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Abstract

Let a be an integer. It is proved that for any s and k, there exists a
constant N = N(s, k, a) such that every 31

2 (a+1)-connected graph with
at least N vertices either contains a subdivision of Ka,sk or a minor
isomorphic to s disjoint copies of Ka,k. In fact, we prove that connec-
tivity 3a + 2 and minimum degree at least 31

2 (a + 1) − 3 are enough.
The condition “a subdivision of Ka,sk” is necessary since G could be
a complete bipartite graph K 31

2 (a+1),m
, where m could be arbitrarily

large. The requirement on N(s, k, a) vertices is necessary since there
exist graphs without Ka-minor whose connectivity is Θ(a

√
log a).

When s = 1 and k = a, this implies that every 31
2 (a+1)-connected

graph with at least N(a) vertices has a Ka-minor. This is the first re-
sult where a linear lower bound on the connectivity in terms of a forces
a Ka-minor. This was also conjectured in [68, 47, 69, 39]. Our result
generalizes a recent result of Böhme and Kostochka [4] and resolves a
conjecture of Fon-Der-Flaass [16].

Our result together with a recent result in [25] also implies that
there exists an absolute constant c such that there are only finitely
many ck-contraction-critical graphs without Kk as a minor and there
are only finitely many ck-connected ck-color-critical graphs without
Kk-minors. These results are related to the well-known conjecture of
Hadwiger [17].

Our result was also motivated by the well-known result of Erdős
and Pósa [15]. Suppose that G is 31

2 (a + 1)-connected and without
a subdivision of Ka,t. Then there exists an integer F (s, k, a, t) such
that either there are s disjoint copies of Ka,k-minor in G, or G has a
vertex set F of order at most F (s, k, a, t) such that G−F has no minor
isomorphic to Ka,k.
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1 Introduction

In this paper, all graphs are finite and may have loops and multiple edges.
A graph H is a minor of a graph K if H can be obtained from a subgraph
of K by contracting edges. A graph H is a topological minor of a graph
K if K contains a subgraph which is isomorphic to a graph that can be
obtained from H by subdividing some edges. In such a case, we also say
that K contains a subdivision of H.

The study of graphs containing a given graph as a minor, or as a topolog-
ical minor, has long history. Starting with Wagner’s classification of graphs
without a K5-minor [73], there are many results concerning the structure of
graphs that do not contain certain graph as a minor. These excluded graphs
include K3,3 [73], V8 [52], the 3-cube [40], the octahedron [41], graphs with
single crossing [56], and K−

6 [24]. See also [8], [65], [20], and [43].
There are several well-known structures which guarantee that certain

minor exists in a graph G if G is large enough. For instance, any 5-connected
graph on at least 11 vertices contains the 3-cube as a minor [40]. Any
5-connected non-planar graph on at least 8 vertices contains a V8-minor
[52]. In addition, there are Ramsey-type results similar to the fact that
any sufficiently large connected graph contains either a k-path or a k-star.
Oporowski, Oxley and Thomas [48] proved that any large 4-connected graph
must have a large minor from a set of four families of 4-connected graphs.
Moreover, they found a similar result for large 3-connected graphs. Recently,
Kawarabayashi [26] proved a similar result for large 5-connected graphs.
Ding [11] has characterized large graphs that do not contain a K2,k minor.
A corollary of his result is that any large 5-connected graph contains a K2,k

minor.
There is another direction for the study of graph minors: Wagner and

Mader studied the maximum size of graphs not having Kk as a (topologi-
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cal) minor. Wagner [74] showed that a sufficiently large chromatic number
(which depends only on k) guarantees Kk as a minor, and Mader [37] showed
that a sufficiently large average degree will do the same.

Later, Kostochka [33, 34] and Thomason [67] independently proved that
Θ(k

√
log k) is the correct order of the average degree forcing Kk as a minor.

Recently, Thomason [68] found the asymptotically best possible value of this
“extremal” function.

These results show that if the minimum degree of given graph G is
a linear function of k, then G does not necessarily contain a Kk-minor.
This does not improve even if we add a connectivity condition. Only the
connectivity of order Θ(k

√
log k) forces the presence of Kk-minors.

However, as Thomason [68] pointed out, extremal graphs are more or
less exactly vertex disjoint unions of suitable dense random graphs. Such
graphs cannot have too many vertices. This fact also motivated Mader [39]
(see [68, 69]) to ask the following.

Question (Mader). Suppose that G is a large ck-connected graph without
Kk-minor, where c is some constant. What does G look like?

Motivated by this question and the results stated above, we prove the
following theorem, which answers the question of Mader.

Theorem 1.1 For any integers a, s and k, there exists a constant N(s, k, a)
such that every (3a + 2)-connected graph of minimum degree at least 31

2 (a +
1) − 3 and with at least N(s, k, a) vertices either contains Ka,sk as a topo-
logical minor or a minor isomorphic to s disjoint copies of Ka,k.

The proof of this result occupies whole Sections 3 and 5.
It is necessary to include the possibility of having Ka,sk as a subdivision

since G could be a complete bipartite graph K31
2 (a+1)−3,m

, where m could

be arbitrarily large. Recently, several extremal results concerning existence
of complete bipartite graph minors have appeared [35, 36, 46, 47], but none
of them implies that a linear connectivity in terms of a suffices to force
Ka,k-minors for large values of k.

For s = 1 and k = a, Theorem 1.1 immediately gives the following
corollary.

Corollary 1.2 For any a, there exists a constant N(a) such that every
31
2 (a + 1)-connected graph with at least N(a) vertices has a Ka-minor.
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Again, this is the first result showing that a linear function of connec-
tivity guarantees the existence of Ka-minors. (Actually, we prove a some-
what stronger result as stated in Theorem 1.1.) This settles a conjecture of
Thomason [68, 47]. Notice that the extremal number of edges for Ka-minors
are known only for a ≤ 9. For up to K7-minors, these are due to Mader [37].
For the K8-minor, this is due to Jørgensen [21]. Recently, the K9-minor
case was settled by Song and Thomas [64]. Corollary 1.2 also implies the
following result which is closely related to a recent result due to Böhme and
Kostochka [4].

Corollary 1.3 For every positive integers a and s, there is a number N(a, s)
such that every 31

2 (a+1)-connected graph with at least N(a, s) vertices either
contains a subdivision of Ka,s or a minor isomorphic to s disjoint copies of
Ka.

Since Ka,sk contains vertices of degree sk, Theorem 1.1 also implies the
following result, which answers a question by Fon-Der-Flaass [16].

Corollary 1.4 For every positive integers a, k and s, there exists a constant
N(k, s, a) such that every 31

2 (a + 1)-connected graph with maximum degree
at most ks − 1 and with at least N(k, s, a) vertices has a minor isomorphic
to s disjoint copies of Ka,k.

Our research is also motivated by Hadwiger’s Conjecture from 1943
which suggests a far reaching generalization of the Four Color Theorem
[1, 2, 63] and is one of the most interesting open problems in graph theory.

Conjecture 1.5 (Hadwiger [17]) For every k ≥ 1, every graph with chro-
matic number at least k contains the complete graph Kk as a minor.

For k = 1, 2, 3, this is easy to prove, and for k = 4, Hadwiger himself [17]
and Dirac [12] proved it. For k = 5, however, it becomes extremely difficult.
In 1937, Wagner [73] proved that the case k = 5 is equivalent to the Four
Color Theorem. So, assuming the Four Color Theorem [1, 2, 63], the case
k = 5 in Hadwiger’s Conjecture holds. Robertson, Seymour and Thomas
[61] proved that a minimal counterexample to the case k = 6 is a graph G
that has a vertex v such that G − v is planar. Hence, assuming the Four
Color Theorem, the case k = 6 of Hadwiger’s Conjecture holds. This result
is the deepest in this research area. So far, the conjecture is open for every
k ≥ 7. For the case k = 7, Kawarabayashi and Toft [32] proved that any
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7-chromatic graph has K7 or K4,4 as a minor, and recently, Kawarabayashi
[27] proved that any 7-chromatic graph has K7 or K3,5 as a minor.

It is not even known if there exists an absolute constant c such that any
ck-chromatic graph has Kk as a minor. So far, it is known that there exists
a constant c such that any ck

√
log k-chromatic graph has Kk as a minor.

Again, this follows from the results in [67, 68, 33, 34]. So it would be of great
interest to prove that a linear function of the chromatic number is sufficient
to force a Kk-minor. Let us observe that Reed and Seymour [51] proved the
fractional version of this conjecture.

We hope that our result may be the first step to prove that conjecture
since by Mader’s result [38], any minimal counterexample to Hadwiger’s
conjecture has a “highly” connected subgraph. (Actually, Kawarabayashi
[25] proved that any minimal counterexample to Hadwiger’s conjecture is
k
23 -connected.) So if this graph were larger than N(k) in Corollary 1.2,
this would imply that there exists an absolute constant c such that any ck-
chromatic graph has Kk as a minor. However, it is not clear whether this
graph is large or not. Our result only implies that a minimum counterexam-
ple to the conjecture has “small” order. Our result also implies that there
exist absolute constants c1 and c2 with c1 ≥ c2 such that there are only
finitely many c1k-connected c2k-color-critical graphs without Kk as a mi-
nor. This fact is related to Thomassen’s result [70] which says that there are
only finitely many 6-color-critical graphs on a fixed surface. Notice that the
set of graphs embeddable on a fixed surface is closed under taking minors.
More generally, Mohar [44] conjectured the following.

Conjecture 1.6 There are only finitely many 3-connected k-color-critical
graphs without Kk as a minor.

Note that the above conjecture without the condition on 3-connectivity
would be equivalent to Hadwiger’s Conjecture since, as observed by Toft [72],
if we have one such graph, then we would have infinitely many by applying
the Hajós’ construction. Hadwiger’s conjecture suggests that there are no
k-color-critical graphs without Kk as a minor. Since every 4-color-critical
planar graph joined with the complete graph Kk−5 gives rise to a (k − 1)-
color-critical graph without Kk-minor, the number k of colors is necessary.
So, this conjecture weakens Hadwiger’s conjecture in a sense, and our result
implies that the linear chromatic number and connectivity are enough in
Conjecture 1.6.

Let G be a graph satisfying the following conditions:

(i) G is k-chromatic.
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(ii) G is minimal with respect to the minor-relation in the class of all
k-chromatic graphs.

Any graph satisfying (i) and (ii) is said to be k-contraction-critical . Such
graphs were first defined and studied by Dirac [13, 14]. Corollary 1.2 together
with the main result of [25] implies that there exists a constant c such
that there are only finitely many ck-contraction-critical graphs without Kk-
minor.

Actually, our result implies the following.

Corollary 1.7 There is a constant c > 0 and a polynomial time algorithm
for deciding either that

(1) a given graph G is k-colorable, or

(2) G contains Kck-minor, or

(3) G contains a minor H without Kck-minor and with no k-coloring.

Observe that if c would be 1, then H in (3) would be a counterexample
to Hadwiger’s conjecture.

For the history and other problems concerning Hadwiger’s Conjecture,
we refer the reader to [19] or [71].

A graph H is said to have the Erdős-Pósa property , if for every integer k
there is an integer f(k,H) such that every graph G contains k vertex-disjoint
subgraphs, each containing an H-minor, or a set C of at most f(k,H) ver-
tices such that G−C has no H-minor. The term Erdős-Pósa property arose
because in [15], Erdős and Pósa proved that the cycle C3 has this property.

Robertson and Seymour [54] proved that the Erdős-Pósa property holds
for a graph H if and only if H is planar. Hence in general, the Erdős-Pósa
property does not always hold. But if we restrict our attention to graphs that
are “highly” connected or have large minimum degree, then the situation
changes. For instance, the result in [31] says that if the minimum degree is
at least 7, then either G contains a minor isomorphic to k disjoint copies of
K5 or there is a vertex set F of cardinality at most f(k) such that G−F is
5-degenerate, i.e., every induced subgraph of G − F has a vertex of degree
at most 5.

Theorem 1.1 implies the following general result.

Corollary 1.8 Suppose G is 31
2 (a + 1)-connected without a subdivision of

Ka,sk. Then either there are s disjoint copies of Ka,k-minor or else there
exists a constant f(s, k, a) such that G has a vertex set F of order at most
f(s, k, a) such that G − F has no minor isomorphic to Ka,k.

7



How can one prove Theorem 1.1? We cannot use “extremal” results like
those used in [67, 68] since these do not give a linear function of a. Instead,
we will make use of “tree-width” and apply some deep results of Robertson
and Seymour from [58, 59]. Tree-width was introduced by Halin in [18],
but it went unnoticed until it was rediscovered by Robertson and Seymour
[53] and, independently, by Arnborg and Proskurowski [3]. Tree-width was
used not only for Graph Minor Theory [54, 57, 58, 59], but also for some
structural graph theory results [54, 48, 62, 50, 10, 5]. In particular, three of
us [5] proved the following result.

Theorem 1.9 ([5]) For any positive integers k and w, there exists a con-
stant N = N(k,w) such that every 7-connected graph of tree-width at most
w and of order at least N contains K3,k as a minor.

In another paper [6], we extended Theorem 1.9 to the following result
using the Robertson-Seymour structure theorems [58, 59].

Theorem 1.10 ([6]) For any positive integer k, there exists a constant
N = N(k) such that every 7-connected graph of order at least N contains
K3,k as a minor.

In the forthcoming paper [30], we will develop further, and prove the
following result.

Theorem 1.11 ([30]) For any positive integer k, there exists a constant
N = N(k) such that every 9-connected graph of order at least N contains
K4,k as a minor.

In [5] it is also proved that for any a ≥ 3 the following holds. For any
positive integers k, a and w there exists a constant N = N(k,w) such that
every 265a-connected graph of tree-width at most w and of order at least
N contains Ka,k as a minor. We improve this statement to the following
result:

Theorem 1.12 For any positive integers a, k, s and w, there exists a con-
stant N = N(a, k, s, w) such that every (3a + 1)-connected graph with mini-
mum degree at least 27

2 (a + 1), of tree-width at most w and of order at least
N , either contains s disjoint Ka,k minors or contains a subdivision of Ka,sk.

The proof of Theorem 1.12 is given in Section 3.
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By proving Theorem 1.1, we extend this result by omitting the tree-
width condition. The basic approach is similar to that of [5], but it is more
involved since we improve connectivity 265a used in [5] to 3a + 1 and, in
addition, we either find s disjoint copies of Ka,k-minor or a subdivision of
Ka,sk.

Theorem 1.9 is sharp in the sense that the 7-connectivity condition can-
not be relaxed. Moreover, the function of the connectivity in Theorems 1.12
and 1.1 must be at least 2a + 1. These facts follow from a construction of a
family of arbitrarily large 2a-connected graphs (of tree-width 3a − 1) none
of which contains a Ka,2a+1-minor; see [5].

Similarly, the following example shows that connectivity 3a + 1 in The-
orem 1.12 is almost best possible.

Proposition 1.13 For every positive integer a, there exist arbitrarily large
(3a − 1)-connected graphs of minimum degree 4a − 2 and tree-width 4a − 2
that neither contain Ka,k-subdivision nor they contain a minor isomorphic
to a disjoint copies of Ka,k for k ≥ 4a − 1.

Proof. Let C(a, n) be the graph with vertex set V = {(i, j) | 1 ≤ i ≤ a, 0 ≤
j ≤ n−1} in which two distinct vertices (i, j) and (i′, j′) are adjacent if and
only if j − j′ is 0 or ±1 modulo n. The degree of each vertex of C(a, n) is
3a− 1. It can be shown that C(a, n) has tree-width 3a− 1 (when n is large
enough) and that C(a, n) does not contain Ka,k-minors if k > 2a + 1. The
proof of these facts can be found in [5].

Let C̃(a, n) be the graph obtained from C(a, n) by adding a−1 additional
vertices, each of which is completely joined to C(a, n). Clearly, C̃(a, n)
is (3a − 1)-connected, its minimum degree is 4a − 2 and its tree-width is
(3a − 1) + (a − 1) = 4a − 2.

C̃(a, n) has as many vertices as we want, just take sufficiently large n.
Since it has only a − 1 vertices of degree more than 4a − 2, it does not
contain a Ka,4a−1-subdivision. If it would contain a minor isomorphic to a
disjoint copies of Ka,k, one of them would be contained in C(a, n) which is
not possible as mentioned above. This contradiction completes the proof.
�

2 Highly linked subgraphs

A graph L is said to be k-linked if it has at least 2k vertices and for any
ordered k-tuples (s1, . . . , sk) and (t1, . . . , tk) of 2k distinct vertices of L,
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there exist pairwise disjoint paths P1, . . . , Pk such that for i = 1, . . . , k, the
path Pi connects si and ti. Such collection of paths is called a linkage from
(s1, . . . , sk) to (t1, . . . , tk).

An important tool will be the following theorem due to Thomas and
Wollan [66].

Theorem 2.1 Every 2k-connected graph G with at least 5k|V (G)| edges is
k-linked.

Theorem 2.1 implies that every 10k-connected graph is k-linked. Bol-
lobás and Thomason [7] proved that every 22k-connected graph is k-linked,
and Kawarabayashi, Kostochka and Yu [28] proved that every 12k-connected
graph is k-linked.

Let G be a graph and let A,B be subgraphs of G. We say that the
pair (A,B) is a separation of G if A ∪ B = G, V (A) − V (B) 6= ∅, and
V (B) − V (A) 6= ∅. The order of a separation (A,B) is |V (A) ∩ V (B)|.

The following result is a variation of an old theorem of Mader [38].

Theorem 2.2 Let G be a graph and k an integer such that

(a) |V (G)| ≥ 5
2k and

(b) |E(G)| ≥ 25
4 k|V (G)| − 25

2 k2.

Then |V (G)| ≥ 10k + 2 and G contains a 2k-connected subgraph H with at
least 5k|V (H)| edges.

Proof. Clearly, if G is a graph on n vertices with at least 25
4 kn− 25

2 k2 edges,

then 25
4 kn−25

2 k2 ≤
(n
2

)

. Hence, either n ≤ 25
4 k+1

2−1
4

√

(25k + 2)2 − 400k2 <
5
2k or n ≥ 25

4 k + 1
2 + 1

4

√

(25k + 2)2 − 400k2 > 10k + 1. Since |V (G)| ≥ 5
2k,

we get the following:

Claim 1. |V (G)| ≥ 10k + 2.

Suppose now that the theorem is false. Let G be a graph with n vertices
and m edges, and let k be an integer such that (a) and (b) are satisfied.
Suppose, moreover, that

(c) G contains no 2k-connected subgraph H with at least 5k|V (H)| edges,
and

(d) n is minimal subject to (a), (b) and (c).
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Claim 2. The minimum degree of G is more than 25
4 k.

Suppose that G has a vertex v with degree at most 25
4 k, and let G′ be the

graph obtained from G by deleting v. By (c), G′ does not contain a 2k-
connected subgraph H with at least 5k|V (H)| edges. Claim 1 implies that
|V (G′)| = n − 1 ≥ 5

2k. Finally, |E(G′)| ≥ m − 25
4 k ≥ 25

4 k|V (G′)| − 25
2 k2.

Since |V (G′)| < n, this contradicts (d) and the claim follows.

Claim 3. m ≥ 5kn.

The claim follows easily from (b) by using Claim 1.

By Claim 3 and (c), G is not 2k-connected. Since n > 2k, this implies
that G has a separation (A1, A2) such that A1 \ A2 6= ∅ 6= A2 \ A1 and
|A1 ∩ A2| ≤ 2k − 1. By Claim 2, |Ai| ≥ 25

4 k + 1. For i ∈ {1, 2}, let Gi be a
subgraph of G with vertex set Ai such that G = G1∪G2 and E(G1∩G2) = ∅.
Suppose that |E(Gi)| < 25

4 k|V (Gi)| − 25
2 k2 for i = 1, 2. Then

25

4
kn − 25

2
k2 ≤ m = |E(G1)| + |E(G2)|

<
25

4
k(n + |A1 ∩ A2|) − 25k2

≤ 25

4
kn − 25

2
k2,

a contradiction. Hence, we may assume that |E(G1)| ≥ 25
4 k|V (G1)| − 25

2 k2.
Since n > |V (G1)| ≥ 25

4 k + 1 and G1 contains no 2k-connected subgraph
H with at least 5k|V (H)| edges, this contradicts (d), and the proposition is
proved. �

By Theorem 2.1, every 2k-connected graph G with at least 5k|V (G)|
edges is k-linked. Hence, Theorem 2.2 implies the following:

Corollary 2.3 Let G be a graph and k an integer such that

(a) |V (G)| ≥ 5
2k and

(b) |E(G)| ≥ 25
4 k|V (G)| − 25

2 k2.

Then G contains a k-linked subgraph.
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3 Bounded tree-width structure

In this section, we consider the bounded tree-width case and prove Theorem
1.12.

A tree decomposition of a graph G is a pair (T, Y ), where T is a tree
and Y is a family {Yt | t ∈ V (T )} of vertex sets Yt ⊆ V (G), such that the
following two properties hold:

(W1)
⋃

t∈V (T ) Yt = V (G), and every edge of G has both ends in some Yt.

(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then
Yt ∩ Yt′′ ⊆ Yt′ .

The width of a tree decomposition (T, Y ) is maxt∈V (T )(|Yt| − 1). It was
shown in [48] that if a graph G has a tree decomposition of width at most w
then G has a tree decomposition of width at most w that further satisfies:

(W3) For every two vertices t, t′ of T and every positive integer k, either
there are k disjoint paths in G between Yt and Yt′ , or there is a vertex
t′′ of T on the path between t and t′ such that |Yt′′ | < k.

(W4) If t, t′ are distinct vertices of T , then Yt 6= Yt′ .

(W5) If t0 ∈ V (T ) and B is a component of T − t0, then V1 =
⋃

t∈V (B) Yt \
Yt0 6= ∅.

In the rest of this section, we give a proof of Theorem 1.12. Let a, k, s
and w be given positive integers. Let G be a connected graph with a tree
decomposition (T, Y ) of width at most w that satisfies (W1)–(W5).

We will develop a structure that is similar to that used in [48] and in [5].
First, we define the constants that will be used in the proofs:

n1 = gn2 , where g = (sk − 1)
(

w+1
a

)

n2 = nw+1
3

n3 = (2n4)
p, where p = 2w+1

n4 = nq
5, where q = 2w(w+1)/2

n5 = 2s n6

n6 = (29a + 6)k
(

w+1
a

)

.

We assume that |V (G)| = N ≥ (w + 1)n1 and that G has neither s disjoint
Ka,k-minors nor Ka,sk-subdivision.
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Claim 3.1 If G is a-connected, then |V (T )| ≥ n1 and every vertex of T
has degree at most g = (sk − 1)

(w+1
a

)

. Consequently, T contains a path R
of length |E(R)| ≥ n2.

Proof. The first inequality follows from (W1). Suppose that t0 ∈ V (T )
has degree at least g + 1. Let C be the set of components of G − Yt0 . By
(W2) and (W5), it is clear that |C| ≥ g + 1. For C ∈ C, let v be a vertex in
C. Since G is a-connected, there exist a internally disjoint paths connecting
v with a distinct vertices in Yt0 . Let S(C) be the union of these paths, and
let X(C) be the set of their endvertices in Yt0 . By the Pigeonhole Principle,
there is a set C′ ⊆ C of sk components for which X(C) contains the same
set of a vertices of Yt0 . Now it is clear that the union of S(C) for C ∈ C′ is
a subdivision of Ka,sk in G. �

From this point on we will no longer need the assumption that the parts
Yt of the tree decomposition have at most w + 1 vertices. What we will
need is the long path R and the assumption that the adhesion along R is
bounded, where the adhesion is defined as

max{|Yt ∩ Yt′ | ; t, t′ ∈ V (R)}. (1)

This weaker assumption will allow us to use the subsequent conclusions of
this section in the analysis of the long vortex structure in Section 5.

For t ∈ V (R), let t′ be its successor on R. Let S̄t = Yt ∩ Yt′ . By (W5),
every S̄t separates G. In particular, |S̄t| ≥ c if G is c-connected. The next
claim, whose proof can be found in [48] or [5], enables us to assume that
there are arbitrarily many such separators S̄t of the same size and that there
is a linkage through all of them.

Claim 3.2 There is a subsequence r1, r2, . . . , rn3
of length n3 of the vertices

of R such that for some q ≥ 1 , |S̄ri
| = q for i = 1, 2, . . . , n3, and for every

vertex t of R between r1 and rn3
, |S̄t| ≥ q.

From now on we replace R by the subpath from r1 to rn3
. Note that

q ≤ w + 1.
By (W3) and Claim 3.2, there are q disjoint paths in G from Yr1

to Yrn3
.

Fix these paths, denote them by P1, . . . , Pq, and put Z = P1 ∪ · · · ∪ Pq.
Since G is 3-connected, these paths can be chosen such that every Z-bridge
in G is attached to at least two of the paths (cf., e.g., [23]), which we
assume henceforth. Let us recall that a Z-bridge in G is either an edge
e ∈ E(G) \ E(Z) whose endvertices are both in Z, or a subgraph of G
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consisting of a connected component C of G − Z together with all edges
joining C and Z. The vertices of a Z-bridge B in Z ∩ B are called vertices
of attachment of B, and we say that B is attached to Z at these vertices.

Denote the subpath of Pj with one end in S̄t and the other end in S̄t′

by Pj(t, t
′) for any t, t′ ∈ {r1, . . . , rn3

}. Let p1, . . . , pn be a subsequence
of r1, . . . , rn3

. The path Pj is said to be trivial if Pj(p1, pn) is a single
vertex, and it is said to be everywhere nontrivial (almost nontrivial) w.r.t.
the sequence p1, . . . , pn if Pj(pi, pi+1) contains at least three (respectively, at
least two) vertices for every i = 1, . . . , n−1. The paths Pj and Pl are said to
be everywhere bridge connected (resp. everywhere bridge disconnected) with
respect to p1, . . . , pn if for every i = 1, . . . , n − 1, there exists (resp. does
not exist) a Z-bridge which has a vertex of attachment in Pj(pi, pi+1) and
a vertex of attachment in Pl(pi, pi+1).

The following claim can be found in [5].

Claim 3.3 There is a subsequence p1, p2, . . . , pn5
of r1, r2, . . . , rn3

of length
n5 such that for each j = 1, . . . , q, Pj(p1, pn5

) is either trivial or every-
where nontrivial (w.r.t. the subsequence). Moreover, for every pair of dis-
tinct indices j, l ∈ {1, . . . , q}, Pj(p1, pn5

) and Pl(p1, pn5
) are either every-

where bridge connected or everywhere bridge disconnected (w.r.t. the new
subsequence).

Proof. Clearly, there is a subsequence of r1, . . . , rn3
of length

√
n3 such

that the corresponding segment of P1 is either trivial or everywhere almost
nontrivial with respect to the subsequence. By repeating this argument on
the subsequence for P2, . . . , Pq, respectively, we end up with a sequence of
length at least 2n4 such that every path is either trivial or everywhere almost
nontrivial. By taking every second element of this sequence, a subsequence
of length n4 satisfying the first part of the claim is obtained. Starting with
that subsequence, one can obtain a subsequence of length n5 satisfying also
the second part of the claim by using similar arguments as above, except
that we have to repeat the subsequence argument

(q
2

)

≤
(w+1

2

)

times. �

Following [5], we introduce the auxiliary graph Γ. It has vertex set
V (Γ) = {P1, . . . , Pq}, and the paths Pj and Pl are adjacent vertices in Γ if
they are everywhere bridge connected w.r.t. p1, . . . , pn5

.
At least one of the paths is everywhere nontrivial, say P1. Let Γ1 be the

induced subgraph of Γ on the everywhere nontrivial paths. Let Γ0 be the
connected component of Γ1 containing P1. Note that Γ0 contains none of
the everywhere trivial paths. Let {P1, . . . , Pq0

} (q0 = |V (Γ0)|) be the paths
in V (Γ0).
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For i = 1, 2, . . . , n5 − 1, denote by Z ′(i) the union of Pj(pi, pi+1) for
j = 1, . . . , q0 together with all those trivial paths that are everywhere bridge
connected to some path Pj ∈ V (Γ0). Let Ẑi be the subgraph of G obtained
by taking the union of Z ′(i) and all those Z-bridges B that have all vertices
of attachment in Z ′(i). Finally, let Zi be the subgraph of Ẑi obtained by
deleting all vertices corresponding to the trivial paths. Furthermore, we
write Si = S̄pi

∩ (P1 ∪ · · · ∪ Pq0
).

Let r = 25a + 2. For i = 1, 2, . . . , n5 − r, let Hi =
⋃r−1

j=0 Zi+j and

Ĥi =
⋃r−1

j=0 Ẑi+j .

Claim 3.4 If G is a-connected, then at most a−1 trivial paths are adjacent
to Γ0 in Γ.

Proof. Let A be the set of vertices of those everywhere trivial paths that
are adjacent to Γ0 in Γ. Suppose that |A| ≥ a. For the purpose of this proof,
let us say that Ĥi is separable if there is a separation (Ai, Bi) of Ĥi of order
at most a − 1 such that A ⊆ Ai and Bi − Ai contains a vertex in Zi+2a.
Suppose that there exists a set I of (sk − 1)

(

w+1
a

)

+ 1 values of i such that

Ĥi is not separable for i ∈ I and such that any two distinct elements i, j ∈ I
differ by at least r+1 = 25a+3. Since Hi∩Hj = ∅ whenever |i− j| ≥ r+1,
the corresponding graphs Hi (i ∈ I) are pairwise disjoint.

For each i ∈ I, choose a internally disjoint paths in Ĥi from a vertex
in Zi+2a to a distinct vertices in A. Such paths exist by Menger’s theorem
since Ĥi is not separable. By the Pigeonhole Principle, there is a subset
of sk of such subgraphs Ĥi whose a paths end up at the same a-tuple of
vertices in A. Clearly, the internally disjoint paths in these sk subgraphs
form a subdivision of Ka,sk. This contradiction shows that Ĥi is separable
for all but at most (r + 1)(sk − 1)

(w+1
a

)

values of i.

Since n5 − r > (r + 1)(sk − 1)
(w+1

a

)

, there is an i such that Ĥi is sepa-
rable. Let (Ai, Bi) be a corresponding separation chosen so that Bi − Ai is
connected. Since |Ai ∩Bi| ≤ a− 1, there exists p ∈ A such that p ∈ Ai −Bi.
Similarly, we see that there exist j, l where 1 ≤ j < 2a and 2a < l ≤ 4a such
that neither Zi+j nor Zi+l contains a vertex in Ai ∩Bi. Since Ẑi+j −Ai is a
connected subgraph of Ĥi that contains p, we conclude that Zi+j ⊆ Ai −Bi.
Similarly, we see that Zi+l ⊆ Ai − Bi. The assumption that Bi −Ai is con-
nected and contains a vertex in Zi+2a implies that Bi−Ai does not intersect
Si ∪Si+r. This implies that Ai ∩Bi separates the graph G. This contradicts
the assumption that G is a-connected and shows that |A| ≤ a − 1. �

An immediate corollary of Claim 3.4 is
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Claim 3.5 If G is 3a-connected, then |V (Γ0)| ≥ a + 1.

Proof. Let q0 = |V (Γ0)|. Since the 2q0 vertices in Si ∪ Si+r together with
at most a−1 vertices of trivial paths adjacent to Γ0 in Γ separate the graph
G, we have 2q0 + (a − 1) ≥ 3a. This implies that q0 ≥ a + 1. �

Claim 3.6 Let T0 be a spanning tree of Γ0. If q0 ≥ a+1, there are vertices
t0, t1, . . . , ta of T0 such that for l = 0, . . . , a, the vertex tl has degree 1 or 0
in the subtree T0 \ {t0, . . . , tl−1}.

For X ⊆ {1, . . . , q0}, we define X(i) = {Px ∩ Si | x ∈ X} as the set of
vertices in Si that lie on the paths whose indices are in X.

Claim 3.7 Let X,Y ⊆ {1, . . . , q0}, where |X| = |Y | = a + 1. If j ≥
i+4a+4, then Zi∪Zi+1∪· · ·∪Zj−1 contains a+1 disjoint paths connecting
X(i) with Y (j).

Proof. Let T0 be a spanning tree of Γ0, let t0, . . . , ta be as stated in Claim
3.6, and let U = {t0, . . . , ta}. We will identify the elements of X and Y with
the corresponding vertices of T0.

First, we prove that there are paths connecting X(i) with U(i + 2a + 2)
in Zi ∪ · · · ∪ Zi+2a+1. Choose an enumeration x0, . . . , xa of elements of X
such that for l = 0, . . . , a, the distance from xl to tl in T0 is minimum among
all elements of X \ {x0, . . . , xl−1}.

In Zi we start at X(i) and follow the paths Pl (l ∈ X \ {x0}) until
Si+2. The path Px0

is re-routed to Pt0 as follows. In Zi, we use Z-bridges
corresponding to the edges on the path in T0 from x0 to t0 to get a path
from Px0

to Pt0 , and then we follow Pt0 through all the remaining parts
Zi+1, . . . , Zi+2a+1 to reach U(i + 2a + 2). Since x0 was selected as a vertex
that is closest to t0 in T0, the resulting path does not intersect other paths
within Zi ∪Zi+1. In the following two parts, Zi+2 ∪Zi+3, we repeat the pro-
cess with the remaining paths. All of them, except Px1

, just follow the paths
Pl, while Px1

is re-routed to Pt1 within Zi+2 (using bridges corresponding
to the edges on the (x1, t1)-path in T0), and afterwards it just follows Pt1

to reach U(i + 2a + 2). By the choice of x1, the re-routed path does not
intersect other paths. Since x0 was selected as a leaf, the re-routed path
cannot intersect Pt0 . This process is repeated for the remaining paths, Pxj

being re-routed in parts Zi+2j and Zi+2j+1. Re-routing never intersects the
subsequent paths since xj was selected to be closest to tj in T0, and does
not intersect with any of the previous ones (namely Pt0 , . . . , Ptj−1

) since
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t0, . . . , ta have been selected according to Claim 3.6. Therefore the process
yields desired paths to U(i + 2a + 2).

In the same way we can connect Y (j) with U(j − 2a− 2) in Zj−1 ∪ · · · ∪
Zj−2a−2 (going in the “backwards” direction). Since i+ 2a+ 1 < j − 2a− 2,
we can link U(i + 2a + 2) with U(j − 2a− 2) so that the resulting collection
of a + 1 paths from X(i) to Y (j) are pairwise disjoint. �

We shall prove that every subsequence of length n6 of our sequence
p1, . . . , pn5

gives rise to a Ka,k-minor in the union of the corresponding sub-
graphs Hi. This will show that there are s disjoint Ka,k-minors in G. There-
fore, it suffices to consider the initial subsequence for i = 1, . . . , n6 and prove
that there is a Ka,k-minor.

Claim 3.8 Suppose that G is a-connected. If the minimum degree of G is
at least 27

2 (a + 1), then the average degree of Hi is at least 25
2 (a + 1).

Proof. By Claim 3.4, every vertex in Hi − (Si ∪ Si+r) has at least 27
2 (a +

1) − (a − 1) = 25
2 (a + 1) + 2 neighbors in Hi. Therefore, if h is the number

of vertices of Hi, the average degree of Hi is at least

(25
2 (a + 1) + 2)(h − 2q0)

h
. (2)

Since h ≥ rq0, we have

h − 2q0

h
≥ 1 − 2

r
=

25a

25a + 2
. (3)

Now, (2) and (3) easily imply the conclusion of the claim. �

From now on we assume that the minimum degree of G is at least 27
2 (a+

1) and that G is (3a + 1)-connected. By Corollary 2.3 and Claim 3.8 we
conclude:

Claim 3.9 For every i, Hi contains an (a + 1)-linked subgraph Mi.

Claim 3.10 There are 2a+2 pairwise disjoint paths Q0, . . . , Qa and Q′
0, . . . ,

Q′
a in Hi such that the following properties hold:

(a) For l = 0, . . . , a, the path Ql starts in Mi and ends in Si+r.

(b) For l = 0, . . . , a, the path Q′
l starts in Si and ends in Mi.
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Proof. Let A be the set of vertices of everywhere trivial paths that are adja-
cent to Γ0 in Γ. We take a set of 2a+2 disjoint paths W = {W1, . . . ,W2a+2}
joining Mi with Si ∪ Si+r in Hi such that:

(i) The number of edges in
⋃2a+2

l=1 E(Wl) \
⋃r−1

j=0 E(Z ′(i+ j)) is minimum.

(ii) Let nL be the number of paths Wl ending in Si, and let nR be the
number of paths Wl ending in Si+r. Subject to (i), we assume that
|nL − nR| is minimum.

By Claim 3.4, |A| ≤ a − 1. Since G is (3a + 1)-connected, G − A is
(2a + 2)-connected. By applying Menger’s theorem to G − A, we see that
such a collection of paths W exists. Let us observe that some of the paths
may be trivial since Mi may contain vertices in Si ∪ Si+r.

If at least two paths in W intersect a path Pj , let W and W ′ be the paths
that intersect Pj as close as possible (on Pj) to Si and Si+r, respectively.
If W = W ′, suppose that the intersection u of W with Pj nearest Si (say)
comes before the intersection nearest Si+r. By (i), W ends at Si, i.e., its
segment from u to its end coincides with the segment Pj(Si, u) of Pj . This
shows that W 6= W ′. Then the path W (resp. W ′) must end at Si (resp.
Si+r) by (i).

Suppose that precisely one path, say W ∈ W, intersects a path Pj . In
this case, we can elect to have W ending at Pj ∩ Si or at Pj ∩ Si+r by
following the path Pj .

This implies that the value |nL − nR| in (ii) can be made to be zero or
one. However, since nL+nR = 2a+2 is even, we conclude that nL−nR = 0.

Now let the a + 1 paths in W that end in Si be called Q′
0, . . . , Q

′
a and

the a + 1 paths in W that end in Si+r be called Q0, . . . , Qa. This completes
the proof. �

Define α = r +4a+4 and for t = 1, . . . , ak set it = 1+(t−1)α. Observe
that iak ≤ n6 − r.

We shall now construct disjoint paths P◦
l (l = 0, . . . , a) from S1 to Sn6

satisfying the following additional condition. For t = 1, . . . , ak, the subgraph
Zit+r+1 contains a path Dt which connects P◦

0 with P◦
j , where j ∈ {1, . . . , a}

is congruent to t modulo a and Dt is internally disjoint from the paths P◦
l .

Having such a collection of paths, a Ka,k-minor is easily constructed. First,
by contracting the paths P◦

l for l = 1, . . . , a, we get a vertices that will play
the role of the vertices of degree k in the Ka,k-minor. To get the vertices
of the other class, we divide P◦

0 into k segments, each containing parts of
the path in subgraphs Zit+r+1 for a consecutive values of t. By contracting
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each of these k segments of P◦
0 , the paths Dt can be used to get the desired

Ka,k-minor.
It remains to see how to obtain the paths P◦

l and Dt. In each Hit we
take a + 1 paths joining Sit with Sit+r and passing through the (a + 1)-
linked subgraph Mit . They can be obtained by Claim 3.10: by using paths
Q′

0, . . . , Q
′
a we join Sit with Mit , and by using Q0, . . . , Qa we join Mit with

Sit+r. Since Mit is (a + 1)-linked, the endvertices of Q′
0, . . . , Q

′
a in Mit can

be linked to the endvertices of Q0, . . . , Qa in Mit . At this moment we do not
yet specify which vertex is actually linked to which one under this linkage,
since we will need this freedom in order to prove that appropriate paths Dt

exist.
Claim 3.7 can be used to link the ends of the paths Q0, . . . , Qa in Sit+r

with the initial vertices in Sit+1
of the paths constructed in Hit+1

, t =
1, . . . , ak − 1. In the subgraph Zit+r+1, there exists a path Dt joining two
of the constructed paths. Now, the linkage in Mit can be chosen in such a
way that Dt will connect P◦

0 with P◦
j , where j ∈ {1, . . . , a} is congruent to

t modulo a. This gives rise to appropriate paths.
This completes the proof of Theorem 1.12.

4 The Excluded Minor Theorem

Hereby, we shall consider the case when the tree-width is arbitrarily large.
We shall make use of Robertson-Seymour’s Excluded Minor Theorem [58]
which describes the structure of graphs that do no contain a given graph
as a minor. A strengthened version of that theorem was proved in [59].
This version enables us to apply the method used in the case of bounded
tree-width in the part of the proof when we consider the vortex structure.

Let (T, Y ) be a tree decomposition of a graph G. For an edge tt′ ∈ E(T ),
let Ztt′ = Yt ∩ Yt′ . Let us recall that the adhesion of a tree decomposition
(T, Y ) is max |Ztt′ | taken over all edges tt′ ∈ E(T ). If T is a path, then
(T, Y ) is also said to be a path decomposition of G.

It is easy to see that for every tree decomposition (T 0, Y 0) of G there
exists a tree decomposition (T, Y ) of G having the same width and not larger
adhesion than (T 0, Y 0) satisfying (W4) and (W5) of the tree-decomposition.

Let t1t2 ∈ E(T ) and let V1 be the vertex set defined in (W5). Define
similarly the set V2. Then also V2 6= ∅ and hence Zt1t2 is a separating set of
G which separates V1 and V2 in G.

Let G be a graph and let W = {w0, . . . , wn}, n = |W | − 1, be a linearly
ordered subset of its vertices such that wi precedes wj in the linear order
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if and only if i < j. The pair (G,W ) is called a vortex of length n, W is
the society of the vortex and all vertices in W are called society vertices.
Suppose that for i = 0, . . . , n, there exist vertex sets Xi ⊆ V (G) with the
following properties:

(V1) wi ∈ Xi for i = 0, . . . , n,

(V2) ∪0≤i≤nXi = V (G),

(V3) every edge of G has both endvertices in some Xi,

(V4) if i ≤ j ≤ k, then Xi ∩ Xk ⊆ Xj , and

(V5) if j /∈ {i, i + 1}, then wj /∈ Xi.

Then the family (Xi | i = 0, . . . , n) is a vortex decomposition of the vortex
(G,W ). For i = 1, . . . , n, denote by Zi = (Xi−1 ∩ Xi) \ W . The adhesion
of the vortex decomposition is the maximum of |Zi|, for i = 1, . . . , n. The
vortex decomposition is linked if for i = 1, . . . , n − 1, the subgraph of G
induced on the vertex set Xi \ W contains a collection of disjoint paths
linking Zi with Zi+1. Clearly, in that case |Zi| = |Zi+1|, and the paths
corresponding to Zi ∩ Zi+1 are trivial. Note that every vortex admits a
linked decomposition since we can take Xi = (V (G)\W )∪{wi, wi+1} (where
wn+1 := wn). The adhesion of the vortex is the minimum adhesion taken
over all linked decompositions of the vortex. Let us observe that in a linked
decomposition of adhesion q, there are q disjoint paths linking Z1 with Zn

in G − W .
Let H be a subgraph of a graph G0. If G0 can be written as G1 ∪ G2,

where G1 ∩ G2 = {v1, . . . , vt} ⊂ V (G0), 1 ≤ t ≤ 3, V (G2) \ V (G1) 6= ∅, and
every vertex of H in G2−{v1, . . . , vt} has degree 2 in H, then we replace G0

by the graph G′ obtained from G1 by adding all edges vivj (1 ≤ i < j ≤ t)
that are not already in G1. If H ∩G2 has a path in G2 connecting vi and vj ,
then we replace that path in H by the edge vivj. The resulting graph H ′ is a
subgraph of G′, and we say that the pair (G′,H ′) was obtained from (G0,H)
by an elementary reduction. Every pair (G′′,H ′′) that can be obtained from
(G0,H) by a sequence of elementary reductions is a reduction of (G0,H).

A surface is a compact connected 2-manifold (with boundary). The
surface is closed if the boundary is empty. The components of the boundary
are called the cuffs. If H is a subgraph of a graph G0, we say that the pair
(G0,H) can be embedded in a surface Σ up to 3-separations if there is a
reduction (G′′,H ′′) of (G0,H) such that G′′ has an embedding in Σ.

20



Let G be a graph, H a subgraph of G, Σ a surface, and α ≥ 0 an integer.
We say that the pair (G,H) can be α-nearly embedded in Σ if there is a set
of at most α cuffs in Σ, C1, . . . , Cb (b ≤ α), and there is a set A of at most
α vertices of G such that G−A can be written as G0 ∪G1 ∪ · · · ∪Gb where:

(N1) H is a subgraph of G0, and (G0,H) can be embedded in Σ up to
3-separations.

(N2) If 1 ≤ i < j ≤ b, then V (Gi) ∩ V (Gj) = ∅.

(N3) Wi = V (G0) ∩ V (Gi) = V (G0) ∩ Ci for every i = 1, . . . , b.

(N4) For every i = 1, . . . , b, the pair (Gi,Wi) is a vortex of adhesion less
than α, where the ordering of Wi is determined by the order of these
vertices on Ci.

The vertices in A are called the apex vertices of the α-near embedding .
It may happen that A = V (G), and G − A is empty. In that case we say
that the α-near embedding of G in Σ is trivial . Otherwise, G0 is nonempty.
The subgraph G0 of G is said to be the embedded subgraph with respect
to the α-near embedding and the decomposition G0, G1, . . . , Gb. The pairs
(Gi,Wi), i = 1, . . . , b, are the vortices of the α-near embedding. The vortex
(Gi,Wi) is said to be attached to the cuff Ci of Σ containing Wi.

Let us recall that an r-wall is a graph which is isomorphic to a subdivision
of the graph Wr with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r}
in which two vertices (i, j) and (i′, j′) are adjacent if and only if one of the
following possibilities holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}.

(2) j′ = j and i′ = i + (−1)i+j .

Now we can state the theorem. We shall use a formulation which is a
simplified version of one of the cornerstones of Robertson and Seymour’s
theory of graph minors, the Excluded Minor Theorem, as stated in [59].

Theorem 4.1 For every positive integer w, there exists a positive integer r
such that the following holds. Let R be a graph and let G be a graph that does
not contain R as a minor. If G has tree-width at least w, then G contains
an r-wall H as a subgraph and there is a constant α (depending only on
R) such that the pair (G,H) has an α-near embedding in some surface Σ
in which R cannot be embedded. Moreover, r = r(w) is nondecreasing as a
function of w and limw→∞ r(w) = ∞.
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Some additional remarks should be made at this point:

(1) The r-wall H is planarly embedded in Σ, i.e., every cycle in H is
contractible in Σ and there is a disk D ⊂ Σ such that H and all 6-faces of
the embedding of H in the plane are contained in D. To see this, observe
that the cycle space of H is generated by the facial 6-cycles of its planar
embedding. If all these cycles are contractible in Σ, then an (r/2)-subwall of
H is planarly embedded in Σ. If more than 171g of the facial 6-cycles of H
are noncontractible in Σ, where g is the Euler genus of Σ, then there are 9g
such cycles, F1, . . . , F9g, such that any two of them are at distance at least
3 in H. This implies, in particular, that H − (F1 ∪ · · · ∪ F9g) is connected
and hence no four cycles among F1, . . . , F9g are homotopic. Consequently,
F1, . . . , F9g contains a subfamily of 3g cycles, no two of which are homotopic.
This is not possible (cf., [45, Proposition 4.2.6]). Hence, at most 171g of
the 6-cycles of H are noncontractible and H contains a large subwall that
is planarly embedded, and we can take this subwall instead of H. The size
r′ of this smaller wall still satisfies the condition that r′ = r′(w) → ∞ as w
increases.

(2) We may additionally assume that the face-width (or representativity,
see [45] for the definition) of the embedded subgraph G′′ in Σ is as large as
we want (in terms of R). To see this, suppose that there is a non-contractible
closed curve C that intersects G′′ only at vertices and |C ∩ V (G′′)| is small.
Then we delete all the vertices in C∩V (G′′) from G′′ and add them into the
set of apex vertices. Then the genus of Σ goes down, and the number of apex
vertices is still bounded. Continuing this procedure, we get the graph on a
simpler surface whose face-width is as large as we wanted. See [55, 57, 50]
for details. For the survey on the face-width of embeddings, we refer to [45].

5 The large tree-width case

In this section we complete the proof of our main result, Theorem 1.1. We
will make use of Theorem 4.1. We let R = sKa,k, and apply Theorem 4.1 to
G, R and a large value of w that will be specified later. We let r = r(w), Σ,
H, and α = α(a, s, k) be the quantities from Theorem 4.1. By taking large
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enough w, we may assume that r is as large as we want.
We shall use the notation introduced in Section 4. In particular, we let

G0 be the embedded subgraph of G, and (G′′,H ′′) be the corresponding
reduction of (G0,H). Since R cannot be embedded in Σ, Euler genus of Σ

is at most s(a−2)(k−2)
2 . Since the embedded part G′′ of G contains the r-wall

H ′′, we may assume that G′′ is as large as we want. Suppose G′′ has N ′

vertices. Then N ′ ≥ r2. Let A be the set of apex vertices. Suppose that
each vortex has adhesion at most α and that there are b ≤ α vortices.

Again, we define the constants that will be used in the proofs:

n1 = 4(ask + 4sk
(

α
a

)

+ αn2)

n2 = n2α+1
3

n3 = 3a(2n4)
p, where p = 22α+1

n4 = nq
5, where q = 2α(2α+1)

n5 = 16(a + 1)sk
(2α

a

)

.

From now on we assume that w is so large that r is large enough to
guarantee that N ′ ≥ r2 ≥ n1. In the rest of our proof, we also assume
that G is (3a + 2)-connected and that the minimum degree of G is at least
31
2 (a + 1) − 3.

In this section we shall sometimes abuse terminology and speak of paths
in a set U (usually a subgraph or just a vertex set), but will always mean
paths in the subgraph of G induced by the vertices in U .

First, we will show that only a bounded number of non-society vertices
have a or more neighbors in G that are not their neighbors in G′′.

Claim 5.1 There are at most (sk− 1)
(

α
a

)

vertices of G′′ that can have a or
more neighbors in A.

Proof. Otherwise, by the Pigeonhole Principle, there is a vertex set C ⊆
V (G′′) with |C| ≥ sk such that each vertex in C has a common neighbors
in A. But this gives Ka,sk as a subgraph, a contradiction. �

Claim 5.2 There are at most 3(sk − 1)
(α

a

)

vertices of G′′ that have been
used in the elementary reductions yielding the embedded subgraph G′′ from
G0.
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Proof. The argument is similar to the one used in the proof of Claim
5.1. Suppose that we have made t elementary reductions in order to obtain

G′′ from G0. Let G
(i)
1 and G

(i)
2 be the graphs used in the ith elementary

reduction, i = 1, . . . , t. We may assume that vertex sets V (G
(i)
2 ) \ V (G

(i)
1 )

removed in these reductions are pairwise disjoint. Let vi ∈ V (G
(i)
2 )\V (G

(i)
1 ).

Since G is (a + 3)-connected, there exist a + 3 internally disjoint paths

connecting vi with a vertex v′i in V (G
(i)
1 ) \ V (G

(i)
2 ). At most three of these

paths reach v′i through vertices in V (G
(i)
1 )∩V (G

(i)
2 ), so at least a of them go

through A. They give rise to a collection of a paths joining vi with distinct

vertices in A, and these paths are contained in A∪V (G
(i)
2 )\V (G

(i)
1 ). If more

than 3(sk − 1)
(

α
a

)

vertices of G′′ have been involved in the reductions, then
t > (sk − 1)

(α
a

)

. By the Pigeonhole Principle, there is a set of sk indices
i1, . . . , isk such that their a-tuple of paths end in the same a-tuple of vertices
in A. Clearly, these paths determine a subdivision of Ka,sk in G. �

The following claim is a corollary of the large face-width condition, see
remark (2) after Theorem 4.1.

Claim 5.3 For every cuff Ci (1 ≤ i ≤ b), there exists a cycle C ′
i in G′′ such

that C ′
i separates a cylinder Di in Σ whose boundary components are Ci and

C ′
i. Every vertex in C ′

i is cofacial with some vertex in Ci (i.e., they belong
to a common facial walk). Moreover, interiors of cylinders Di are pairwise
disjoint for i = 1, . . . , b.

By Menger’s Theorem we have:

Claim 5.4 For i = 1, . . . , b, let πi be the maximum number of pairwise
disjoint paths connecting Ci ∩Wi with C ′

i. Then G′′ has a separation (Ii, Ji)
of order πi such that Ci ⊆ Ji ⊆ Di and C ′

i ⊆ Ii.

We shall prove that there is a large vortex with some special properties,
to which we will be able to apply similar arguments as used in Section 3.
We say that a society vertex v ∈ Ci is essential if degG′′(v) ≤ 4. We say
that the vortex (Gi,Wi) attached to the cuff Ci is n-wide if it contains n
essential society vertices w1, . . . , wn ∈ Wi and there are n pairwise disjoint
paths in G′′ joining {w1, . . . , wn} with the cycle C ′

i.

Claim 5.5 There exists an n2-wide vortex.

24



Proof. For each cuff Ci (1 ≤ i ≤ b), let Li be all essential vertices in Ci.
If for some i, there are at least n2 disjoint paths from Li to C ′

i, then we are
done. Otherwise, by Claim 5.4, for each i, there is a separation (Ii, Ji) of
order at most n2 − 1 such that Ji contains all the vertices in Li and C ′

i ⊆ Ii.
Let G′′

1 be the graph obtained from G′′ by deleting Ji − Ii for all i. Then
G′′

1 − ⋃b
i=1(Ji ∩ Ii) has no essential vertices. Since C ′

i ⊆ G′′
1 for 1 ≤ i ≤ b,

and since every vertex in C ′
i is cofacial with some vertex in Ci, G′′

1 contains
an (r − 1)-subwall of H ′′. Hence, G′′

1 has at least N ′′ ≥ (r − 1)2 vertices.
By Claims 5.1 and 5.2, at least N ′′ − 4(sk − 1)

(

α
a

)

− b(n2 − 1) vertices have
degree at least 31

2 (a+ 1)− 3− (a− 1) in G′′
1 . On the other hand, the surface

Σ has Euler genus at most s(a− 2)(k − 2)/2, and hence, by Euler’s formula,
G′′

1 has at most 3N ′′ +3s(a− 2)(k− 2)/2 edges. This yields a contradiction.
�

Let (G1,W1) be an n2-wide vortex. Let w1, . . . , wn2
be the corresponding

essential society vertices, and let Qi be disjoint paths joining wi with C ′
1,

i = 1, . . . , n2. The vortex (G1,W1) has a linked vortex decomposition. If the
adhesion is q, let P1, . . . , Pq be the corresponding paths, with the convention
that P1 is a tree, composed of all paths Qi and the segment of C ′

1 joining
the ends of these paths, starting at Q1 and passing through Q2, Q3, . . . until
reaching Qn2

. After contracting each Qi to a point, we can think of P1

as the path with vertices w1, . . . , wn2
and think of it as being contained in

G1. From now on, we will only be interested in minors within the vortex,
so making contractions of all Qi is admissible. Only once we shall get a
subdivision (and not a minor) of Ka,sk, but in that case P1 will not be used.
We let Z = P1 ∪ · · · ∪ Pq.

It turns out that it is convenient to treat apex vertices as being contained
in the vortex. This is achieved by adding A to G1 and adding all A into every
part of the linked vortex decomposition of (G1,W1). Each added vertex
then determines a (trivial) path in the linked vortex decomposition of the
extended vortex. This increases the adhesion at most by α. We assume that
this change to the vortex has been made and hence its adhesion is bounded
by 2α. In particular, we have q ≤ 2α.

Similarly as in Section 3 (cf. Claims 3.2 and 3.3), we consider a subset
of essential society vertices, {wp | p ∈ I} of cardinality n5 such that the
following conditions hold:

(a) I = {p1, . . . , pn5
}, where 1 < p1 < p2 < · · · < pn5

< n2.

(b) For j = 1, . . . , q, either Pj(p1 − 1, pn5
+ 1) is a single vertex (in which

case we say that Pj is a trivial path), or all segments Pj(pi − 1, pi + 1)
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(i = 1, . . . , n5) are mutually disjoint (in which case we say that Pj is
nontrivial). However, we do not request that Pj(pi−1, pi+1) contains
more than one vertex. Let us observe that all paths corresponding to
the apex vertices are trivial and that P1 is nontrivial.

(c) Any two paths Pj , Pl are either everywhere bridge connected or every-
where bridge disconnected . This means that for all (or for none) of
the values i = 1, . . . , n5, there is a Z-bridge in G1 that is attached to
Pj(pi − 1, pi + 1) and to Pl(pi − 1, pi + 1).

We also introduce the following notation which is similar (but not iden-
tical) to the one used in Section 3. We let Zi ⊆ G1 be the set of segments of
paths, Z(i) = ∪q

j=1Pj(pi − 1, pi + 1), together with all Z-bridges in G1 that
have all their vertices of attachment in Z(i).

By using (c), we define the auxiliary graph Γ and we let Γ0 be the
subgraph consisting of the connected component that contains P1 and is
obtained from Γ after deleting its vertices corresponding to the trivial paths.
We assume that V (Γ0) = {P1, . . . , Pq0

}.
As in Section 3, we introduce the graph Ĥi ⊆ Zi which consists of all

segments Pj(pi − 1, pi + 1) for j = 1, . . . , q0 together with all Z-bridges
in Zi that are attached to at least one of the paths P1, . . . , Pq0

. Observe
that Ĥi may contain vertices of trivial paths, but the only nontrivial paths
participating in Ĥi are P1, . . . , Pq0

. Finally, we define Hi as the induced
subgraph of Ĥi obtained by deleting the trivial paths. For easier notation,
we also introduce vertices zi = wpi

. Let

Si = V (Ĥi) ∩
(

∪q
j=1 Pj(pi, pi)

)

,

S−
i = V (Ĥi) ∩

(

∪q
j=1 Pj(pi − 1, pi − 1)

)

, and

S+
i = V (Ĥi) ∩

(

∪q
j=1 Pj(pi + 1, pi + 1)

)

.

Let us observe that, unlike in Section 3, Si, S−
i , and S+

i need not be disjoint.
All we can say is that zi ∈ Si \ (S−

i ∪ S+
i ).

Unfortunately, we cannot easily prove an analogue of Claim 3.4. Instead,
we will be satisfied with the following weaker statement.

Claim 5.6 For all but at most 2(sk−1)
(2α

a

)

values of i, the following holds:

(a) If v ∈ V (Hi) − S−
i − S+

i , then v has at most a neighbors in S−
i ∩ Hi

and at most a neighbors in S+
i ∩ Hi.
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(b) Ĥi has a separation (Ai, Bi) of order at most a−1 such that Ai contains
all vertices of trivial paths in Ĥi and such that Bi − Ai − S−

i − S+
i

contains a vertex adjacent to zi.

Proof. If u ∈ V (Hi) is adjacent to a + 1 vertices in S−
i ∩ Hi or to a + 1

vertices in S+
i ∩ Hi, then a of these neighbors lie on distinct everywhere

nontrivial paths P i
1, . . . , P

i
a, where u /∈ P i

1 ∪ · · · ∪ P i
a. If this happens for

more than (sk − 1)
(

α
a

)

values of i, there are sk values of i for which the
a-tuple of paths P i

1, . . . , P
i
a is the same. It is easy to see that this gives rise

to s disjoint Ka,k-minors in G.
From now on we exclude all those values of i for which a vertex in

V (Hi) − S−
i − S+

i has more than a neighbors in S−
i ∩ Hi or more than a

neighbors in S+
i ∩Hi. The society vertex zi is essential, so it has degree more

than 3a + 1 in Ĥi. By the same argument as used in the proof of Claim 5.1,
zi has a neighbors in the set of trivial paths for at most (sk − 1)

(

2α
a

)

values
of i. As assumed above, zi has at most a neighbors in S−

i ∩Hi and at most a
of them in S+

i ∩Hi. Therefore, zi has a neighbor vi in Hi−S−
i −S+

i . If there

are a internally disjoint paths in Ĥi from vi to distinct trivial paths, and this
happens for more than (sk − 1)

(2α
a

)

values of i, then we get a subdivision

of Ka,sk. Consequently, there is a separation (Ai, Bi) of Ĥi of order at most
a−1 such that vi ∈ Bi−Ai (hence vi ∈ Bi−Ai−S−

i −S+
i ), and Ai contains

all vertices of trivial paths that are in Ĥi. This completes the proof. �

From now on we only consider those values of i for which the properties
(a) and (b) of Claim 5.6 hold.

Claim 5.7 q0 ≥ a + 1.

Proof. Let us consider the vertex vi ∈ Bi − Ai − S−
i − S+

i . The vertices
in S = (Ai ∩ Bi) ∪ (S−

i ∩ Hi) ∪ (S+
i ∩ Hi) ∪ {zi} separate vi from G0 in

G. Therefore, |S| ≥ 3a + 2. Since |Ai ∩ Bi| ≤ a − 1, it follows that |S| ≤
a− 1 + |S−

i ∩Hi|+ |S+
i ∩ Hi|+ 1 = 2q0 + a. Combining the two bounds on

|S| implies that q0 ≥ a + 1. �

The last claim can be used to prove an analogue of Claim 3.7.

Claim 5.8 Bi −Ai −S−
i −S+

i − zi contains an (a + 1)-linked subgraph Mi.

Proof. We will apply Corollary 2.3 to the graph Li = Bi−Ai−S−
i −S+

i −zi.
First of all, let us observe that every vertex v ∈ V (Li) has degree at least
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31
2 (a+1)−3 and has at most 3a−1 neighbors in Ai ∪ (S−

i ∩Hi)∪ (S+
i ∩Hi)

by Claim 5.6. If v has a neighbor u ∈ S−
i \ V (Hi), then u forms one of the

trivial paths, so it belongs to Ai. Consequently, v has at most 3a neighbors
in Ai ∪S−

i ∪S+
i ∪{zi}. Hence the degree of v in Li is at least 31

2 (a+1)−3−
3a = 25

2 (a + 1). Thus we conclude that |E(Li)| ≥ 25
4 (a + 1)|V (Li)|. Since

vi ∈ V (Li), Li is a nonempty graph and its order is obviously at least the
degree of vi. This shows that Corollary 2.3 can be applied to Li, and we
conclude that Mi exists. �

Finally, we construct s disjoint Ka,k-minors in the same way as in Sec-
tion 3. The only difference is that we take 2a+2 paths Q0, . . . , Qa, Q

′
0, . . . , Q

′
a

from Mi to S−
i ∪ S+

i in the graph G− zi − (Ai ∩Bi), and therefore we need
connectivity 3a + 2 instead of 3a + 1 because of the additionally removed
vertex zi.

This completes the proof of Theorem 1.1.

6 Conclusion

Let us observe that our proof implies the following.

Theorem 6.1 For any s, t, a and k, there exists a constant N(s, k, a, t) such
that every (3a+2)-connected graph of minimum degree at least 31

2 (a+1)−3
and with at least N(s, k, a, t) vertices contains either a subdivision of Ka,t

or a minor isomorphic to s disjoint copies of Ka,k.

This theorem says that in Theorem 1.1, the result holds not only for a
topological minor of Ka,sk but also for a topological minor of Ka,t for any t
that does not need to depend on s and k. Hence t could be arbitrarily large
compared to sk.

Our final remark is that, as observed in [5], the sequence of graphs Ka,k,
where a is fixed and k tends to infinity, is essentially the only family of
graphs for which a result like our Theorem 1.1 holds. More precisely:

Theorem 6.2 ([5]) Let c and w ≥ c be positive integers, and let Hk (k ≥
1) be a sequence of graphs such that limk→∞ |V (Hk)| = ∞. Suppose that
for any positive integer k there exists an integer N(k) such that every c-
connected graph of tree-width ≤ w and of order at least N(k) contains Hk

as a minor. Then Hk is a minor of Kc,N(k) for k ≥ 1.
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[36] D. Kühn and D. Osthus, Forcing unbalanced complete bipartite minors,
to appear in Europ. J. Combinatorics.

[37] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968),
154–168.

[38] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in
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