University of LJubljana
Institute of Mathematics, Physics and Mechanics Department of Mathematics
Jadranska 19, 1111 Ljubluana, Slovenia

Preprint series, Vol. 42 (2004), 947

LINEAR CONNECTIVITY
FORCES LARGE COMPLETE BIPARTITE MINORS

Thomas Böhme
Ken-ichi Kawarabayashi John Maharry
Bojan Mohar

ISSN 1318-4865

December 29, 2004

Ljubljana, December 29, 2004

Linear Connectivity Forces Large Complete Bipartite Minors

Dedicated to Professor Neil Robertson on the occasion of his 65th birthday

Thomas Böhme* \dagger
Institut für Mathematik
Technische Universität Ilmenau
Ilmenau, Germany

Ken-ichi Kawarabayashi ${ }^{\ddagger \S}$

Graduate School of Information Sciences
Tohoku University
Sendai, 980-8579, Japan
John Maharry ${ }^{\| * *}$
Department of Mathematics
The Ohio State University
Columbus, OH USA
Bojan Mohar ${ }^{\dagger \dagger}$ 抹
Department of Mathematics
University of Ljubljana
Ljubljana, Slovenia

Abstract

Let a be an integer. It is proved that for any s and k, there exists a constant $N=N(s, k, a)$ such that every $\frac{31}{2}(a+1)$-connected graph with at least N vertices either contains a subdivision of $K_{a, s k}$ or a minor isomorphic to s disjoint copies of $K_{a, k}$. In fact, we prove that connectivity $3 a+2$ and minimum degree at least $\frac{31}{2}(a+1)-3$ are enough. The condition "a subdivision of $K_{a, s k}$ " is necessary since G could be a complete bipartite graph $K_{\frac{31}{2}(a+1), m}$, where m could be arbitrarily large. The requirement on $N(s, k, a)$ vertices is necessary since there exist graphs without K_{a}-minor whose connectivity is $\Theta(a \sqrt{\log a})$.

When $s=1$ and $k=a$, this implies that every $\frac{31}{2}(a+1)$-connected graph with at least $N(a)$ vertices has a K_{a}-minor. This is the first result where a linear lower bound on the connectivity in terms of a forces a K_{a}-minor. This was also conjectured in [68, 47, 69, 39]. Our result generalizes a recent result of Böhme and Kostochka [4] and resolves a conjecture of Fon-Der-Flaass [16].

Our result together with a recent result in [25] also implies that there exists an absolute constant c such that there are only finitely many $c k$-contraction-critical graphs without K_{k} as a minor and there are only finitely many $c k$-connected $c k$-color-critical graphs without K_{k}-minors. These results are related to the well-known conjecture of Hadwiger [17].

Our result was also motivated by the well-known result of Erdős and Pósa [15]. Suppose that G is $\frac{31}{2}(a+1)$-connected and without a subdivision of $K_{a, t}$. Then there exists an integer $F(s, k, a, t)$ such that either there are s disjoint copies of $K_{a, k}$-minor in G, or G has a vertex set F of order at most $F(s, k, a, t)$ such that $G-F$ has no minor isomorphic to $K_{a, k}$.

[^0]Key Words: Graph minor, Tree-width, Tree-decomposition, Path-decomposition, Complete graph minor, Complete bipartite minor, Unavoidable minor, Connectivity, k-linked, Hadwiger Conjecture, Grid minor, Vortex structure, Near embedding, Graphs on surfaces, Euler's formula, ErdősPósa property.

Mathematics Subject Classification (2000): 05C40, 05C83.
Running Head: Large complete bipartite minors in large graphs

1 Introduction

In this paper, all graphs are finite and may have loops and multiple edges. A graph H is a minor of a graph K if H can be obtained from a subgraph of K by contracting edges. A graph H is a topological minor of a graph K if K contains a subgraph which is isomorphic to a graph that can be obtained from H by subdividing some edges. In such a case, we also say that K contains a subdivision of H.

The study of graphs containing a given graph as a minor, or as a topological minor, has long history. Starting with Wagner's classification of graphs without a K_{5}-minor [73], there are many results concerning the structure of graphs that do not contain certain graph as a minor. These excluded graphs include $K_{3,3}$ [73], V_{8} [52], the 3-cube [40], the octahedron [41], graphs with single crossing [56], and K_{6}^{-}[24]. See also [8], [65], [20], and [43].

There are several well-known structures which guarantee that certain minor exists in a graph G if G is large enough. For instance, any 5 -connected graph on at least 11 vertices contains the 3 -cube as a minor [40]. Any 5 -connected non-planar graph on at least 8 vertices contains a V_{8}-minor [52]. In addition, there are Ramsey-type results similar to the fact that any sufficiently large connected graph contains either a k-path or a k-star. Oporowski, Oxley and Thomas [48] proved that any large 4-connected graph must have a large minor from a set of four families of 4 -connected graphs. Moreover, they found a similar result for large 3 -connected graphs. Recently, Kawarabayashi [26] proved a similar result for large 5-connected graphs. Ding [11] has characterized large graphs that do not contain a $K_{2, k}$ minor. A corollary of his result is that any large 5 -connected graph contains a $K_{2, k}$ minor.

There is another direction for the study of graph minors: Wagner and Mader studied the maximum size of graphs not having K_{k} as a (topologi-
cal) minor. Wagner [74] showed that a sufficiently large chromatic number (which depends only on k) guarantees K_{k} as a minor, and Mader [37] showed that a sufficiently large average degree will do the same.

Later, Kostochka [33, 34] and Thomason [67] independently proved that $\Theta(k \sqrt{\log k})$ is the correct order of the average degree forcing K_{k} as a minor. Recently, Thomason [68] found the asymptotically best possible value of this "extremal" function.

These results show that if the minimum degree of given graph G is a linear function of k, then G does not necessarily contain a K_{k}-minor. This does not improve even if we add a connectivity condition. Only the connectivity of order $\Theta(k \sqrt{\log k})$ forces the presence of K_{k}-minors.

However, as Thomason [68] pointed out, extremal graphs are more or less exactly vertex disjoint unions of suitable dense random graphs. Such graphs cannot have too many vertices. This fact also motivated Mader [39] (see $[68,69]$) to ask the following.

Question (Mader). Suppose that G is a large $c k$-connected graph without K_{k}-minor, where c is some constant. What does G look like?

Motivated by this question and the results stated above, we prove the following theorem, which answers the question of Mader.

Theorem 1.1 For any integers a, s and k, there exists a constant $N(s, k, a)$ such that every $(3 a+2)$-connected graph of minimum degree at least $\frac{31}{2}(a+$ 1) - 3 and with at least $N(s, k, a)$ vertices either contains $K_{a, s k}$ as a topological minor or a minor isomorphic to s disjoint copies of $K_{a, k}$.

The proof of this result occupies whole Sections 3 and 5 .
It is necessary to include the possibility of having $K_{a, s k}$ as a subdivision since G could be a complete bipartite graph $K_{\frac{31}{2}(a+1)-3, m}$, where m could be arbitrarily large. Recently, several extremal results concerning existence of complete bipartite graph minors have appeared [$35,36,46,47$], but none of them implies that a linear connectivity in terms of a suffices to force $K_{a, k}$-minors for large values of k.

For $s=1$ and $k=a$, Theorem 1.1 immediately gives the following corollary.

Corollary 1.2 For any a, there exists a constant $N(a)$ such that every $\frac{31}{2}(a+1)$-connected graph with at least $N(a)$ vertices has a K_{a}-minor.

Again, this is the first result showing that a linear function of connectivity guarantees the existence of K_{a}-minors. (Actually, we prove a somewhat stronger result as stated in Theorem 1.1.) This settles a conjecture of Thomason $[68,47]$. Notice that the extremal number of edges for K_{a}-minors are known only for $a \leq 9$. For up to K_{7}-minors, these are due to Mader [37]. For the K_{8}-minor, this is due to Jørgensen [21]. Recently, the K_{9}-minor case was settled by Song and Thomas [64]. Corollary 1.2 also implies the following result which is closely related to a recent result due to Böhme and Kostochka [4].

Corollary 1.3 For every positive integers a and s, there is a number $N(a, s)$ such that every $\frac{31}{2}(a+1)$-connected graph with at least $N(a, s)$ vertices either contains a subdivision of $K_{a, s}$ or a minor isomorphic to s disjoint copies of K_{a}.

Since $K_{a, s k}$ contains vertices of degree $s k$, Theorem 1.1 also implies the following result, which answers a question by Fon-Der-Flaass [16].

Corollary 1.4 For every positive integers a, k and s, there exists a constant $N(k, s, a)$ such that every $\frac{31}{2}(a+1)$-connected graph with maximum degree at most $k s-1$ and with at least $N(k, s, a)$ vertices has a minor isomorphic to s disjoint copies of $K_{a, k}$.

Our research is also motivated by Hadwiger's Conjecture from 1943 which suggests a far reaching generalization of the Four Color Theorem $[1,2,63]$ and is one of the most interesting open problems in graph theory.

Conjecture 1.5 (Hadwiger [17]) For every $k \geq 1$, every graph with chromatic number at least k contains the complete graph K_{k} as a minor.

For $k=1,2,3$, this is easy to prove, and for $k=4$, Hadwiger himself [17] and Dirac [12] proved it. For $k=5$, however, it becomes extremely difficult. In 1937, Wagner [73] proved that the case $k=5$ is equivalent to the Four Color Theorem. So, assuming the Four Color Theorem [1, 2, 63], the case $k=5$ in Hadwiger's Conjecture holds. Robertson, Seymour and Thomas [61] proved that a minimal counterexample to the case $k=6$ is a graph G that has a vertex v such that $G-v$ is planar. Hence, assuming the Four Color Theorem, the case $k=6$ of Hadwiger's Conjecture holds. This result is the deepest in this research area. So far, the conjecture is open for every $k \geq 7$. For the case $k=7$, Kawarabayashi and Toft [32] proved that any

7-chromatic graph has K_{7} or $K_{4,4}$ as a minor, and recently, Kawarabayashi [27] proved that any 7 -chromatic graph has K_{7} or $K_{3,5}$ as a minor.

It is not even known if there exists an absolute constant c such that any $c k$-chromatic graph has K_{k} as a minor. So far, it is known that there exists a constant c such that any $c k \sqrt{\log k}$-chromatic graph has K_{k} as a minor. Again, this follows from the results in $[67,68,33,34]$. So it would be of great interest to prove that a linear function of the chromatic number is sufficient to force a K_{k}-minor. Let us observe that Reed and Seymour [51] proved the fractional version of this conjecture.

We hope that our result may be the first step to prove that conjecture since by Mader's result [38], any minimal counterexample to Hadwiger's conjecture has a "highly" connected subgraph. (Actually, Kawarabayashi [25] proved that any minimal counterexample to Hadwiger's conjecture is $\frac{k}{23}$-connected.) So if this graph were larger than $N(k)$ in Corollary 1.2, this would imply that there exists an absolute constant c such that any $c k$ chromatic graph has K_{k} as a minor. However, it is not clear whether this graph is large or not. Our result only implies that a minimum counterexample to the conjecture has "small" order. Our result also implies that there exist absolute constants c_{1} and c_{2} with $c_{1} \geq c_{2}$ such that there are only finitely many $c_{1} k$-connected $c_{2} k$-color-critical graphs without K_{k} as a minor. This fact is related to Thomassen's result [70] which says that there are only finitely many 6 -color-critical graphs on a fixed surface. Notice that the set of graphs embeddable on a fixed surface is closed under taking minors. More generally, Mohar [44] conjectured the following.

Conjecture 1.6 There are only finitely many 3-connected k-color-critical graphs without K_{k} as a minor.

Note that the above conjecture without the condition on 3-connectivity would be equivalent to Hadwiger's Conjecture since, as observed by Toft [72], if we have one such graph, then we would have infinitely many by applying the Hajós' construction. Hadwiger's conjecture suggests that there are no k-color-critical graphs without K_{k} as a minor. Since every 4-color-critical planar graph joined with the complete graph K_{k-5} gives rise to a $(k-1)$ -color-critical graph without K_{k}-minor, the number k of colors is necessary. So, this conjecture weakens Hadwiger's conjecture in a sense, and our result implies that the linear chromatic number and connectivity are enough in Conjecture 1.6.

Let G be a graph satisfying the following conditions:
(i) G is k-chromatic.
(ii) G is minimal with respect to the minor-relation in the class of all k-chromatic graphs.

Any graph satisfying (i) and (ii) is said to be k-contraction-critical. Such graphs were first defined and studied by Dirac [13, 14]. Corollary 1.2 together with the main result of [25] implies that there exists a constant c such that there are only finitely many $c k$-contraction-critical graphs without $K_{k^{-}}$ minor.

Actually, our result implies the following.
Corollary 1.7 There is a constant $c>0$ and a polynomial time algorithm for deciding either that
(1) a given graph G is k-colorable, or
(2) G contains $K_{c k}$-minor, or
(3) G contains a minor H without $K_{c k}$-minor and with no k-coloring.

Observe that if c would be 1 , then H in (3) would be a counterexample to Hadwiger's conjecture.

For the history and other problems concerning Hadwiger's Conjecture, we refer the reader to [19] or [71].

A graph H is said to have the Erdös-Pósa property, if for every integer k there is an integer $f(k, H)$ such that every graph G contains k vertex-disjoint subgraphs, each containing an H-minor, or a set C of at most $f(k, H)$ vertices such that $G-C$ has no H-minor. The term Erdős-Pósa property arose because in [15], Erdős and Pósa proved that the cycle C_{3} has this property.

Robertson and Seymour [54] proved that the Erdős-Pósa property holds for a graph H if and only if H is planar. Hence in general, the Erdős-Pósa property does not always hold. But if we restrict our attention to graphs that are "highly" connected or have large minimum degree, then the situation changes. For instance, the result in [31] says that if the minimum degree is at least 7, then either G contains a minor isomorphic to k disjoint copies of K_{5} or there is a vertex set F of cardinality at most $f(k)$ such that $G-F$ is 5 -degenerate, i.e., every induced subgraph of $G-F$ has a vertex of degree at most 5 .

Theorem 1.1 implies the following general result.
Corollary 1.8 Suppose G is $\frac{31}{2}(a+1)$-connected without a subdivision of $K_{a, s k}$. Then either there are s disjoint copies of $K_{a, k}$-minor or else there exists a constant $f(s, k, a)$ such that G has a vertex set F of order at most $f(s, k, a)$ such that $G-F$ has no minor isomorphic to $K_{a, k}$.

How can one prove Theorem 1.1? We cannot use "extremal" results like those used in $[67,68]$ since these do not give a linear function of a. Instead, we will make use of "tree-width" and apply some deep results of Robertson and Seymour from [58, 59]. Tree-width was introduced by Halin in [18], but it went unnoticed until it was rediscovered by Robertson and Seymour [53] and, independently, by Arnborg and Proskurowski [3]. Tree-width was used not only for Graph Minor Theory [54, 57, 58, 59], but also for some structural graph theory results [54, 48, 62, 50, 10, 5]. In particular, three of us [5] proved the following result.

Theorem 1.9 ([5]) For any positive integers k and w, there exists a constant $N=N(k, w)$ such that every 7 -connected graph of tree-width at most w and of order at least N contains $K_{3, k}$ as a minor.

In another paper [6], we extended Theorem 1.9 to the following result using the Robertson-Seymour structure theorems [58, 59].

Theorem 1.10 ([6]) For any positive integer k, there exists a constant $N=N(k)$ such that every 7-connected graph of order at least N contains $K_{3, k}$ as a minor.

In the forthcoming paper [30], we will develop further, and prove the following result.

Theorem 1.11 ([30]) For any positive integer k, there exists a constant $N=N(k)$ such that every 9-connected graph of order at least N contains $K_{4, k}$ as a minor.

In [5] it is also proved that for any $a \geq 3$ the following holds. For any positive integers k, a and w there exists a constant $N=N(k, w)$ such that every $265 a$-connected graph of tree-width at most w and of order at least N contains $K_{a, k}$ as a minor. We improve this statement to the following result:

Theorem 1.12 For any positive integers a, k, s and w, there exists a constant $N=N(a, k, s, w)$ such that every $(3 a+1)$-connected graph with minimum degree at least $\frac{27}{2}(a+1)$, of tree-width at most w and of order at least N, either contains s disjoint $K_{a, k}$ minors or contains a subdivision of $K_{a, s k}$.

The proof of Theorem 1.12 is given in Section 3.

By proving Theorem 1.1, we extend this result by omitting the treewidth condition. The basic approach is similar to that of [5], but it is more involved since we improve connectivity $265 a$ used in [5] to $3 a+1$ and, in addition, we either find s disjoint copies of $K_{a, k}$-minor or a subdivision of $K_{a, s k}$.

Theorem 1.9 is sharp in the sense that the 7 -connectivity condition cannot be relaxed. Moreover, the function of the connectivity in Theorems 1.12 and 1.1 must be at least $2 a+1$. These facts follow from a construction of a family of arbitrarily large $2 a$-connected graphs (of tree-width $3 a-1$) none of which contains a $K_{a, 2 a+1}$-minor; see [5].

Similarly, the following example shows that connectivity $3 a+1$ in Theorem 1.12 is almost best possible.

Proposition 1.13 For every positive integer a, there exist arbitrarily large ($3 a-1$)-connected graphs of minimum degree $4 a-2$ and tree-width $4 a-2$ that neither contain $K_{a, k}$-subdivision nor they contain a minor isomorphic to a disjoint copies of $K_{a, k}$ for $k \geq 4 a-1$.

Proof. Let $C(a, n)$ be the graph with vertex set $V=\{(i, j) \mid 1 \leq i \leq a, 0 \leq$ $j \leq n-1\}$ in which two distinct vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent if and only if $j-j^{\prime}$ is 0 or ± 1 modulo n. The degree of each vertex of $C(a, n)$ is $3 a-1$. It can be shown that $C(a, n)$ has tree-width $3 a-1$ (when n is large enough) and that $C(a, n)$ does not contain $K_{a, k}$-minors if $k>2 a+1$. The proof of these facts can be found in [5].

Let $\tilde{C}(a, n)$ be the graph obtained from $C(a, n)$ by adding $a-1$ additional vertices, each of which is completely joined to $C(a, n)$. Clearly, $\tilde{C}(a, n)$ is $(3 a-1)$-connected, its minimum degree is $4 a-2$ and its tree-width is $(3 a-1)+(a-1)=4 a-2$.
$\tilde{C}(a, n)$ has as many vertices as we want, just take sufficiently large n. Since it has only $a-1$ vertices of degree more than $4 a-2$, it does not contain a $K_{a, 4 a-1}$-subdivision. If it would contain a minor isomorphic to a disjoint copies of $K_{a, k}$, one of them would be contained in $C(a, n)$ which is not possible as mentioned above. This contradiction completes the proof.

2 Highly linked subgraphs

A graph L is said to be k-linked if it has at least $2 k$ vertices and for any ordered k-tuples $\left(s_{1}, \ldots, s_{k}\right)$ and $\left(t_{1}, \ldots, t_{k}\right)$ of $2 k$ distinct vertices of L,
there exist pairwise disjoint paths P_{1}, \ldots, P_{k} such that for $i=1, \ldots, k$, the path P_{i} connects s_{i} and t_{i}. Such collection of paths is called a linkage from $\left(s_{1}, \ldots, s_{k}\right)$ to $\left(t_{1}, \ldots, t_{k}\right)$.

An important tool will be the following theorem due to Thomas and Wollan [66].

Theorem 2.1 Every $2 k$-connected graph G with at least $5 k|V(G)|$ edges is k-linked.

Theorem 2.1 implies that every $10 k$-connected graph is k-linked. Bollobás and Thomason [7] proved that every $22 k$-connected graph is k-linked, and Kawarabayashi, Kostochka and Yu [28] proved that every $12 k$-connected graph is k-linked.

Let G be a graph and let A, B be subgraphs of G. We say that the pair (A, B) is a separation of G if $A \cup B=G, V(A)-V(B) \neq \emptyset$, and $V(B)-V(A) \neq \emptyset$. The order of a separation (A, B) is $|V(A) \cap V(B)|$.

The following result is a variation of an old theorem of Mader [38].
Theorem 2.2 Let G be a graph and k an integer such that
(a) $|V(G)| \geq \frac{5}{2} k$ and
(b) $|E(G)| \geq \frac{25}{4} k|V(G)|-\frac{25}{2} k^{2}$.

Then $|V(G)| \geq 10 k+2$ and G contains a $2 k$-connected subgraph H with at least $5 k|V(H)|$ edges.

Proof. Clearly, if G is a graph on n vertices with at least $\frac{25}{4} k n-\frac{25}{2} k^{2}$ edges, then $\frac{25}{4} k n-\frac{25}{2} k^{2} \leq\binom{ n}{2}$. Hence, either $n \leq \frac{25}{4} k+\frac{1}{2}-\frac{1}{4} \sqrt{(25 k+2)^{2}-400 k^{2}}<$ $\frac{5}{2} k$ or $n \geq \frac{25}{4} k+\frac{1}{2}+\frac{1}{4} \sqrt{(25 k+2)^{2}-400 k^{2}}>10 k+1$. Since $|V(G)| \geq \frac{5}{2} k$, we get the following:

Claim 1. $|V(G)| \geq 10 k+2$.
Suppose now that the theorem is false. Let G be a graph with n vertices and m edges, and let k be an integer such that (a) and (b) are satisfied. Suppose, moreover, that
(c) G contains no $2 k$-connected subgraph H with at least $5 k|V(H)|$ edges, and
(d) n is minimal subject to (a), (b) and (c).

Claim 2. The minimum degree of G is more than $\frac{25}{4} k$.
Suppose that G has a vertex v with degree at most $\frac{25}{4} k$, and let G^{\prime} be the graph obtained from G by deleting v. By (c), G^{\prime} does not contain a $2 k$ connected subgraph H with at least $5 k|V(H)|$ edges. Claim 1 implies that $\left|V\left(G^{\prime}\right)\right|=n-1 \geq \frac{5}{2} k$. Finally, $\left|E\left(G^{\prime}\right)\right| \geq m-\frac{25}{4} k \geq \frac{25}{4} k\left|V\left(G^{\prime}\right)\right|-\frac{25}{2} k^{2}$. Since $\left|V\left(G^{\prime}\right)\right|<n$, this contradicts (d) and the claim follows.

Claim 3. $m \geq 5 k n$.

The claim follows easily from (b) by using Claim 1.
By Claim 3 and (c), G is not $2 k$-connected. Since $n>2 k$, this implies that G has a separation $\left(A_{1}, A_{2}\right)$ such that $A_{1} \backslash A_{2} \neq \emptyset \neq A_{2} \backslash A_{1}$ and $\left|A_{1} \cap A_{2}\right| \leq 2 k-1$. By Claim 2, $\left|A_{i}\right| \geq \frac{25}{4} k+1$. For $i \in\{1,2\}$, let G_{i} be a subgraph of G with vertex set A_{i} such that $G=G_{1} \cup G_{2}$ and $E\left(G_{1} \cap G_{2}\right)=\emptyset$. Suppose that $\left|E\left(G_{i}\right)\right|<\frac{25}{4} k\left|V\left(G_{i}\right)\right|-\frac{25}{2} k^{2}$ for $i=1,2$. Then

$$
\begin{aligned}
\frac{25}{4} k n-\frac{25}{2} k^{2} & \leq m=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \\
& <\frac{25}{4} k\left(n+\left|A_{1} \cap A_{2}\right|\right)-25 k^{2} \\
& \leq \frac{25}{4} k n-\frac{25}{2} k^{2}
\end{aligned}
$$

a contradiction. Hence, we may assume that $\left|E\left(G_{1}\right)\right| \geq \frac{25}{4} k\left|V\left(G_{1}\right)\right|-\frac{25}{2} k^{2}$. Since $n>\left|V\left(G_{1}\right)\right| \geq \frac{25}{4} k+1$ and G_{1} contains no $2 k$-connected subgraph H with at least $5 k|V(H)|$ edges, this contradicts (d), and the proposition is proved.

By Theorem 2.1, every $2 k$-connected graph G with at least $5 k|V(G)|$ edges is k-linked. Hence, Theorem 2.2 implies the following:

Corollary 2.3 Let G be a graph and k an integer such that
(a) $|V(G)| \geq \frac{5}{2} k$ and
(b) $|E(G)| \geq \frac{25}{4} k|V(G)|-\frac{25}{2} k^{2}$.

Then G contains a k-linked subgraph.

3 Bounded tree-width structure

In this section, we consider the bounded tree-width case and prove Theorem 1.12.

A tree decomposition of a graph G is a pair (T, Y), where T is a tree and Y is a family $\left\{Y_{t} \mid t \in V(T)\right\}$ of vertex sets $Y_{t} \subseteq V(G)$, such that the following two properties hold:
(W1) $\bigcup_{t \in V(T)} Y_{t}=V(G)$, and every edge of G has both ends in some Y_{t}.
(W2) If $t, t^{\prime}, t^{\prime \prime} \in V(T)$ and t^{\prime} lies on the path in T between t and $t^{\prime \prime}$, then $Y_{t} \cap Y_{t^{\prime \prime}} \subseteq Y_{t^{\prime}}$.

The width of a tree decomposition (T, Y) is $\max _{t \in V(T)}\left(\left|Y_{t}\right|-1\right)$. It was shown in [48] that if a graph G has a tree decomposition of width at most w then G has a tree decomposition of width at most w that further satisfies:
(W3) For every two vertices t, t^{\prime} of T and every positive integer k, either there are k disjoint paths in G between Y_{t} and $Y_{t^{\prime}}$, or there is a vertex $t^{\prime \prime}$ of T on the path between t and t^{\prime} such that $\left|Y_{t^{\prime \prime}}\right|<k$.
(W4) If t, t^{\prime} are distinct vertices of T, then $Y_{t} \neq Y_{t^{\prime}}$.
(W5) If $t_{0} \in V(T)$ and B is a component of $T-t_{0}$, then $V_{1}=\bigcup_{t \in V(B)} Y_{t} \backslash$ $Y_{t_{0}} \neq \emptyset$.

In the rest of this section, we give a proof of Theorem 1.12. Let a, k, s and w be given positive integers. Let G be a connected graph with a tree decomposition (T, Y) of width at most w that satisfies (W1)-(W5).

We will develop a structure that is similar to that used in [48] and in [5]. First, we define the constants that will be used in the proofs:

$$
\begin{aligned}
& n_{1}=g^{n_{2}}, \quad \text { where } g=(s k-1)\binom{w+1}{a} \\
& n_{2}=n_{3}^{w+1} \\
& n_{3}=\left(2 n_{4}\right)^{p}, \quad \text { where } p=2^{w+1} \\
& n_{4}=n_{5}^{q}, \quad \text { where } q=2^{w(w+1) / 2} \\
& n_{5}=2 s n_{6} \\
& n_{6}=(29 a+6) k\binom{w+1}{a} .
\end{aligned}
$$

We assume that $|V(G)|=N \geq(w+1) n_{1}$ and that G has neither s disjoint $K_{a, k}$-minors nor $K_{a, s k}$-subdivision.

Claim 3.1 If G is a-connected, then $|V(T)| \geq n_{1}$ and every vertex of T has degree at most $g=(s k-1)\binom{w+1}{a}$. Consequently, T contains a path R of length $|E(R)| \geq n_{2}$.

Proof. The first inequality follows from (W1). Suppose that $t_{0} \in V(T)$ has degree at least $g+1$. Let \mathcal{C} be the set of components of $G-Y_{t_{0}}$. By (W2) and (W5), it is clear that $|\mathcal{C}| \geq g+1$. For $C \in \mathcal{C}$, let v be a vertex in C. Since G is a-connected, there exist a internally disjoint paths connecting v with a distinct vertices in $Y_{t_{0}}$. Let $S(C)$ be the union of these paths, and let $X(C)$ be the set of their endvertices in $Y_{t_{0}}$. By the Pigeonhole Principle, there is a set $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ of $s k$ components for which $X(C)$ contains the same set of a vertices of $Y_{t_{0}}$. Now it is clear that the union of $S(C)$ for $C \in \mathcal{C}^{\prime}$ is a subdivision of $K_{a, s k}$ in G.

From this point on we will no longer need the assumption that the parts Y_{t} of the tree decomposition have at most $w+1$ vertices. What we will need is the long path R and the assumption that the adhesion along R is bounded, where the adhesion is defined as

$$
\begin{equation*}
\max \left\{\left|Y_{t} \cap Y_{t^{\prime}}\right| ; t, t^{\prime} \in V(R)\right\} . \tag{1}
\end{equation*}
$$

This weaker assumption will allow us to use the subsequent conclusions of this section in the analysis of the long vortex structure in Section 5.

For $t \in V(R)$, let t^{\prime} be its successor on R. Let $\bar{S}_{t}=Y_{t} \cap Y_{t^{\prime}}$. By (W5), every \bar{S}_{t} separates G. In particular, $\left|\bar{S}_{t}\right| \geq c$ if G is c-connected. The next claim, whose proof can be found in [48] or [5], enables us to assume that there are arbitrarily many such separators \bar{S}_{t} of the same size and that there is a linkage through all of them.

Claim 3.2 There is a subsequence $r_{1}, r_{2}, \ldots, r_{n_{3}}$ of length n_{3} of the vertices of R such that for some $q \geq 1,\left|\bar{S}_{r_{i}}\right|=q$ for $i=1,2, \ldots, n_{3}$, and for every vertex t of R between r_{1} and $r_{n_{3}},\left|\bar{S}_{t}\right| \geq q$.

From now on we replace R by the subpath from r_{1} to $r_{n_{3}}$. Note that $q \leq w+1$.

By (W3) and Claim 3.2, there are q disjoint paths in G from $Y_{r_{1}}$ to $Y_{r_{n_{3}}}$. Fix these paths, denote them by P_{1}, \ldots, P_{q}, and put $Z=P_{1} \cup \cdots \cup P_{q}$. Since G is 3 -connected, these paths can be chosen such that every Z-bridge in G is attached to at least two of the paths (cf., e.g., [23]), which we assume henceforth. Let us recall that a Z-bridge in G is either an edge $e \in E(G) \backslash E(Z)$ whose endvertices are both in Z, or a subgraph of G
consisting of a connected component C of $G-Z$ together with all edges joining C and Z. The vertices of a Z-bridge B in $Z \cap B$ are called vertices of attachment of B, and we say that B is attached to Z at these vertices.

Denote the subpath of P_{j} with one end in \bar{S}_{t} and the other end in $\bar{S}_{t^{\prime}}$ by $P_{j}\left(t, t^{\prime}\right)$ for any $t, t^{\prime} \in\left\{r_{1}, \ldots, r_{n_{3}}\right\}$. Let p_{1}, \ldots, p_{n} be a subsequence of $r_{1}, \ldots, r_{n_{3}}$. The path P_{j} is said to be trivial if $P_{j}\left(p_{1}, p_{n}\right)$ is a single vertex, and it is said to be everywhere nontrivial (almost nontrivial) w.r.t. the sequence p_{1}, \ldots, p_{n} if $P_{j}\left(p_{i}, p_{i+1}\right)$ contains at least three (respectively, at least two) vertices for every $i=1, \ldots, n-1$. The paths P_{j} and P_{l} are said to be everywhere bridge connected (resp. everywhere bridge disconnected) with respect to p_{1}, \ldots, p_{n} if for every $i=1, \ldots, n-1$, there exists (resp. does not exist) a Z-bridge which has a vertex of attachment in $P_{j}\left(p_{i}, p_{i+1}\right)$ and a vertex of attachment in $P_{l}\left(p_{i}, p_{i+1}\right)$.

The following claim can be found in [5].
Claim 3.3 There is a subsequence $p_{1}, p_{2}, \ldots, p_{n_{5}}$ of $r_{1}, r_{2}, \ldots, r_{n_{3}}$ of length n_{5} such that for each $j=1, \ldots, q, P_{j}\left(p_{1}, p_{n_{5}}\right)$ is either trivial or everywhere nontrivial (w.r.t. the subsequence). Moreover, for every pair of distinct indices $j, l \in\{1, \ldots, q\}, P_{j}\left(p_{1}, p_{n_{5}}\right)$ and $P_{l}\left(p_{1}, p_{n_{5}}\right)$ are either everywhere bridge connected or everywhere bridge disconnected (w.r.t. the new subsequence).

Proof. Clearly, there is a subsequence of $r_{1}, \ldots, r_{n_{3}}$ of length $\sqrt{n_{3}}$ such that the corresponding segment of P_{1} is either trivial or everywhere almost nontrivial with respect to the subsequence. By repeating this argument on the subsequence for P_{2}, \ldots, P_{q}, respectively, we end up with a sequence of length at least $2 n_{4}$ such that every path is either trivial or everywhere almost nontrivial. By taking every second element of this sequence, a subsequence of length n_{4} satisfying the first part of the claim is obtained. Starting with that subsequence, one can obtain a subsequence of length n_{5} satisfying also the second part of the claim by using similar arguments as above, except that we have to repeat the subsequence argument $\binom{q}{2} \leq\binom{ w+1}{2}$ times.

Following [5], we introduce the auxiliary graph Γ. It has vertex set $V(\Gamma)=\left\{P_{1}, \ldots, P_{q}\right\}$, and the paths P_{j} and P_{l} are adjacent vertices in Γ if they are everywhere bridge connected w.r.t. $p_{1}, \ldots, p_{n_{5}}$.

At least one of the paths is everywhere nontrivial, say P_{1}. Let Γ_{1} be the induced subgraph of Γ on the everywhere nontrivial paths. Let Γ_{0} be the connected component of Γ_{1} containing P_{1}. Note that Γ_{0} contains none of the everywhere trivial paths. Let $\left\{P_{1}, \ldots, P_{q_{0}}\right\}\left(q_{0}=\left|V\left(\Gamma_{0}\right)\right|\right)$ be the paths in $V\left(\Gamma_{0}\right)$.

For $i=1,2, \ldots, n_{5}-1$, denote by $Z^{\prime}(i)$ the union of $P_{j}\left(p_{i}, p_{i+1}\right)$ for $j=1, \ldots, q_{0}$ together with all those trivial paths that are everywhere bridge connected to some path $P_{j} \in V\left(\Gamma_{0}\right)$. Let \hat{Z}_{i} be the subgraph of G obtained by taking the union of $Z^{\prime}(i)$ and all those Z-bridges B that have all vertices of attachment in $Z^{\prime}(i)$. Finally, let Z_{i} be the subgraph of \hat{Z}_{i} obtained by deleting all vertices corresponding to the trivial paths. Furthermore, we write $S_{i}=\bar{S}_{p_{i}} \cap\left(P_{1} \cup \cdots \cup P_{q_{0}}\right)$.

Let $r=25 a+2$. For $i=1,2, \ldots, n_{5}-r$, let $H_{i}=\bigcup_{j=0}^{r-1} Z_{i+j}$ and $\hat{H}_{i}=\bigcup_{j=0}^{r-1} \hat{Z}_{i+j}$.

Claim 3.4 If G is a-connected, then at most $a-1$ trivial paths are adjacent to Γ_{0} in Γ.

Proof. Let A be the set of vertices of those everywhere trivial paths that are adjacent to Γ_{0} in Γ. Suppose that $|A| \geq a$. For the purpose of this proof, let us say that \hat{H}_{i} is separable if there is a separation $\left(A_{i}, B_{i}\right)$ of \hat{H}_{i} of order at most $a-1$ such that $A \subseteq A_{i}$ and $B_{i}-A_{i}$ contains a vertex in $Z_{i+2 a}$. Suppose that there exists a set I of $(s k-1)\binom{w+1}{a}+1$ values of i such that \hat{H}_{i} is not separable for $i \in I$ and such that any two distinct elements $i, j \in I$ differ by at least $r+1=25 a+3$. Since $H_{i} \cap H_{j}=\emptyset$ whenever $|i-j| \geq r+1$, the corresponding graphs $H_{i}(i \in I)$ are pairwise disjoint.

For each $i \in I$, choose a internally disjoint paths in \hat{H}_{i} from a vertex in $Z_{i+2 a}$ to a distinct vertices in A. Such paths exist by Menger's theorem since \hat{H}_{i} is not separable. By the Pigeonhole Principle, there is a subset of $s k$ of such subgraphs \hat{H}_{i} whose a paths end up at the same a-tuple of vertices in A. Clearly, the internally disjoint paths in these $s k$ subgraphs form a subdivision of $K_{a, s k}$. This contradiction shows that \hat{H}_{i} is separable for all but at most $(r+1)(s k-1)\binom{w+1}{a}$ values of i.

Since $n_{5}-r>(r+1)(s k-1)\binom{w+1}{a}$, there is an i such that \hat{H}_{i} is separable. Let $\left(A_{i}, B_{i}\right)$ be a corresponding separation chosen so that $B_{i}-A_{i}$ is connected. Since $\left|A_{i} \cap B_{i}\right| \leq a-1$, there exists $p \in A$ such that $p \in A_{i}-B_{i}$. Similarly, we see that there exist j, l where $1 \leq j<2 a$ and $2 a<l \leq 4 a$ such that neither Z_{i+j} nor Z_{i+l} contains a vertex in $A_{i} \cap B_{i}$. Since $\hat{Z}_{i+j}-A_{i}$ is a connected subgraph of \hat{H}_{i} that contains p, we conclude that $Z_{i+j} \subseteq A_{i}-B_{i}$. Similarly, we see that $Z_{i+l} \subseteq A_{i}-B_{i}$. The assumption that $B_{i}-A_{i}$ is connected and contains a vertex in $Z_{i+2 a}$ implies that $B_{i}-A_{i}$ does not intersect $S_{i} \cup S_{i+r}$. This implies that $A_{i} \cap B_{i}$ separates the graph G. This contradicts the assumption that G is a-connected and shows that $|A| \leq a-1$.

An immediate corollary of Claim 3.4 is

Claim 3.5 If G is $3 a$-connected, then $\left|V\left(\Gamma_{0}\right)\right| \geq a+1$.
Proof. Let $q_{0}=\left|V\left(\Gamma_{0}\right)\right|$. Since the $2 q_{0}$ vertices in $S_{i} \cup S_{i+r}$ together with at most $a-1$ vertices of trivial paths adjacent to Γ_{0} in Γ separate the graph G, we have $2 q_{0}+(a-1) \geq 3 a$. This implies that $q_{0} \geq a+1$.

Claim 3.6 Let T_{0} be a spanning tree of Γ_{0}. If $q_{0} \geq a+1$, there are vertices $t_{0}, t_{1}, \ldots, t_{a}$ of T_{0} such that for $l=0, \ldots, a$, the vertex t_{l} has degree 1 or 0 in the subtree $T_{0} \backslash\left\{t_{0}, \ldots, t_{l-1}\right\}$.

For $X \subseteq\left\{1, \ldots, q_{0}\right\}$, we define $X(i)=\left\{P_{x} \cap S_{i} \mid x \in X\right\}$ as the set of vertices in S_{i} that lie on the paths whose indices are in X.

Claim 3.7 Let $X, Y \subseteq\left\{1, \ldots, q_{0}\right\}$, where $|X|=|Y|=a+1$. If $j \geq$ $i+4 a+4$, then $Z_{i} \cup Z_{i+1} \cup \cdots \cup Z_{j-1}$ contains $a+1$ disjoint paths connecting $X(i)$ with $Y(j)$.

Proof. Let T_{0} be a spanning tree of Γ_{0}, let t_{0}, \ldots, t_{a} be as stated in Claim 3.6 , and let $U=\left\{t_{0}, \ldots, t_{a}\right\}$. We will identify the elements of X and Y with the corresponding vertices of T_{0}.

First, we prove that there are paths connecting $X(i)$ with $U(i+2 a+2)$ in $Z_{i} \cup \cdots \cup Z_{i+2 a+1}$. Choose an enumeration x_{0}, \ldots, x_{a} of elements of X such that for $l=0, \ldots, a$, the distance from x_{l} to t_{l} in T_{0} is minimum among all elements of $X \backslash\left\{x_{0}, \ldots, x_{l-1}\right\}$.

In Z_{i} we start at $X(i)$ and follow the paths $P_{l}\left(l \in X \backslash\left\{x_{0}\right\}\right)$ until S_{i+2}. The path $P_{x_{0}}$ is re-routed to $P_{t_{0}}$ as follows. In Z_{i}, we use Z-bridges corresponding to the edges on the path in T_{0} from x_{0} to t_{0} to get a path from $P_{x_{0}}$ to $P_{t_{0}}$, and then we follow $P_{t_{0}}$ through all the remaining parts $Z_{i+1}, \ldots, Z_{i+2 a+1}$ to reach $U(i+2 a+2)$. Since x_{0} was selected as a vertex that is closest to t_{0} in T_{0}, the resulting path does not intersect other paths within $Z_{i} \cup Z_{i+1}$. In the following two parts, $Z_{i+2} \cup Z_{i+3}$, we repeat the process with the remaining paths. All of them, except $P_{x_{1}}$, just follow the paths P_{l}, while $P_{x_{1}}$ is re-routed to $P_{t_{1}}$ within Z_{i+2} (using bridges corresponding to the edges on the $\left(x_{1}, t_{1}\right)$-path in $\left.T_{0}\right)$, and afterwards it just follows $P_{t_{1}}$ to reach $U(i+2 a+2)$. By the choice of x_{1}, the re-routed path does not intersect other paths. Since x_{0} was selected as a leaf, the re-routed path cannot intersect $P_{t_{0}}$. This process is repeated for the remaining paths, $P_{x_{j}}$ being re-routed in parts $Z_{i+2 j}$ and $Z_{i+2 j+1}$. Re-routing never intersects the subsequent paths since x_{j} was selected to be closest to t_{j} in T_{0}, and does not intersect with any of the previous ones (namely $P_{t_{0}}, \ldots, P_{t_{j-1}}$) since
t_{0}, \ldots, t_{a} have been selected according to Claim 3.6. Therefore the process yields desired paths to $U(i+2 a+2)$.

In the same way we can connect $Y(j)$ with $U(j-2 a-2)$ in $Z_{j-1} \cup \cdots \cup$ $Z_{j-2 a-2}$ (going in the "backwards" direction). Since $i+2 a+1<j-2 a-2$, we can link $U(i+2 a+2)$ with $U(j-2 a-2)$ so that the resulting collection of $a+1$ paths from $X(i)$ to $Y(j)$ are pairwise disjoint.

We shall prove that every subsequence of length n_{6} of our sequence $p_{1}, \ldots, p_{n_{5}}$ gives rise to a $K_{a, k}$-minor in the union of the corresponding subgraphs H_{i}. This will show that there are s disjoint $K_{a, k}$-minors in G. Therefore, it suffices to consider the initial subsequence for $i=1, \ldots, n_{6}$ and prove that there is a $K_{a, k}$-minor.

Claim 3.8 Suppose that G is a-connected. If the minimum degree of G is at least $\frac{27}{2}(a+1)$, then the average degree of H_{i} is at least $\frac{25}{2}(a+1)$.

Proof. By Claim 3.4, every vertex in $H_{i}-\left(S_{i} \cup S_{i+r}\right)$ has at least $\frac{27}{2}(a+$ 1) $-(a-1)=\frac{25}{2}(a+1)+2$ neighbors in H_{i}. Therefore, if h is the number of vertices of H_{i}, the average degree of H_{i} is at least

$$
\begin{equation*}
\frac{\left(\frac{25}{2}(a+1)+2\right)\left(h-2 q_{0}\right)}{h} . \tag{2}
\end{equation*}
$$

Since $h \geq r q_{0}$, we have

$$
\begin{equation*}
\frac{h-2 q_{0}}{h} \geq 1-\frac{2}{r}=\frac{25 a}{25 a+2} . \tag{3}
\end{equation*}
$$

Now, (2) and (3) easily imply the conclusion of the claim.
From now on we assume that the minimum degree of G is at least $\frac{27}{2}(a+$ $1)$ and that G is $(3 a+1)$-connected. By Corollary 2.3 and Claim 3.8 we conclude:

Claim 3.9 For every i, H_{i} contains an ($a+1$)-linked subgraph M_{i}.
Claim 3.10 There are $2 a+2$ pairwise disjoint paths Q_{0}, \ldots, Q_{a} and Q_{0}^{\prime}, \ldots, Q_{a}^{\prime} in H_{i} such that the following properties hold:
(a) For $l=0, \ldots, a$, the path Q_{l} starts in M_{i} and ends in S_{i+r}.
(b) For $l=0, \ldots, a$, the path Q_{l}^{\prime} starts in S_{i} and ends in M_{i}.

Proof. Let A be the set of vertices of everywhere trivial paths that are adjacent to Γ_{0} in Γ. We take a set of $2 a+2$ disjoint paths $\mathcal{W}=\left\{W_{1}, \ldots, W_{2 a+2}\right\}$ joining M_{i} with $S_{i} \cup S_{i+r}$ in H_{i} such that:
(i) The number of edges in $\bigcup_{l=1}^{2 a+2} E\left(W_{l}\right) \backslash \bigcup_{j=0}^{r-1} E\left(Z^{\prime}(i+j)\right)$ is minimum.
(ii) Let n_{L} be the number of paths W_{l} ending in S_{i}, and let n_{R} be the number of paths W_{l} ending in S_{i+r}. Subject to (i), we assume that $\left|n_{L}-n_{R}\right|$ is minimum.

By Claim 3.4, $|A| \leq a-1$. Since G is $(3 a+1)$-connected, $G-A$ is $(2 a+2)$-connected. By applying Menger's theorem to $G-A$, we see that such a collection of paths \mathcal{W} exists. Let us observe that some of the paths may be trivial since M_{i} may contain vertices in $S_{i} \cup S_{i+r}$.

If at least two paths in \mathcal{W} intersect a path P_{j}, let W and W^{\prime} be the paths that intersect P_{j} as close as possible (on P_{j}) to S_{i} and S_{i+r}, respectively. If $W=W^{\prime}$, suppose that the intersection u of W with P_{j} nearest S_{i} (say) comes before the intersection nearest S_{i+r}. By (i), W ends at S_{i}, i.e., its segment from u to its end coincides with the segment $P_{j}\left(S_{i}, u\right)$ of P_{j}. This shows that $W \neq W^{\prime}$. Then the path W (resp. W^{\prime}) must end at S_{i} (resp. S_{i+r}) by (i).

Suppose that precisely one path, say $W \in \mathcal{W}$, intersects a path P_{j}. In this case, we can elect to have W ending at $P_{j} \cap S_{i}$ or at $P_{j} \cap S_{i+r}$ by following the path P_{j}.

This implies that the value $\left|n_{L}-n_{R}\right|$ in (ii) can be made to be zero or one. However, since $n_{L}+n_{R}=2 a+2$ is even, we conclude that $n_{L}-n_{R}=0$.

Now let the $a+1$ paths in \mathcal{W} that end in S_{i} be called $Q_{0}^{\prime}, \ldots, Q_{a}^{\prime}$ and the $a+1$ paths in \mathcal{W} that end in S_{i+r} be called Q_{0}, \ldots, Q_{a}. This completes the proof.

Define $\alpha=r+4 a+4$ and for $t=1, \ldots, a k$ set $i_{t}=1+(t-1) \alpha$. Observe that $i_{a k} \leq n_{6}-r$.

We shall now construct disjoint paths $\mathcal{P}_{l}^{\circ}(l=0, \ldots, a)$ from S_{1} to $S_{n 6}$ satisfying the following additional condition. For $t=1, \ldots, a k$, the subgraph $Z_{i_{t}+r+1}$ contains a path D_{t} which connects \mathcal{P}_{0}° with \mathcal{P}_{j}°, where $j \in\{1, \ldots, a\}$ is congruent to t modulo a and D_{t} is internally disjoint from the paths \mathcal{P}_{l}°. Having such a collection of paths, a $K_{a, k}$-minor is easily constructed. First, by contracting the paths \mathcal{P}_{l}° for $l=1, \ldots, a$, we get a vertices that will play the role of the vertices of degree k in the $K_{a, k}$-minor. To get the vertices of the other class, we divide \mathcal{P}_{0}° into k segments, each containing parts of the path in subgraphs $Z_{i_{t}+r+1}$ for a consecutive values of t. By contracting
each of these k segments of \mathcal{P}_{0}°, the paths D_{t} can be used to get the desired $K_{a, k}$-minor.

It remains to see how to obtain the paths \mathcal{P}_{l}° and D_{t}. In each $H_{i_{t}}$ we take $a+1$ paths joining $S_{i_{t}}$ with $S_{i_{t}+r}$ and passing through the $(a+1)$ linked subgraph $M_{i_{t}}$. They can be obtained by Claim 3.10: by using paths $Q_{0}^{\prime}, \ldots, Q_{a}^{\prime}$ we join $S_{i_{t}}$ with $M_{i_{t}}$, and by using Q_{0}, \ldots, Q_{a} we join $M_{i_{t}}$ with $S_{i_{t}+r}$. Since $M_{i_{t}}$ is $(a+1)$-linked, the endvertices of $Q_{0}^{\prime}, \ldots, Q_{a}^{\prime}$ in $M_{i_{t}}$ can be linked to the endvertices of Q_{0}, \ldots, Q_{a} in $M_{i_{t}}$. At this moment we do not yet specify which vertex is actually linked to which one under this linkage, since we will need this freedom in order to prove that appropriate paths D_{t} exist.

Claim 3.7 can be used to link the ends of the paths Q_{0}, \ldots, Q_{a} in $S_{i_{t}+r}$ with the initial vertices in $S_{i_{t+1}}$ of the paths constructed in $H_{i_{t+1}}, t=$ $1, \ldots, a k-1$. In the subgraph $Z_{i_{t}+r+1}$, there exists a path D_{t} joining two of the constructed paths. Now, the linkage in $M_{i_{t}}$ can be chosen in such a way that D_{t} will connect \mathcal{P}_{0}° with \mathcal{P}_{j}°, where $j \in\{1, \ldots, a\}$ is congruent to t modulo a. This gives rise to appropriate paths.

This completes the proof of Theorem 1.12.

4 The Excluded Minor Theorem

Hereby, we shall consider the case when the tree-width is arbitrarily large. We shall make use of Robertson-Seymour's Excluded Minor Theorem [58] which describes the structure of graphs that do no contain a given graph as a minor. A strengthened version of that theorem was proved in [59]. This version enables us to apply the method used in the case of bounded tree-width in the part of the proof when we consider the vortex structure.

Let (T, Y) be a tree decomposition of a graph G. For an edge $t t^{\prime} \in E(T)$, let $Z_{t t^{\prime}}=Y_{t} \cap Y_{t^{\prime}}$. Let us recall that the adhesion of a tree decomposition (T, Y) is $\max \left|Z_{t t^{\prime}}\right|$ taken over all edges $t t^{\prime} \in E(T)$. If T is a path, then (T, Y) is also said to be a path decomposition of G.

It is easy to see that for every tree decomposition $\left(T^{0}, Y^{0}\right)$ of G there exists a tree decomposition (T, Y) of G having the same width and not larger adhesion than $\left(T^{0}, Y^{0}\right)$ satisfying (W4) and (W5) of the tree-decomposition.

Let $t_{1} t_{2} \in E(T)$ and let V_{1} be the vertex set defined in (W5). Define similarly the set V_{2}. Then also $V_{2} \neq \emptyset$ and hence $Z_{t_{1} t_{2}}$ is a separating set of G which separates V_{1} and V_{2} in G.

Let G be a graph and let $W=\left\{w_{0}, \ldots, w_{n}\right\}, n=|W|-1$, be a linearly ordered subset of its vertices such that w_{i} precedes w_{j} in the linear order
if and only if $i<j$. The pair (G, W) is called a vortex of length n, W is the society of the vortex and all vertices in W are called society vertices. Suppose that for $i=0, \ldots, n$, there exist vertex sets $X_{i} \subseteq V(G)$ with the following properties:
(V1) $w_{i} \in X_{i}$ for $i=0, \ldots, n$,
$(\mathrm{V} 2) \cup_{0 \leq i \leq n} X_{i}=V(G)$,
(V3) every edge of G has both endvertices in some X_{i},
(V4) if $i \leq j \leq k$, then $X_{i} \cap X_{k} \subseteq X_{j}$, and
(V5) if $j \notin\{i, i+1\}$, then $w_{j} \notin X_{i}$.
Then the family $\left(X_{i} \mid i=0, \ldots, n\right)$ is a vortex decomposition of the vortex (G, W). For $i=1, \ldots, n$, denote by $Z_{i}=\left(X_{i-1} \cap X_{i}\right) \backslash W$. The adhesion of the vortex decomposition is the maximum of $\left|Z_{i}\right|$, for $i=1, \ldots, n$. The vortex decomposition is linked if for $i=1, \ldots, n-1$, the subgraph of G induced on the vertex set $X_{i} \backslash W$ contains a collection of disjoint paths linking Z_{i} with Z_{i+1}. Clearly, in that case $\left|Z_{i}\right|=\left|Z_{i+1}\right|$, and the paths corresponding to $Z_{i} \cap Z_{i+1}$ are trivial. Note that every vortex admits a linked decomposition since we can take $X_{i}=(V(G) \backslash W) \cup\left\{w_{i}, w_{i+1}\right\}$ (where $\left.w_{n+1}:=w_{n}\right)$. The adhesion of the vortex is the minimum adhesion taken over all linked decompositions of the vortex. Let us observe that in a linked decomposition of adhesion q, there are q disjoint paths linking Z_{1} with Z_{n} in $G-W$.

Let H be a subgraph of a graph G_{0}. If G_{0} can be written as $G_{1} \cup G_{2}$, where $G_{1} \cap G_{2}=\left\{v_{1}, \ldots, v_{t}\right\} \subset V\left(G_{0}\right), 1 \leq t \leq 3, V\left(G_{2}\right) \backslash V\left(G_{1}\right) \neq \emptyset$, and every vertex of H in $G_{2}-\left\{v_{1}, \ldots, v_{t}\right\}$ has degree 2 in H, then we replace G_{0} by the graph G^{\prime} obtained from G_{1} by adding all edges $v_{i} v_{j}(1 \leq i<j \leq t)$ that are not already in G_{1}. If $H \cap G_{2}$ has a path in G_{2} connecting v_{i} and v_{j}, then we replace that path in H by the edge $v_{i} v_{j}$. The resulting graph H^{\prime} is a subgraph of G^{\prime}, and we say that the pair $\left(G^{\prime}, H^{\prime}\right)$ was obtained from $\left(G_{0}, H\right)$ by an elementary reduction. Every pair $\left(G^{\prime \prime}, H^{\prime \prime}\right)$ that can be obtained from $\left(G_{0}, H\right)$ by a sequence of elementary reductions is a reduction of $\left(G_{0}, H\right)$.

A surface is a compact connected 2-manifold (with boundary). The surface is closed if the boundary is empty. The components of the boundary are called the cuffs. If H is a subgraph of a graph G_{0}, we say that the pair $\left(G_{0}, H\right)$ can be embedded in a surface Σ up to 3 -separations if there is a reduction $\left(G^{\prime \prime}, H^{\prime \prime}\right)$ of $\left(G_{0}, H\right)$ such that $G^{\prime \prime}$ has an embedding in Σ.

Let G be a graph, H a subgraph of G, Σ a surface, and $\alpha \geq 0$ an integer. We say that the pair (G, H) can be α-nearly embedded in Σ if there is a set of at most α cuffs in $\Sigma, C_{1}, \ldots, C_{b}(b \leq \alpha)$, and there is a set A of at most α vertices of G such that $G-A$ can be written as $G_{0} \cup G_{1} \cup \cdots \cup G_{b}$ where:
(N1) H is a subgraph of G_{0}, and $\left(G_{0}, H\right)$ can be embedded in Σ up to 3 -separations.
(N2) If $1 \leq i<j \leq b$, then $V\left(G_{i}\right) \cap V\left(G_{j}\right)=\emptyset$.
(N3) $W_{i}=V\left(G_{0}\right) \cap V\left(G_{i}\right)=V\left(G_{0}\right) \cap C_{i}$ for every $i=1, \ldots, b$.
(N4) For every $i=1, \ldots, b$, the pair $\left(G_{i}, W_{i}\right)$ is a vortex of adhesion less than α, where the ordering of W_{i} is determined by the order of these vertices on C_{i}.

The vertices in A are called the apex vertices of the α-near embedding. It may happen that $A=V(G)$, and $G-A$ is empty. In that case we say that the α-near embedding of G in Σ is trivial. Otherwise, G_{0} is nonempty. The subgraph G_{0} of G is said to be the embedded subgraph with respect to the α-near embedding and the decomposition $G_{0}, G_{1}, \ldots, G_{b}$. The pairs $\left(G_{i}, W_{i}\right), i=1, \ldots, b$, are the vortices of the α-near embedding. The vortex (G_{i}, W_{i}) is said to be attached to the cuff C_{i} of Σ containing W_{i}.

Let us recall that an r-wall is a graph which is isomorphic to a subdivision of the graph W_{r} with vertex set $V\left(W_{r}\right)=\{(i, j) \mid 1 \leq i \leq r, 1 \leq j \leq r\}$ in which two vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent if and only if one of the following possibilities holds:
(1) $i^{\prime}=i$ and $j^{\prime} \in\{j-1, j+1\}$.
(2) $j^{\prime}=j$ and $i^{\prime}=i+(-1)^{i+j}$.

Now we can state the theorem. We shall use a formulation which is a simplified version of one of the cornerstones of Robertson and Seymour's theory of graph minors, the Excluded Minor Theorem, as stated in [59].

Theorem 4.1 For every positive integer w, there exists a positive integer r such that the following holds. Let R be a graph and let G be a graph that does not contain R as a minor. If G has tree-width at least w, then G contains an r-wall H as a subgraph and there is a constant α (depending only on $R)$ such that the pair (G, H) has an α-near embedding in some surface Σ in which R cannot be embedded. Moreover, $r=r(w)$ is nondecreasing as a function of w and $\lim _{w \rightarrow \infty} r(w)=\infty$.

Some additional remarks should be made at this point:
(1) The r-wall H is planarly embedded in Σ, i.e., every cycle in H is contractible in Σ and there is a disk $D \subset \Sigma$ such that H and all 6 -faces of the embedding of H in the plane are contained in D. To see this, observe that the cycle space of H is generated by the facial 6 -cycles of its planar embedding. If all these cycles are contractible in Σ, then an $(r / 2)$-subwall of H is planarly embedded in Σ. If more than $171 g$ of the facial 6 -cycles of H are noncontractible in Σ, where g is the Euler genus of Σ, then there are $9 g$ such cycles, $F_{1}, \ldots, F_{9 g}$, such that any two of them are at distance at least 3 in H. This implies, in particular, that $H-\left(F_{1} \cup \cdots \cup F_{9 g}\right)$ is connected and hence no four cycles among $F_{1}, \ldots, F_{9 g}$ are homotopic. Consequently, $F_{1}, \ldots, F_{9 g}$ contains a subfamily of $3 g$ cycles, no two of which are homotopic. This is not possible (cf., [45, Proposition 4.2.6]). Hence, at most 171 g of the 6 -cycles of H are noncontractible and H contains a large subwall that is planarly embedded, and we can take this subwall instead of H. The size r^{\prime} of this smaller wall still satisfies the condition that $r^{\prime}=r^{\prime}(w) \rightarrow \infty$ as w increases.
(2) We may additionally assume that the face-width (or representativity, see [45] for the definition) of the embedded subgraph $G^{\prime \prime}$ in Σ is as large as we want (in terms of R). To see this, suppose that there is a non-contractible closed curve C that intersects $G^{\prime \prime}$ only at vertices and $\left|C \cap V\left(G^{\prime \prime}\right)\right|$ is small. Then we delete all the vertices in $C \cap V\left(G^{\prime \prime}\right)$ from $G^{\prime \prime}$ and add them into the set of apex vertices. Then the genus of Σ goes down, and the number of apex vertices is still bounded. Continuing this procedure, we get the graph on a simpler surface whose face-width is as large as we wanted. See [55, 57, 50] for details. For the survey on the face-width of embeddings, we refer to [45].

5 The large tree-width case

In this section we complete the proof of our main result, Theorem 1.1. We will make use of Theorem 4.1. We let $R=s K_{a, k}$, and apply Theorem 4.1 to G, R and a large value of w that will be specified later. We let $r=r(w), \Sigma$, H, and $\alpha=\alpha(a, s, k)$ be the quantities from Theorem 4.1. By taking large
enough w, we may assume that r is as large as we want.
We shall use the notation introduced in Section 4. In particular, we let G_{0} be the embedded subgraph of G, and ($G^{\prime \prime}, H^{\prime \prime}$) be the corresponding reduction of $\left(G_{0}, H\right)$. Since R cannot be embedded in Σ, Euler genus of Σ is at most $\frac{s(a-2)(k-2)}{2}$. Since the embedded part $G^{\prime \prime}$ of G contains the r-wall $H^{\prime \prime}$, we may assume that $G^{\prime \prime}$ is as large as we want. Suppose $G^{\prime \prime}$ has N^{\prime} vertices. Then $N^{\prime} \geq r^{2}$. Let A be the set of apex vertices. Suppose that each vortex has adhesion at most α and that there are $b \leq \alpha$ vortices.

Again, we define the constants that will be used in the proofs:

$$
\begin{aligned}
& n_{1}=4\left(a s k+4 \operatorname{sk}\binom{\alpha}{a}+\alpha n_{2}\right) \\
& n_{2}=n_{3}^{2 \alpha+1} \\
& n_{3}=3 a\left(2 n_{4}\right)^{p}, \quad \text { where } p=2^{2 \alpha+1} \\
& n_{4}=n_{5}^{q}, \quad \text { where } q=2^{\alpha(2 \alpha+1)} \\
& n_{5}=16(a+1) \operatorname{sk}\binom{2 \alpha}{a} .
\end{aligned}
$$

From now on we assume that w is so large that r is large enough to guarantee that $N^{\prime} \geq r^{2} \geq n_{1}$. In the rest of our proof, we also assume that G is $(3 a+2)$-connected and that the minimum degree of G is at least $\frac{31}{2}(a+1)-3$.

In this section we shall sometimes abuse terminology and speak of paths in a set U (usually a subgraph or just a vertex set), but will always mean paths in the subgraph of G induced by the vertices in U.

First, we will show that only a bounded number of non-society vertices have a or more neighbors in G that are not their neighbors in $G^{\prime \prime}$.

Claim 5.1 There are at most $(s k-1)\binom{\alpha}{a}$ vertices of $G^{\prime \prime}$ that can have a or more neighbors in A.

Proof. Otherwise, by the Pigeonhole Principle, there is a vertex set $C \subseteq$ $V\left(G^{\prime \prime}\right)$ with $|C| \geq s k$ such that each vertex in C has a common neighbors in A. But this gives $K_{a, s k}$ as a subgraph, a contradiction.

Claim 5.2 There are at most $3(s k-1)\binom{\alpha}{a}$ vertices of $G^{\prime \prime}$ that have been used in the elementary reductions yielding the embedded subgraph $G^{\prime \prime}$ from G_{0}.

Proof. The argument is similar to the one used in the proof of Claim 5.1. Suppose that we have made t elementary reductions in order to obtain $G^{\prime \prime}$ from G_{0}. Let $G_{1}^{(i)}$ and $G_{2}^{(i)}$ be the graphs used in the i th elementary reduction, $i=1, \ldots, t$. We may assume that vertex sets $V\left(G_{2}^{(i)}\right) \backslash V\left(G_{1}^{(i)}\right)$ removed in these reductions are pairwise disjoint. Let $v_{i} \in V\left(G_{2}^{(i)}\right) \backslash V\left(G_{1}^{(i)}\right)$. Since G is $(a+3)$-connected, there exist $a+3$ internally disjoint paths connecting v_{i} with a vertex v_{i}^{\prime} in $V\left(G_{1}^{(i)}\right) \backslash V\left(G_{2}^{(i)}\right)$. At most three of these paths reach v_{i}^{\prime} through vertices in $V\left(G_{1}^{(i)}\right) \cap V\left(G_{2}^{(i)}\right)$, so at least a of them go through A. They give rise to a collection of a paths joining v_{i} with distinct vertices in A, and these paths are contained in $A \cup V\left(G_{2}^{(i)}\right) \backslash V\left(G_{1}^{(i)}\right)$. If more than $3(s k-1)\binom{\alpha}{a}$ vertices of $G^{\prime \prime}$ have been involved in the reductions, then $t>(s k-1)\binom{\alpha}{a}$. By the Pigeonhole Principle, there is a set of $s k$ indices $i_{1}, \ldots, i_{s k}$ such that their a-tuple of paths end in the same a-tuple of vertices in A. Clearly, these paths determine a subdivision of $K_{a, s k}$ in G.

The following claim is a corollary of the large face-width condition, see remark (2) after Theorem 4.1.

Claim 5.3 For every cuff $C_{i}(1 \leq i \leq b)$, there exists a cycle C_{i}^{\prime} in $G^{\prime \prime}$ such that C_{i}^{\prime} separates a cylinder D_{i} in Σ whose boundary components are C_{i} and C_{i}^{\prime}. Every vertex in C_{i}^{\prime} is cofacial with some vertex in C_{i} (i.e., they belong to a common facial walk). Moreover, interiors of cylinders D_{i} are pairwise disjoint for $i=1, \ldots, b$.

By Menger's Theorem we have:
Claim 5.4 For $i=1, \ldots, b$, let π_{i} be the maximum number of pairwise disjoint paths connecting $C_{i} \cap W_{i}$ with C_{i}^{\prime}. Then $G^{\prime \prime}$ has a separation $\left(I_{i}, J_{i}\right)$ of order π_{i} such that $C_{i} \subseteq J_{i} \subseteq D_{i}$ and $C_{i}^{\prime} \subseteq I_{i}$.

We shall prove that there is a large vortex with some special properties, to which we will be able to apply similar arguments as used in Section 3. We say that a society vertex $v \in C_{i}$ is essential if $\operatorname{deg}_{G^{\prime \prime}}(v) \leq 4$. We say that the vortex $\left(G_{i}, W_{i}\right)$ attached to the cuff C_{i} is n-wide if it contains n essential society vertices $w_{1}, \ldots, w_{n} \in W_{i}$ and there are n pairwise disjoint paths in $G^{\prime \prime}$ joining $\left\{w_{1}, \ldots, w_{n}\right\}$ with the cycle C_{i}^{\prime}.

Claim 5.5 There exists an n_{2}-wide vortex.

Proof. For each cuff $C_{i}(1 \leq i \leq b)$, let L_{i} be all essential vertices in C_{i}. If for some i, there are at least n_{2} disjoint paths from L_{i} to C_{i}^{\prime}, then we are done. Otherwise, by Claim 5.4, for each i, there is a separation $\left(I_{i}, J_{i}\right)$ of order at most $n_{2}-1$ such that J_{i} contains all the vertices in L_{i} and $C_{i}^{\prime} \subseteq I_{i}$. Let $G_{1}^{\prime \prime}$ be the graph obtained from $G^{\prime \prime}$ by deleting $J_{i}-I_{i}$ for all i. Then $G_{1}^{\prime \prime}-\bigcup_{i=1}^{b}\left(J_{i} \cap I_{i}\right)$ has no essential vertices. Since $C_{i}^{\prime} \subseteq G_{1}^{\prime \prime}$ for $1 \leq i \leq b$, and since every vertex in C_{i}^{\prime} is cofacial with some vertex in $C_{i}, G_{1}^{\prime \prime}$ contains an $(r-1)$-subwall of $H^{\prime \prime}$. Hence, $G_{1}^{\prime \prime}$ has at least $N^{\prime \prime} \geq(r-1)^{2}$ vertices. By Claims 5.1 and 5.2 , at least $N^{\prime \prime}-4(s k-1)\binom{\alpha}{a}-b\left(n_{2}-1\right)$ vertices have degree at least $\frac{31}{2}(a+1)-3-(a-1)$ in $G_{1}^{\prime \prime}$. On the other hand, the surface Σ has Euler genus at most $s(a-2)(k-2) / 2$, and hence, by Euler's formula, $G_{1}^{\prime \prime}$ has at most $3 N^{\prime \prime}+3 s(a-2)(k-2) / 2$ edges. This yields a contradiction.

Let $\left(G_{1}, W_{1}\right)$ be an n_{2}-wide vortex. Let $w_{1}, \ldots, w_{n_{2}}$ be the corresponding essential society vertices, and let Q_{i} be disjoint paths joining w_{i} with C_{1}^{\prime}, $i=1, \ldots, n_{2}$. The vortex $\left(G_{1}, W_{1}\right)$ has a linked vortex decomposition. If the adhesion is q, let P_{1}, \ldots, P_{q} be the corresponding paths, with the convention that P_{1} is a tree, composed of all paths Q_{i} and the segment of C_{1}^{\prime} joining the ends of these paths, starting at Q_{1} and passing through Q_{2}, Q_{3}, \ldots until reaching $Q_{n_{2}}$. After contracting each Q_{i} to a point, we can think of P_{1} as the path with vertices $w_{1}, \ldots, w_{n_{2}}$ and think of it as being contained in G_{1}. From now on, we will only be interested in minors within the vortex, so making contractions of all Q_{i} is admissible. Only once we shall get a subdivision (and not a minor) of $K_{a, s k}$, but in that case P_{1} will not be used. We let $Z=P_{1} \cup \cdots \cup P_{q}$.

It turns out that it is convenient to treat apex vertices as being contained in the vortex. This is achieved by adding A to G_{1} and adding all A into every part of the linked vortex decomposition of $\left(G_{1}, W_{1}\right)$. Each added vertex then determines a (trivial) path in the linked vortex decomposition of the extended vortex. This increases the adhesion at most by α. We assume that this change to the vortex has been made and hence its adhesion is bounded by 2α. In particular, we have $q \leq 2 \alpha$.

Similarly as in Section 3 (cf. Claims 3.2 and 3.3), we consider a subset of essential society vertices, $\left\{w_{p} \mid p \in I\right\}$ of cardinality n_{5} such that the following conditions hold:
(a) $I=\left\{p_{1}, \ldots, p_{n_{5}}\right\}$, where $1<p_{1}<p_{2}<\cdots<p_{n_{5}}<n_{2}$.
(b) For $j=1, \ldots, q$, either $P_{j}\left(p_{1}-1, p_{n_{5}}+1\right)$ is a single vertex (in which case we say that P_{j} is a trivial path), or all segments $P_{j}\left(p_{i}-1, p_{i}+1\right)$
$\left(i=1, \ldots, n_{5}\right)$ are mutually disjoint (in which case we say that P_{j} is nontrivial). However, we do not request that $P_{j}\left(p_{i}-1, p_{i}+1\right)$ contains more than one vertex. Let us observe that all paths corresponding to the apex vertices are trivial and that P_{1} is nontrivial.
(c) Any two paths P_{j}, P_{l} are either everywhere bridge connected or everywhere bridge disconnected. This means that for all (or for none) of the values $i=1, \ldots, n_{5}$, there is a Z-bridge in G_{1} that is attached to $P_{j}\left(p_{i}-1, p_{i}+1\right)$ and to $P_{l}\left(p_{i}-1, p_{i}+1\right)$.

We also introduce the following notation which is similar (but not identical) to the one used in Section 3. We let $Z_{i} \subseteq G_{1}$ be the set of segments of paths, $Z(i)=\cup_{j=1}^{q} P_{j}\left(p_{i}-1, p_{i}+1\right)$, together with all Z-bridges in G_{1} that have all their vertices of attachment in $Z(i)$.

By using (c), we define the auxiliary graph Γ and we let Γ_{0} be the subgraph consisting of the connected component that contains P_{1} and is obtained from Γ after deleting its vertices corresponding to the trivial paths. We assume that $V\left(\Gamma_{0}\right)=\left\{P_{1}, \ldots, P_{q_{0}}\right\}$.

As in Section 3, we introduce the graph $\hat{H}_{i} \subseteq Z_{i}$ which consists of all segments $P_{j}\left(p_{i}-1, p_{i}+1\right)$ for $j=1, \ldots, q_{0}$ together with all Z-bridges in Z_{i} that are attached to at least one of the paths $P_{1}, \ldots, P_{q_{0}}$. Observe that \hat{H}_{i} may contain vertices of trivial paths, but the only nontrivial paths participating in \hat{H}_{i} are $P_{1}, \ldots, P_{q_{0}}$. Finally, we define H_{i} as the induced subgraph of \hat{H}_{i} obtained by deleting the trivial paths. For easier notation, we also introduce vertices $z_{i}=w_{p_{i}}$. Let

$$
\begin{aligned}
& S_{i}=V\left(\hat{H}_{i}\right) \cap\left(\cup_{j=1}^{q} P_{j}\left(p_{i}, p_{i}\right)\right) \\
& S_{i}^{-}=V\left(\hat{H}_{i}\right) \cap\left(\cup_{j=1}^{q} P_{j}\left(p_{i}-1, p_{i}-1\right)\right), \quad \text { and } \\
& S_{i}^{+}=V\left(\hat{H}_{i}\right) \cap\left(\cup_{j=1}^{q} P_{j}\left(p_{i}+1, p_{i}+1\right)\right) .
\end{aligned}
$$

Let us observe that, unlike in Section $3, S_{i}, S_{i}^{-}$, and S_{i}^{+}need not be disjoint. All we can say is that $z_{i} \in S_{i} \backslash\left(S_{i}^{-} \cup S_{i}^{+}\right)$.

Unfortunately, we cannot easily prove an analogue of Claim 3.4. Instead, we will be satisfied with the following weaker statement.

Claim 5.6 For all but at most $2(s k-1)\binom{2 \alpha}{a}$ values of i, the following holds:
(a) If $v \in V\left(H_{i}\right)-S_{i}^{-}-S_{i}^{+}$, then v has at most a neighbors in $S_{i}^{-} \cap H_{i}$ and at most a neighbors in $S_{i}^{+} \cap H_{i}$.
(b) \hat{H}_{i} has a separation $\left(A_{i}, B_{i}\right)$ of order at most a-1 such that A_{i} contains all vertices of trivial paths in \hat{H}_{i} and such that $B_{i}-A_{i}-S_{i}^{-}-S_{i}^{+}$ contains a vertex adjacent to z_{i}.

Proof. If $u \in V\left(H_{i}\right)$ is adjacent to $a+1$ vertices in $S_{i}^{-} \cap H_{i}$ or to $a+1$ vertices in $S_{i}^{+} \cap H_{i}$, then a of these neighbors lie on distinct everywhere nontrivial paths $P_{1}^{i}, \ldots, P_{a}^{i}$, where $u \notin P_{1}^{i} \cup \cdots \cup P_{a}^{i}$. If this happens for more than $(s k-1)\binom{\alpha}{a}$ values of i, there are $s k$ values of i for which the a-tuple of paths $P_{1}^{i}, \ldots, P_{a}^{i}$ is the same. It is easy to see that this gives rise to s disjoint $K_{a, k}$-minors in G.

From now on we exclude all those values of i for which a vertex in $V\left(H_{i}\right)-S_{i}^{-}-S_{i}^{+}$has more than a neighbors in $S_{i}^{-} \cap H_{i}$ or more than a neighbors in $S_{i}^{+} \cap H_{i}$. The society vertex z_{i} is essential, so it has degree more than $3 a+1$ in \hat{H}_{i}. By the same argument as used in the proof of Claim 5.1, z_{i} has a neighbors in the set of trivial paths for at most $(s k-1)\binom{2 \alpha}{a}$ values of i. As assumed above, z_{i} has at most a neighbors in $S_{i}^{-} \cap H_{i}$ and at most a of them in $S_{i}^{+} \cap H_{i}$. Therefore, z_{i} has a neighbor v_{i} in $H_{i}-S_{i}^{-}-S_{i}^{+}$. If there are a internally disjoint paths in \hat{H}_{i} from v_{i} to distinct trivial paths, and this happens for more than $(s k-1)\binom{2 \alpha}{a}$ values of i, then we get a subdivision of $K_{a, s k}$. Consequently, there is a separation $\left(A_{i}, B_{i}\right)$ of \hat{H}_{i} of order at most $a-1$ such that $v_{i} \in B_{i}-A_{i}$ (hence $v_{i} \in B_{i}-A_{i}-S_{i}^{-}-S_{i}^{+}$), and A_{i} contains all vertices of trivial paths that are in \hat{H}_{i}. This completes the proof.

From now on we only consider those values of i for which the properties (a) and (b) of Claim 5.6 hold.

Claim 5.7 $q_{0} \geq a+1$.
Proof. Let us consider the vertex $v_{i} \in B_{i}-A_{i}-S_{i}^{-}-S_{i}^{+}$. The vertices in $S=\left(A_{i} \cap B_{i}\right) \cup\left(S_{i}^{-} \cap H_{i}\right) \cup\left(S_{i}^{+} \cap H_{i}\right) \cup\left\{z_{i}\right\}$ separate v_{i} from G_{0} in G. Therefore, $|S| \geq 3 a+2$. Since $\left|A_{i} \cap B_{i}\right| \leq a-1$, it follows that $|S| \leq$ $a-1+\left|S_{i}^{-} \cap H_{i}\right|+\left|S_{i}^{+} \cap H_{i}\right|+1=2 q_{0}+a$. Combining the two bounds on $|S|$ implies that $q_{0} \geq a+1$.

The last claim can be used to prove an analogue of Claim 3.7.
Claim 5.8 $B_{i}-A_{i}-S_{i}^{-}-S_{i}^{+}-z_{i}$ contains an ($a+1$)-linked subgraph M_{i}.
Proof. We will apply Corollary 2.3 to the graph $L_{i}=B_{i}-A_{i}-S_{i}^{-}-S_{i}^{+}-z_{i}$. First of all, let us observe that every vertex $v \in V\left(L_{i}\right)$ has degree at least
$\frac{31}{2}(a+1)-3$ and has at most $3 a-1$ neighbors in $A_{i} \cup\left(S_{i}^{-} \cap H_{i}\right) \cup\left(S_{i}^{+} \cap H_{i}\right)$ by Claim 5.6. If v has a neighbor $u \in S_{i}^{-} \backslash V\left(H_{i}\right)$, then u forms one of the trivial paths, so it belongs to A_{i}. Consequently, v has at most $3 a$ neighbors in $A_{i} \cup S_{i}^{-} \cup S_{i}^{+} \cup\left\{z_{i}\right\}$. Hence the degree of v in L_{i} is at least $\frac{31}{2}(a+1)-3-$ $3 a=\frac{25}{2}(a+1)$. Thus we conclude that $\left|E\left(L_{i}\right)\right| \geq \frac{25}{4}(a+1)\left|V\left(L_{i}\right)\right|$. Since $v_{i} \in V\left(L_{i}\right), L_{i}$ is a nonempty graph and its order is obviously at least the degree of v_{i}. This shows that Corollary 2.3 can be applied to L_{i}, and we conclude that M_{i} exists.

Finally, we construct s disjoint $K_{a, k}$-minors in the same way as in Section 3 . The only difference is that we take $2 a+2$ paths $Q_{0}, \ldots, Q_{a}, Q_{0}^{\prime}, \ldots, Q_{a}^{\prime}$ from M_{i} to $S_{i}^{-} \cup S_{i}^{+}$in the graph $G-z_{i}-\left(A_{i} \cap B_{i}\right)$, and therefore we need connectivity $3 a+2$ instead of $3 a+1$ because of the additionally removed vertex z_{i}.

This completes the proof of Theorem 1.1.

6 Conclusion

Let us observe that our proof implies the following.
Theorem 6.1 For any s, t, a and k, there exists a constant $N(s, k, a, t)$ such that every $(3 a+2)$-connected graph of minimum degree at least $\frac{31}{2}(a+1)-3$ and with at least $N(s, k, a, t)$ vertices contains either a subdivision of $K_{a, t}$ or a minor isomorphic to s disjoint copies of $K_{a, k}$.

This theorem says that in Theorem 1.1, the result holds not only for a topological minor of $K_{a, s k}$ but also for a topological minor of $K_{a, t}$ for any t that does not need to depend on s and k. Hence t could be arbitrarily large compared to $s k$.

Our final remark is that, as observed in [5], the sequence of graphs $K_{a, k}$, where a is fixed and k tends to infinity, is essentially the only family of graphs for which a result like our Theorem 1.1 holds. More precisely:

Theorem 6.2 ([5]) Let c and $w \geq c$ be positive integers, and let $H_{k}(k \geq$ 1) be a sequence of graphs such that $\lim _{k \rightarrow \infty}\left|V\left(H_{k}\right)\right|=\infty$. Suppose that for any positive integer k there exists an integer $N(k)$ such that every c connected graph of tree-width $\leq w$ and of order at least $N(k)$ contains H_{k} as a minor. Then H_{k} is a minor of $K_{c, N(k)}$ for $k \geq 1$.

Acknowledgement

We would like to thank Neil Robertson and Paul Seymour for their helpful suggestions. Also, we would like to thank Robin Thomas and Paul Wollan for bringing our attention to their paper [66] on k-linked graphs.

References

[1] K. Appel and W. Haken, Every planar map is four colorable, Part I. Discharging, Illinois J. Math. 21 (1977), 429-490.
[2] K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Part II. Reducibility, Illinois J. Math. 21 (1977), 491-567.
[3] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1989), 11-24.
[4] T. Böhme and A. Kostochka, Disjoint K_{r}-minors in large graphs with given average degree, to appear in Europ. J. Combinatorics.
[5] T. Böhme, J. Maharry and B. Mohar, $K_{a, k}$ minors in graphs of bounded tree-width, J. Combin. Theory, Ser. B 86 (2002), 133-147.
[6] T. Böhme, K. Kawarabayashi, J. Maharry and B. Mohar, $K_{3, k}$-minors in large 7 -connected graphs, preprint.
[7] B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica 16 (1996), 313-320.
[8] R. Diestel, Graph Decompositions - A Study in Infinite Graph Theory, Oxford University Press, Oxford, 1990.
[9] R. Diestel, Graph Theory, 2nd Edition, Springer, 2000.
[10] R. Diestel, K. Yu. Gorbunov, T. R. Jensen, and C. Thomassen, Highly connected sets and the excluded grid theorem, J. Combin. Theory Ser. B 75 (1999), 61-73.
[11] G. Ding, private communication.
[12] G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952), 85-92.
[13] G. A. Dirac, Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen mit Anwendung auf das Vierfarbenproblem, J. reine angew. Math. 204 (1960), 116-131.
[14] G. A. Dirac, On the structure of 5 - and 6 -chromatic abstract graphs, J. reine angew. Math. 214/215 (1964), 43-52.
[15] P. Erdős and L. Pósa On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9 (1962), 3-12.
[16] D. Fon-Der-Flaass, private communication.
[17] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschr. naturforsch. Ges. Zürich 88 (1943), 133-142.
[18] R. Halin, S-function for graphs, J. Geometry 8 (1976), 171-186.
[19] T. R. Jensen and B. Toft, Graph Coloring Problems, WileyInterscience, 1995.
[20] T. Johnson and R. Thomas, Generating internally four-connected graphs, J. Combin. Theory Ser. B 85 (2002), 21-58.
[21] L. K. Jørgensen, Contractions to K_{8}, J. Graph Theory 18 (1994), 431448.
[22] H. A. Jung, Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen, Math. Ann. 187 (1970), 95-103.
[23] M. Juvan, J. Marinček and B. Mohar, Elimination of local bridges, Math. Slovaca 47 (1997), 85-92.
[24] K. Kawarabayashi, Excluding a graph with K_{6}^{-}-minor, preprint.
[25] K. Kawarabayashi, On the connectivity of minimal counterexamples to Hadwiger's conjecture, preprint.
[26] K. Kawarabayashi, Unavoidable minors in large 5-connected graphs, preprint.
[27] K. Kawarabayashi, Minors in 7-chromatic graphs, preprint.
[28] K. Kawarabayashi, A. Kostochka and G. Yu, On sufficient degree conditions for a graph to be k-linked, to appear in Combin. Probab. Comput.
[29] K. Kawarabayashi, R. Luo, J. Niu and C.Q. Zhang, On structure of k-connected graphs without K_{k}-minors, to appear in Europ. J. Combinatorics.
[30] K. Kawarabayashi and B. Mohar, $K_{4, k}$-minors in large 9-connected graphs, in preparation.
[31] K. Kawarabayashi and B. Mohar, The Erdős-Pósa property for $K_{5^{-}}$ minors with minimum degree at least 7, in preparation.
[32] K. Kawarabayashi and B. Toft, Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor, Combinatorica, in press.
[33] A. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307-316.
[34] A. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices (in Russian), Metody Diskret. Analiz. 38 (1982), $37-58$.
[35] A. Kostochka and N. Prince, On $K_{s, t}$-minors in graphs with given average degree, preprint.
[36] D. Kühn and D. Osthus, Forcing unbalanced complete bipartite minors, to appear in Europ. J. Combinatorics.
[37] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154-168.
[38] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend grosser Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972), 86-97.
[39] W. Mader, private communication.
[40] J. Maharry, A characterization of graphs with no cube minor, J. Combin. Theory Ser. B 80 (2000), 179-201.
[41] J. Maharry, An excluded minor theorem for the octahedron, J. Graph Theory 31 (1999), 95-100.
[42] B. Mohar, Combinatorial local planarity and the width of graph embeddings, Canad. J. Math. 44 (1992) 1272-1288.
[43] B. Mohar, Graph minors and graphs on surfaces. in "Surveys in Combinatorics, 2001 (Sussex)", London Math. Soc. Lecture Note Ser. 288, Cambridge Univ. Press, Cambridge, 2001, pp. 145-163.
[44] B. Mohar, Problem of the month, Fall 2003, http://www.fmf.uni-lj.si/~mohar/.
[45] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.
[46] J. Myers, The extremal function for unbalanced bipartite minors, Discrete Math. 271 (2003), 209-221.
[47] J. Myers and A. Thomason, The extremal function for noncomplete graph minors, to appear in Combinatorica.
[48] B. Oporowski, J. Oxley and R. Thomas, Typical subgraphs of 3- and 4-connected graphs, J. Combin. Theory Ser. B 57 (1993), 239-257.
[49] B. Reed, Tree width and tangles: a new connectivity measure and some applications, in "Surveys in Combinatorics, 1997 (London)", London Math. Soc. Lecture Note Ser. 241, Cambridge Univ. Press, Cambridge, 1997, pp. 87-162.
[50] B. Reed, Mangoes and blueberries, Combinatorica 19 (1999), 267-296.
[51] B. Reed and P. D. Seymour, Fractional colouring and Hadwiger's conjecture, J. Combin. Theory Ser. B 74 (1998), 147-152.
[52] N. Robertson, private communication.
[53] N. Robertson and P. D. Seymour, Graph minors. III. Planar tree-width, J. Combin. Theory Ser. B 36 (1984), 49-63.
[54] N. Robertson and P. D. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986), 92-114.
[55] N. Robertson and P. D. Seymour, An outline of a disjoint paths algorithm, in: "Paths, Flows, and VLSI-Layout," B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver (Eds.), Springer-Verlag, Berlin, 1990, pp. 267-292.
[56] N. Robertson and P. D. Seymour, Excluding a graph with one crossing, Contemp. Math. 147 (1993), 669-675.
[57] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995), 65-110.
[58] N. Robertson and P. D. Seymour, Graph minors. XVI. Excluding a non-planar graph, J. Combin. Theory Ser. B 89 (2003), 43-76.
[59] N. Robertson and P. D. Seymour, Graph minors. XVII. Taming a vortex, J. Combin. Theory Ser. B 77 (1999), 162-210.
[60] N. Robertson and P. D. Seymour, Graph minors. XX. Wagner's conjecture, to appear in J. Combin. Theory Ser. B.
[61] N. Robertson, P. D. Seymour and R. Thomas, Hadwiger's conjecture for K_{6}-free graphs, Combinatorica 13 (1993), 279-361.
[62] N. Robertson, P. D. Seymour and R. Thomas, Quickly excluding a planar graph, J. Combin. Theory Ser. B 62 (1994), 323-348.
[63] N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The fourcolor theorem, J. Combin. Theory Ser. B 70 (1997), 2-44.
[64] Z. Song and R. Thomas, The extremal function for K_{9}-minors, preprint.
[65] R. Thomas, Recent excluded minor theorems for graphs, in "Surveys in Combinatorics, 1999 (Canterbury)", Cambridge Univ. Press, Cambridge, 1999, pp. 201-222.
[66] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, to appear in Europ. J. Combinatorics.
[67] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261-265.
[68] A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001), 318-338.
[69] A. Thomason, Two minor problems, Combin. Probab. Comput. 13 (2004), 413-414.
[70] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B 70 (1997), 67-100.
[71] B. Toft, A survey of Hadwiger's conjecture, Congr. Numer. 115 (1996), 249-283.
[72] B. Toft, private communication.
[73] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570-590.
[74] K. Wagner, Beweis einer Abschwächung der Hadwiger-Vermutung, Math. Ann. 153 (1964), 139-141.

[^0]: *Supported in part by the German-Slovenian Research Project SVN 99/03 on Graph Minors, Colorings and Algorithms.
 ${ }^{\dagger}$ E-mail address: tboehme@theoinf.tu-ilmenau.de
 ${ }^{\ddagger}$ Part of this work was done while this author was visiting Princeton University
 ${ }^{\S}$ Research partly supported by the Japan Society for the Promotion of Science for Young Scientists, by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by Sumitomo Foundation and by Inoue Research Award for Young Scientists.
 ${ }^{〔}$ Email address: k_keniti@dais.is.tohoku.ac.jp
 ${ }^{\|}$Supported in part by the International Research Project SLO-US-007 on Graph Minors and by the National Security Agency under Grant Number MDA 904-02-1-0052.
 **E-mail address: maharry@math.ohio-state.edu
 ${ }^{\dagger \dagger}$ Supported in part by the International Research Project SLO-US-007 on Graph Minors and by the Ministry of Science and Technology of Slovenia, Research Program P10297.
 ${ }^{\ddagger \ddagger}$ E-mail address: bojan.mohar@uni-lj.si

