ) + 1,

whence
γ + ε ≥ Δ(P ) − b(P ) + 1 + ε. (4)

Let Π1, Π2, . . . , Π� (� ≥ 1) be all outer pieces of P , and let Π1 be of
the maximal type t. We have Δ(P ) =

∑�
i=1 Δ(Πi) and b(P ) ≤ ∑�

i=1 b(Πi)
(the vertices x and x∗ can be bypassed by P , and some central vertices can
be bypassed by P more than once). By (2), Δ(Pi) − b(Πi) ≥ 0 for every
i = 1, 2, . . . , �. Hence, by (4) and Lemma 12, we obtain

γ + ε ≥
�∑

i=1

Δ(Πi) −
�∑

i=1

b(Πi) + 1 + ε

≥ Δ(Π1) − b(Π1) + 1 + ε ≥ (2t + 1) − τ + ε, (5)
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where τ = 1 if Π1 is an end piece and τ = 0 otherwise. If Π1 is not an end
piece or ε ≥ 1, then, by (5), γ + ε ≥ 2t + 1, hence one of the vertices x and
x∗ is bypassed by at least t + 1 paths of P. Now, by (D), one of the t + 1
paths has type at least t + 1, a contradiction. Now suppose that Π1 is an
end piece at the vertex x and ε = 0. Then every path of P either crosses P
or bypasses x and x∗, and at least 2t paths of P bypass x or x∗. If no one
of the 2t paths bypasses x, then all the 2t ≥ t + 1 paths bypass x∗ and, by
(D), one of the paths has type at least t + 1. If one of the 2t paths, say, P ′,
bypasses x, then P ′ has an outer piece Π′ that bypasses x and does not cross
Π1 (since ε = 0, P ′ does not cross P ). The piece Π1 has type t and is an end
piece at x, hence Π′ has type at least t + 1, a contradiction. �

We have shown that every graph Sm(λ), where m ≥ 4 and λ ∈ Φm(n),
is an MN-graph. These graphs have order (5m− 1)(12m− 2) + 5n. Clearly,
graphs Sm1(λ1) and Sm2(λ2), where λ1 ∈ Φm1(n1) and λ2 ∈ Φm2(n2), are
nonisomorphic for m1 �= m2 and for m1 = m2 and n1 �= n2.

Claim 2 For any integers m ≥ 4 and n ≥ 0, there are at least 1
24m−4)

(
n+12m−3

12m−3

)

nonisomorphic MN-graphs Sm(λ), where λ ∈ Φm(n).

Proof. The automorphism group of Sm is the dihedral group D12m−2 of
order 24m − 4. Now the claim follows by recalling a well-known fact that
|Φm(n)| =

(
n+12m−3

12m−3

)
. �

5 Testing 1-immersibility is hard

In this section we prove that testing 1-immersibility is NP-hard. This shows
that it is extremely unlikely that there exists a nice classification of MN-
graphs.

Theorem 5 It is NP-complete to decide if a given input graph is 1-immersible.

Since 1-immersions can be represented combinatorially, it is clear that 1-
immersability is in NP. To prove its completeness, we shall make a reduction
from a known NP-complete problem, that of 3-colorability of planar graphs
of maximum degree at most four [10].
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The rest of this section is devoted to the proof of Theorem 5. Only at the
very end we shall explain how to modify our reduction in order to obtain a
geometric proof of the crossing number minimization for cubic graphs.

Let G be a given plane graph of maximum degree 4 whose 3-colorability is
to be tested. We shall show how to construct, in polynomial time, a related
graph G such that G is 1-immersible if and only if G is 3-colorable. We may
assume that G has no vertices of degree less than three.

To construct G, we will use as building blocks graphs which have a unique
1-immersion. These building blocks are connected with each other by edges
to form a graph which also has a unique 1-immersion. Then we add some
additional paths to obtain G.

We say that a 1-planar graph G has unique 1-immersion if, whenever
two edges e and f cross each other in some 1-immersion, then they cross
each other in every 1-immersion of G, and secondly, if G• is the planar graph
obtained from G by replacing each pair of crossing edges e = ab and f = cd
by a new vertex of degree four joined to a, b, c, d, then G• is 3-connected (and
thus has combinatorially unique embedding in the plane – the one obtained
from 1-immersions of G.

It was proved in [12] that for every n ≥ 6, the graph with 4n vertices and
13n edges shown in Fig. 23(a) has a unique 1-immersion. (To be precise, the
paper [12] considers the graph for even values of n ≥ 6 only, but one can
check that the proof does not depend on whether n ≥ 6 is even or odd.) We
call the graph a U-graph. Fig. 23(b) shows a designation of the U-graph used
in what follows. In the 1-immersion of the U-graph shown in Fig. 23, the
vertices 1, 2, 3, . . . , n−1, n which lie on the boundary of the outer face of the
spanning embedding (the boundary is called the outer boundary cycle of the
1-immersed U-graph) are called the boundary vertices of the U-graph in the
1-immersion. If a graph has a U-graph as a subgraph, then the U-graph is
called the U-subgraph of the graph.

Take two 1-immersed U-graphs U1 and U2 of order at least 13 · 7 and
construct the 1-immersed graphs shown in Figs. 24(a) and (b), respectively,
where by 1, 2, . . . , 7 we denote seven consecutive vertices on the outer bound-
ary cycle of each of the 1-immersed graphs. We say that in Fig. 24(a) (resp.
(b)) the U-graphs U1 and U2 are connected by a (1)-grid (resp. (2)-grid).
The vertices labeled 1, 2, . . . , 7 are the basic vertices of the grid and for
i = 1, 2, . . . , 7, the h-path connecting the vertices labeled i of the (h)-grid,
h ∈ {1, 2}, is called the basic path of the grid connecting these vertices. Let
us denote the ith basic path by Pi. The paths Pi−1 and Pi, i = 2, 3, . . . , 7, are

39



Figure 23: The U-graph.

Figure 24: Two U-graphs connected by a grid.

neighboring basic paths of the grid. For two basic paths P = Pi and P ′ = Pj ,
1 ≤ i < j ≤ 7, denote by C(P, P ′) the cycle of the graph in Fig. 24 consisting
of the two paths and of the edges (i, i + 1), (i + 1, i + 2), . . . , (j − 1, j) of the
two graphs U1 and U2.

By a U-supergraph we mean every graph obtained in the following way.
Consider a plane connected graph H . Now, for every vertex v ∈ V (H), take
a 1-immersed U-graph U(v) of order at least 13 · 7 · deg(v) and for any two
adjacent vertices u and w of the graph, connect U(u) and U(w) by a (1)- or
(2)-grid as shown in Fig. 25 such that any two distinct grids have no basic
vertices in common. We obtain a 1-immersed U-supergraph.

Theorem 6 Every U-supergraph M has a unique 1-immersion.

Proof. It suffices to show the following:

(a) The graph consisting of two U-graphs connected by an (h)-grid, h =
1, 2, has a unique 1-immersion.
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Figure 25: Constructing a U-supergraph.

Figure 26: A 1-immersion of a subgraph.

(b) In every 1-immersion ϕ of M , the edges of distinct grids do not inter-
sect.

Note that M contains no subgraph which can be 1-immersed inside the
boundary cycle of a 1-immersed U-subgraph of M in a 1-immersion of M
as shown in Fig. 26 in dashed line. Hence, in every 1-immersion of M , the
boundary edges of the U-subgraphs of M are not crossed.

We prove (a) and (b) in the following way. We consider a 1-immersed
subgraph W of M (cf. Fig. 24) consisting of two U-graphs U1 and U2 con-
nected by an (h)-grid Γ, h ∈ {1, 2}, and we show that in every 1-immersion
ϕ of M , the graph W has the same 1-immersion and the edges of Γ are not
crossed by edges of other grids.

Suppose, for a contradiction, that U1 and U2 are 1-immersed under ϕ
as shown in Fig. 27(a). Clearly, there are two basic paths Pi and Pj of Γ,
1 ≤ i < j ≤ 7, which do not intersect. Then the cycle shown in Fig. 27(a) in
thick line is embedded in the plane, a contradiction, since the cycle is crossed
by 5 other basic paths of Γ, but the cycle has only 2h ≤ 4 edges that can
be crossed by other edges. Hence, U1 and U2 are 1-immersed as shown in
Fig. 24.
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Figure 27: Cycles of two adjacent 1-immersed U-subgraphs.

Suppose that in ϕ, a basic path Pi of Γ crosses a basic path Q of some
grid of M exactly once. If Q = Pj is a basic path of Γ, j �= i (see Fig. 27(b)),
then the closed curves C1 and C2 shown in Fig. 27(b) by dashed cycles, are
embedded in the plane and each of the other five basic paths of Γ crosses an
edge of C1 or C2, a contradiction, since C1 and C2 have 2h − 2 ≤ 2 edges in
total which can be crossed by other edges. If Q is a basic path of a grid Γ′

different from Γ, then there is a basic path Pj, j �= i, of Γ such that Pj is not
crossed by Pi and Q. Hence, the cycle C(Pi, Pj) is embedded and Q crosses
the edges of the cycle exactly once. Then for every other basic path Q′ of
Γ′, the cycle C(Q, Q′) crosses C(Pi, Pj) at least twice and Q′ crosses Pi or
Pj (the edges of different U-subgraphs do not intersect). We have that the 7
basic paths of Γ′ cross Pi and Pj, a contradiction. Hence, in ϕ, if two basic
paths intersect, then they intersect twice. In particular, only basic paths of
(2)-grids can intersect.

Now we claim the following:
(a) If in ϕ two neighboring basic paths Pi−1 and Pi of the (2)-grid Γ do

not intersect, then the edge e joining the middle vertices of Pi−1 and Pi lies
inside the embedded cycle C(Pi−1, Pi).

Indeed, if e lies inside C(Pi−1, Pi), then the 4-cycle shown in Fig. 27(c) in
thick line is crossed by 5 basic paths Pr, r �= i − 1, i, a contradiction.

Suppose that in ϕ, a basic path of Γ crosses a basic path of a grid Γ′

twice (that is, Γ and Γ′ are (2)-grids). Since the number of basic paths of
Γ is odd (namely, 7), it can not be that every basic path of Γ crosses some
other basic path of Γ twice. Then there is a basic path of Γ which is not
crossed by other basic paths of Γ. Hence, if Γ = Γ′ (resp. Γ �= Γ′), then there
are two neighboring basic paths Pi−1 and Pi of Γ such that one of them,
say, Pi−1, is crossed twice by some basic path Q of Γ (resp. Γ′), and the
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other basic path Pi �= Q is not crossed by Q. Then the cycle C(Pi−1, Pi) is
embedded. By (a), the edge e joining the middle vertices of Pi−1 and Pi lies
inside C(Pi−1, Pi). Denote by C1 and C2 the two embedded adjacent 4-cycles
each of which consists of e and edges of the 6-cycle C(Pi−1, Pi). The middle
vertex of Q lies outside C(Pi−1, Pi) and the two end vertices of Q lie inside
C1 and C2, respectively. The end vertices of Q belong to two U-subgraphs
connected by Γ′. Since the edges of the two U-subgraphs do not cross the
edges of C1 and C2, we obtain that one of the U-subgraphs lies inside C1

and the other lies inside C2, a contradiction, since the two U-subgraphs are
connected by at least four basic paths different from Q, Pi−1, and Pi. Hence,
no basic path of Γ crosses some other basic path twice.

We conclude that the basic paths of the grids connecting U-subgraphs do
not intersect.

Now it remains to show that if Γ is a (2)-grid, then the edges joining the
middle vertices of the basic paths of Γ are not crossed. Consider any two
neighboring basic paths Pi−1 and Pi of Γ. The cycle C(Pi−1, Pi) is embedded
and, by (a), the edge e joining the middle vertices of Pi−1 and Pi lies inside
C(Pi−1, Pi). It is easy to see that for every edge e′ of G not belonging to
U-subgraphs and different from e and the edges of C(Pi−1, Pi), in the graph
G− e′ the end vertices of e′ are connected by a path which consists of edges
of U-subgraphs and basic paths of grids and which does not pass through
the vertices of C(Pi−1, Pi). Now, if the edge e is crossed by some other edge
e′, then e′ is not an edge of a U-subgraph, the end vertices of e′ lie inside
the cycles C1 and C2, respectively (where C1 and C2 are defined as in the
preceding paragraph) whose edges are not crossed by edges of U-subgraphs
and basic paths, a contradiction.

Therefore, the edges of M do not intersect and that the graph W has a
unique 1-immersion. This completes the proof of the theorem. �

Now, given a plane graph G every vertex of which has degree 3 or 4, we
construct a graph G such that G is 3-colorable if and only if G is 1-immersible.
To obtain G, we proceed as follows. First we construct a subgraph G(1) od
G such that G(1) has a unique 1-immersion. The graph G(1) is obtained
from a U-supergraph W by adding some additional vertices and edges. By
inspection of the subsequent figures which illustrate the construction of G(1)

and its 1-immersion, the reader will easily identify the additional vertices
and edges: they do not belong to U-subgraphs and grids. Then one can
easily check that given the 1-immersion of W , the additional vertices and
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Figure 28: Constructing the graph G(1).

edges can be placed in the plane in a unique way to obtain a 1-immersion
of G(1), hence G(1) has a unique 1-immersion also. Now, given the unique
1-immersion of G(1), to construct G we place some new additional paths
“between” 1-immersed U-subgraphs of G(1).

The graph G(1) is obtained from the plane graph G if we replace every
face F of the embedding of G by a U-graph U(F ) and replace every vertex
v by a vertex-block B(v) as shown at the top of Fig. 28. At the bottom of
Fig. 28 we show the designation of a (1)-grid used at the top of the figure
and at what follows. The vertex-block B(v) has a unique 1-immersion and is
obtained from a U-supergraph by adding some additional vertices and edges.
Fig. 28 shows schematically the boundary of B(v) and Fig. 31 shows B(v) in
detail. For a k-valent vertex v of G, 3 ≤ k ≤ 4, the vertex-block B(v) has 3k
boundary vertices labeled clockwise as a, b, c, a, b, c, . . . , a, b, c; these vertices
do not belong to U-subgraphs of B(v). In Figs. 28 and 31 we only show the
case of a 3-valent vertex v; for a 4-valent vertex the construction is analogous
– there are three more boundary vertices labeled a, b, c, respectively.

We say that vertex-blocks B(v) and B(w) are adjacent if v and w are
adjacent vertices of G.
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Figure 29: The pending paths connecting adjacent vertex-blocks.

The graph G is obtained from G(1) if we take a collection of additional
disjoint paths of length ≥ 1 (they are called the pending paths) and identify
the end vertices of every path with two vertices, respectively, of G(1). The
graph G(1) has a unique 1-immersion and the edges of the U-subgraphs of
G(1) can not be crossed by the pending paths, hence the 1-immersed G(1)

restricts the ways in which the pending paths can be placed in the plane to
obtain a 1-immersion of G. Every pending path connects either boundary
vertices of adjacent vertex-blocks or vertices of the same vertex-block.

For any two adjacent vertex-blocks, there are exactly three pending paths
connecting the vertices of the vertex-blocks. The paths have length 3 and
are shown in Fig. 29; we say that these pending paths are incident with the
two vertex-blocks. Each of the three pending paths connects the boundary
vertices labeled by the same letter: a, b, or c. For h ∈ {a, b, c}, the pending
path connecting vertices labeled h is called the (h)-path connecting the two
vertex-blocks. In Fig. 29 the (h)-path, h ∈ {a, b, c}, is labeled by the letter
h.

Denote by G(2) the graph obtained from G(1) if we add all triples of
pending paths connecting vertex-blocks B(v), B(w), for all edges vw ∈ E(G).

The pending paths connecting vertices of the same vertex-block B(v) are
divided into three families called, respectively, the a -, b -, and c-families of
B(v). Given the 1-immersion of G(1), for every h ∈ {a, b, c}, the h-family of
B(v) has the following properties:

(i) Every path P of the h-family admits exactly two embeddings in the
plane such that we obtain a 1-immersion of G(2) ∪ P .
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Figure 30: Pending paths of an h-family.

(ii) The h-family consists of paths P1, P2, . . . , Pn such that the graph G(2)∪
P1∪P2∪· · ·∪Pn has exactly two 1-immersions. In the two 1-immersions,
every path Pi uses its two embeddings. In one of the 1-immersions,
paths of the h-family cross all (h)-paths incident with B(v). In the
other 1-immersion, the paths of the h-family do not cross any (h)-path
incident with B(v).

Fig. 30 shows fragments of the two 1-immersions of the union of G(2) and
the pending paths of an h-family. In the figure, each of the depicted (in thick
line) six paths of the family, they are labeled by 1, 2, . . . , 6, respectively, uses
its two embeddings in the two 1-immersions.

If in a 1-immersion of G, paths of an h-family of B(v), h ∈ {a, b, c},
cross (h)-paths incident with B(v), then we say that the h-family of B(v) is
activated in the 1-immersion of G.

Figs. 31 and 32 show a vertex-block B(v) and the h-families of the vertex-
block (h = a, b, c) in the case where v is 3-valent (the generalization for a
4-valent vertex v is straightforward). The pending paths of the three h-
families are shown by thick lines and the three families are activated. To
avoid clattering a figure, Fig. 31 contains a fragment denoted by R which is
given in detail in Fig. 32.

In Figs. 31 and 32 we use designations of some fragments of B(v); the
designations are given at the left of Fig. 33 and the corresponding fragments
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Figure 31: A vertex-block and the activated h-families.

are given at the right of Fig. 33. The reader can easily check that for every
pending path P of the three families, there are exactly two ways to embed
the path so that we obtain a 1-immersion of G(2) ∪ P . The vertex-block
B(v) contains two 2-paths (in Fig. 32 one of them connects vertices labeled
0, the other one connects the vertices labeled 1; we call the paths the (0)-
and (1)-blocking paths, respectively). For every h ∈ {a, b, c}, exactly one
pending path of the h-family of B(v) crosses a blocking path: the pending
path has length 32, crosses the (1)-blocking (resp. (0)-blocking) path when
the h-family is activated (resp. not activated), and the pending path in each
of its two embeddings crosses exactly one pending path of each of the other
two families. Fig. 32 shows the two embeddings of the pending 32-path of
the b-family (one of them is in thick line, the other, when the family is not
activated, is in dashed line).

Denote by G
(2)
v the union of G(2) and the paths of all three h-families of

B(v). Now the reader can check that B(v) and the h-families of B(v) are
constructed in such a way that the following holds:

(1) For every h ∈ {a, b, c}, there is a 1-immersion of G
(2)
v such that only
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Figure 32: The fragment R of the vertex-block in Fig. 31.

the h-family of B(v) is activated.

(2) For any two h, h′ ∈ {a, b, c}, there is a 1-immersion of G
(2)
v such that

only the h- and h′-families of B(v) are activated.

(3) There are no 1-immersions of G
(2)
v such that the three h-families of

B(v) either are all activated or none is activated.

By construction of G, if G has a 1-immersion, then in the 1-immersion for
every vertex v of G, for some h ∈ {a, b, c} the h-family of B(v) is activated
and the h-families of the vertex-blocks adjacent to B(v) are not activated.

Now take a 1-immersion of G (if it exists) and assign every vertex v of
G a color h ∈ {a, b, c} such that the h-family of B(v) is activated in the
1-immersion of G. We obtain a proper 3-coloring of G with colors {a, b, c}.

Take a proper 3-coloring of G (if it exists) with colors {a, b, c} and for
every vertex v of G, if h(v) is the color of v, take the h(v)-family of B(v) to be
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activated and the other two families not to be activated. By the construction
of G, and by the mentioned properties of 1-immersions of its subgraphs B

(2)
v ,

it follows that we obtain a 1-immersion of G.
When constructing G, we choose the order of every U-subgraph such

that every boundary vertex of the U-subgraph is incident with an edge not
belonging to the U-subgraph. This implies that for every face F of size k
of the plane embedding of G, the number of edges in the U-graph U(F )
is bounded by a constant multiple of k. Similarly, for each v ∈ V (G), the
union of B(v) and its three h-families has constant size. Therefore, the whole
construction of G can be carried over in linear time. This completes the proof
of Theorem 5.

Figure 33: The designations of fragments of the vertex-block B(v).
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