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1. INTRODUCTION

All graphs in this paper are simple. For terms related to graphs embed-
ded in surfaces we refer to [7]. A surface is a compact 2-manifold with-
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out boundary. The Euler genus of a surface S is the nonnegative integer
g = 2 − χ(S), where χ(S) is the Euler characteristic of S.

Let c be a coloring of vertices of G. If C is a cycle in G on which only two
colors a and b appear, then we say that C is bi-colored or (a, b)-colored if
we need a specific reference to its colors. A coloring of a graph G is acyclic
if there are no bi-colored cycles. The acyclic chromatic number χac(G) of
G is the minimum integer k such that G admits an acyclic k-coloring.

Grünbaum [4] proved that every planar graph has an acyclic 9-coloring
and conjectured that five colors suffice. His conjecture was confirmed by
Borodin [3].

Theorem 1.1 (Borodin). Every planar graph is acyclically 5-colorable.

For surfaces other than the plane, Borodin (see [5]) conjectured that
the maximum acyclic chromatic number equals the maximum chromatic
number of graphs on that surface. Alon, Mohar, and Sanders [2] proved
that the acyclic chromatic number of an arbitrary surface with Euler genus
g is at most O(g4/7). They also proved that this is nearly tight; for every
g there are graphs with Euler genus g whose acyclic chromatic number is
at least Ω(g4/7/(log g)1/7). Therefore, the conjecture of Borodin is false
for all surfaces with large Euler genus (and may very well be false for all
surfaces).

Graphs on surfaces of large genus can have large chromatic number.
However, those graphs that are locally planar in the sense that there are
no short noncontractible cycles are 5-chromatic as proved by Thomassen
[9]. Similar property holds for acyclic colorings. Let us recall that the edge-
width ew(G) of a graph G embedded in a surface S of positive Euler genus is
the length of a shortest cycle of G that is noncontractible in S. In [6], Mohar
proved that every graph on a fixed surface with sufficiently large edge-width
is acyclically 8-colorable. In fact, he proved that acyclic 8-coloring exists
already under a weaker assumption that all surface nonseparating cycles
are sufficiently large. In this paper, we prove the following.

Theorem 1.2. For every surface S there exists an integer w = w(S)
such that every graph embedded in S with edge-width at least w is acyclically
7-colorable.

The proof of Theorem 1.2 is deferred to Section 6.
There exist graphs with arbitrarily large girth and arbitrarily large chro-

matic number. Since the edge-width (in any embedding) cannot be smaller
than the girth, the number w in Theorem 1.2 must depend on the genus
of S.
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Although we conjecture that Theorem 1.2 can be improved to a 6-coloring
result, present techniques do not seem strong enough to prove this strength-
ening. We also believe that the following conjecture may also be true:

Conjecture 1.1. For every surface S there exists an integer k = k(S)
such that every graph G embedded in S contains a vertex set U with
|U | ≤ k such that G − U is acyclically 5-colorable.

Since � 1
2 (g − 1)� copies of K7 can be embedded into a surface of Euler

genus g, the value k(S) in Conjecture 1.1 should be at least linear in the
genus of S.

Theorem 1.2 implies a weaker form of the above conjecture.

Theorem 1.3. For every surface S there exists an integer k = k(S) such
that every graph G embedded in S contains a vertex set U with |U | ≤ k
such that G − U is acyclically 7-colorable.

Proof. The proof is by induction on the Euler genus g of S. Let G be
a graph embedded in S. If the edge-width of G is at least w(S), where the
value of w(S) comes from Theorem 1.2, then that theorem shows that G
is acyclically 7-colorable. Otherwise, G contains a set of fewer than w(S)
vertices, whose removal gives rise to a graph embedded in a surface of Euler
genus smaller than g. Now we just apply the induction hypothesis and the
proof is easily completed.

Every graph isomorphic to some K1,t (t ≥ 0) is called a star . A star
coloring is a special case of acyclic colorings under which any two color
classes induce a subgraph whose components are stars. Equivalently, no
subgraph isomorphic to the path P4 on four vertices is bi-colored. The star
chromatic number χ∗(G) of a graph G is the smallest integer k such that
G admits a star coloring using k colors.

Let s∗0 be the smallest integer such that every planar graph is star col-
orable with s∗0 colors. It is known that s∗0 exists. Currently, the best bounds
on s∗0 are due to Albertson et al. [1].

Theorem 1.4 (Albertson, Chappell, Kierstead, Kündgen, Ramamurthi).
10 ≤ s∗0 ≤ 20.

Albertson et al. also proved in [1] that for graphs of genus g, χ∗(G) ≤ 5g+
s∗0. Albertson (private communication) asked if constant number of colors
suffices under some local planarity assumption. An affirmative answer to
his question follows from Theorem 1.2. Namely, as shown in [1],

χ∗(G) ≤ χac(G)(2χac(G) − 1)
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holds for every graph G, and thus for every graph G embedded on a
(fixed) surface with sufficiently large edge-width, Theorem 1.2 implies that
χ∗(G) ≤ 91.

By using techniques developed in order to prove Theorem 1.2, we can
improve the above result to the following.

Theorem 1.5. For every surface S there exists an integer w∗ = w∗(S)
such that every graph embedded in S with edge-width at least w∗ is star
colorable with 2s∗0 + 3 colors.

The proof of Theorem 1.5 is deferred to the last section.
Again, Theorem 1.5 implies a result in the spirit of Theorem 1.3.

Theorem 1.6. For every surface S there exists an integer k∗ = k∗(S)
such that every graph G embedded in S contains a vertex set U with |U | ≤
k∗ such that χ∗(G − U) ≤ 2s∗0 + 3.

The proof is essentially the same as the proof of Theorem 1.3, so we omit
it.

2. PLANARIZING CYLINDERS AND MÖBIUS BANDS

If Q is a plane 2-connected graph with outer cycle C1 and another facial
cycle C0 disjoint from C1, then we call Q a cylinder with outer cycle C1

and inner cycle C0. If C is a cycle in Q, then we denote by Int(C) the
subgraph of Q consisting of C and all vertices and edges embedded in the
disk bounded by C. The cylinder-width of G is the largest integer q such
that G has q + 1 pairwise disjoint cycles R0, . . . , Rq such that R0 = C0,
Rq = C1, and C0 ⊆ Int(R1) ⊆ Int(R2) ⊆ · · · ⊆ Int(Rq).

Suppose that a graph H embedded in a surface of Euler genus g has
disjoint facial cycles C′

0, C
′
1 of the same lengths as the cycles C0 and C1

of Q (respectively), then we can identify C0 and C′
0 into a cycle C′′

0 and
identify C1 and C′

1 into a cycle C′′
1 . Let G be the graph obtained from the

union of Q and H after these identifications. The embeddings of Q and H
determine an embedding of G into a surface of Euler genus g + 2. We also
say that H is obtained from G by cutting out the cylinder Q.

Let M be a graph embedded in the projective plane and let C0 be a cycle
of M bounding a face. We say that M together with the distinguished face
C0 is a Möbius band and that C0 is its outer cycle. The depth of the
Möbius band G is the largest integer q such that Q has q + 1 pairwise
disjoint cycles R0, . . . , Rq such that R0 = C0, Rq is a 1-sided cycle, and
each of R1, . . . , Rq−1 separates R0 from Rq.
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If H is a graph on a surface of Euler genus g with a facial cycle C′
0 of the

same length as the outer cycle C0 of Q, then we can identify C0 and C′
0 into

a cycle C′′
0 . Let G be the graph obtained from the union of Q and H after

this identification. The embeddings of Q and H determine an embedding
of G into a surface of Euler genus g + 1. We also say that H is obtained
from G by cutting out the Möbius band Q.

Robertson and Seymour [8] proved an important result about graph mi-
nors in “densely embedded” graphs, whose special case restricted to trian-
gulations can be stated as follows:

Theorem 2.1 ([8]). Let S be a surface, and let W be a graph that is
embedded in S. Then there is a constant w such that every triangulation
of S with edge-width at least w contains a subgraph W ′ such that W is
isomorphic to a minor of W ′ and its induced embedding is combinatorially
the same as the embedding of W .

Theorem 2.1 implies the following.

Corollary 2.1. For any natural numbers g and r there exists an integer
f(g, r) such that every triangulation G of a surface of Euler genus g with
edge-width at least f(g, r) contains h = �g/2� pairwise disjoint cylinders
Q1, . . . , Qh of cylinder-width r, and if g is odd, also contains a Möbius
band M of depth r and disjoint from Q1, . . . , Qh, such that cutting out
these cylinders and Möbius band (when g is odd) results in a connected
plane graph.

Moreover, when g is odd, M can be chosen in such a way that it contains
a shortest one-sided cycle of G, whose distance from the boundary cycle of
M is equal to r.

Proof. The first part of the corollary follows from Theorem 2.1. A
simple proof of this part for orientable surfaces was obtained by Thomassen
[10, Theorem 9.1]; see also [7].

In order to prove the second part of the corollary, we assume that g is
odd. We will first find a “deep” Möbius band with a geodesic one-sided
cycle in the middle and prove that after cutting out this Möbius band and
contracting its boundary to a point, the resulting graph G′ is embedded
in a surface of Euler genus g − 1 and still has large edge-width. This will
enable us to apply Theorem 2.1 to G′ and get the cylinders Q1, . . . , Qh.

Let C be a shortest one-sided cycle in G. For i = 1, . . . , r + 1, there
is an induced cycle Ci in G whose vertices are all at distance i from C
such that Ci is a surface separating cycle which separates a Möbius band
containing C from the rest of the surface. This follows from standard
homotopy arguments using the 3-path property of one-sided cycles.
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Let M be the Möbius band corresponding to Cr. We claim that the rest
of the surface contains h disjoint cylinders of cylinder width r if the edge-
width is sufficiently large. To see this, we first cut along Cr+1 to obtain a
surface of Euler genus g−1 in which Cr+1 bounds a face. In order to apply
our corollary inductively (for genus g − 1), we add a vertex x into this face
and join it to all vertices of Cr+1. Let G′ be the resulting graph. If the
edge-width of G′ is at least f(g − 1, 2r + 1), the cylinders of width 2r + 1
exist. Each of these cylinders is also a cylinder for G unless it contains x.
However, in the latter case, it contains a subcylinder of width r which does
not contain x. In this way, all h cyclinders for G are obtained.

It remains to show that G′ has edge-width at least f(g − 1, 2r + 1). To
prove this, we assume that the edge-width w of G satisfies:

w ≥ f(g, r) ≥ 2f(g − 1, 2r + 1) + 4r. (1)

Let R be a shortest non-contractible cycle of G′. If R does not contain
x, then R is also non-contractible cycle of G and hence it is longer than
f(g − 1, 2r + 1). So suppose that R contains x. Let x1, x2 ∈ R ∩ Cr+1 be
the neighbors of x on R. For i = 1, 2, let Zi be a path in G of length r + 1
from xi to a vertex yi on C. Let X1 and X2 be the paths from y1 to y2,
whose union is equal to C, and suppose that |X1| ≤ |X2|. Finally, let Ri

be the closed walk composed of paths R− x, Z1, Z2, and Xi, i = 1, 2. It is
easy to see that Ri is non-contractible and that precisely one of R1, R2 is
one-sided.

If R1 is one-sided, then |R1| ≥ |C| and hence by (1):

|R| ≥ |R1| − 1
2
|C| − 2(r + 1) + 2 ≥ 1

2
|C| − 2r

≥ 1
2
f(g, r) − 2r ≥ f(g − 1, 2r + 1).

If |R1| ≥ 2|X1|, then similarly

|R| ≥ |R1| − |X1| − 2(r + 1) + 2 ≥ 1
2
|R1| − 2r

≥ 1
2
f(g, r) − 2r ≥ f(g − 1, 2r + 1).

As for the third alternative, let us suppose that |R1| ≤ 2|X1| and that
R1 is two-sided. Then R2 is one-sided, and hence |R2| ≥ |C|. This implies

|R| = |R2| − (|C| − |X1|) − 2r ≥ |X1| − 2r

≥ 1
2
|R1| − 2r ≥ f(g − 1, 2r + 1).
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In all cases we have concluded that |R| ≥ f(g−1, 2r+1), as claimed. This
completes the proof.

3. CRITICAL GRAPHS AND TRIANGULATIONS

For the purpose of this paper, a graph G embedded in a surface S is
critical if χac(G) > 7, but every graph embedded in S with fewer vertices
than G and with edge-width at least ew(G) has acyclic chromatic number
at most 7.

Proposition 3.1. Let G be embedded in some surface and suppose that
G is critical. Then every contractible 3-cycle in G bounds a face. If C
is a contractible 4-cycle of G, then the disk bounded by C contains in its
interior at most one vertex of G.

Proof. The claim about 3-cycles is easy. If C is not facial, let U be the
set of in the interior of the disk bounded by C. Note that ew(G − U) =
ew(G). Let f be an acyclic 7-coloring of G−U . By Theorem 1.1, Int(C) can
be acyclically 5-colored, and we may assume that this coloring coincides
with f on C. The combination of both colorings now yields an acyclic
7-coloring of G, a contradiction.

Let C = abcd be a contractible 4-cycle and let H be the subgraph of G
consisting of C and all vertices and edges in the disk D bounded by C. By
the above, we may assume that C is chordless in H and that no vertex of
H is incident to all vertices on C. Consequently, we may also assume that
there is no vertex of H − a − c is adjacent to both b and d. Trying to get
a contradiction, we may also assume that H has at least six vertices.

If H has a vertex t which is adjacent to two opposite vertices of C, then t
is adjacent to a, c, and possibly b (say). Let G′ be the graph obtained from
G by deleting all vertices of H − V (C) and adding a vertex t′ adjacent
to all vertices of C. Since G is critical, and since ew(G′) = ew(G), G′

has an acyclic 7-coloring f ′ : V (G′) → {1, . . . , 7}. We may assume that
f ′(a) = 1, f ′(b) = 2, and f ′(t′) = 5. Since f ′ is acyclic, we have the
following possibilities for the remaining two vertices of C:

(i) f ′(c) = 1 and f ′(d) = 3,
(ii) f ′(c) = 3 and f ′(d) = 2,
(iii) f ′(c) = 3 and f ′(d) = 4.
Let H ′ be the graph obtained from H by identifying vertices a and c

into a single vertex (which we also call a). Finally, we replace double edges
between a and b, a and d (and a and t if t exists) by single edges.
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Since H ′ is planar, it has an acyclic 5-coloring h′ : V (H ′) → {1, 4, 5, 6, 7}.
By possibly permuting the colors, we may assume that h′(a) = 1. In case
(i) we also assume that h′(t) = 5 if t exists. In case (iii), we assume that
h′(d) = 4.

Finally, we extend the coloring f ′ of G′ to a coloring f of G by coloring
all vertices inside D the same as under the coloring h′. If the resulting
coloring of G has a bi-colored cycle R, then R uses at least one vertex
in D. Since colors 2 and 3 are not used in h′, one of the two colors on
R is distinct from 2 and 3. If the other color were 2 or 3, R would have
only one vertex in D and would leave and enter D through vertices of
that color. But since b and d have no common neighbors distinct from a
and c, this is not possible. Clearly, R cannot enter through a and leave
through c since its bi-colored segment in D would give rise to a bi-colored
cycle in H ′, which is not possible under the acyclic coloring h′. It fol-
lows that R does not exist and hence we have an acyclic 7-coloring of G.

The following observation, whose easy proof is left to the reader, will
enable us to restrict our attention to triangulations.

Proposition 3.2. Let G be graph embedded in a surface S. Then there
is a triangulation G′ of S such that G is an induced subgraph of G′ and
the edge-width of G′ is equal to the edge-width of G. Moreover, if every
contractible 3-cycle of G is facial and every contractible 4-cycle in G con-
tains at most one vertex in its interior, then the same property holds also
for G′.

4. FIT CYCLES

Let G be a Π-embedded graph, and let R = x1x2 . . . xn be an induced
path or a cycle. A 2-jump over R is a path J = xiyxj with the following
properties:

(J1) y /∈ V (R),
(J2) j ≥ i + 2,
(J3) all those neighbors of y, which belong to R, lie on the segment

xixi+1 . . . xj , and
(J4) the cycle S = xixi+1 . . . xjyxi is Π-contractible and none of the

vertices x1, . . . , xi−1 and xj+1, . . . , xn lies inside the disk bounded by S.

If J = xiyxj is a 2-jump over R, we say that J is based on xi and xj

and that y is its apex . The vertices xi+1, . . . , xj−1 are said to be covered
by the 2-jump J . The length of the 2-jump is |j − i|; the jump is short if
its length is 2, and long otherwise.
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Let Q be a cylinder in a Π-embedded graph with boundary cycles Q1, Q2,
or a Möbius band with boundary cycle Q1. A cycle C ⊆ Q is said to be
homotopic to the boundary of Q if Q can be written as the union R ∪ S,
where R is a cylinder with boundary cycles Q1 and C, and S is either a
cylinder with boundary cycles Q2 and C (if Q is a cylinder), or a Möbius
band with boundary cycle C (when Q is a Möbius band). We extend the
above definition in the obvious way to the case when C is not disjoint from
the boundary of Q by allowing that R or S is a “degenerate cylinder” in
which the boundary cycles are allowed to intersect.

A cycle C ⊆ Q is said to be fit if the following properties hold:

(F1) C is an induced cycle, homotopic to the boundary of Q and is
disjoint from the boundary of Q.

(F2) No vertex of C has degree smaller than 5.
(F3) If two distinct 2-jumps over C are based on the same pair of vertices

of C, then they are short 2-jumps, their apices are adjacent, and one of
them is a vertex of degree 4.

(F4) If 2-jumps xiyxj and xkzxl interlace, i.e., i < k < j < l, then these
2-jumps are both short.

(F5) If xiyxj and xkzxl are distinct long 2-jumps, then either k ≥ j or
l ≤ i.

Fit cycles will be important for cutting the surface into planar pieces
whose acyclic 5-colorings will afterwards be combined into an acyclic 7-
coloring of the original graph. Fit cycles exist and can be found by the
method used in the proof given below.

A cylinder (or a Möbius band) Q with boundary cycles C1 and C2 is
triangulated if all its faces except the outer and the inner cycle are triangles.
The edge-width of Q is the length of a shortest cycle in Q which is homotopic
to the boundary of Q.

Lemma 4.1. Suppose that Q is a triangulated cylinder of cylinder-width
at least 6 and edge-width at least 5, in which the interior of every 4-cycle
contains at most one vertex. Then Q contains a fit cycle.

Proof. Let C1, C2 be the boundary cycles of Q, and let C be a cycle in
Q′ = Q− (C1 ∪C2) such that the following conditions are satisfied (where
each condition is understood as being subject to all previous ones):

(1) C is a shortest cycle in Q′ homotopic to the boundary of Q.
(2) C has minimum number of vertices of degree less than 5.
(3) The number of long jumps is minimum.
We claim that C is fit. Since Q has cylinder-width more than 1, such

a cycle exists. Since cycles homotopic to the boundary satisfy the 3-path-
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property (cf., e.g., [7]), a shortest such cycle is an induced cycle. Therefore,
C satisfies (F1).

Since Q is a triangulated cylinder, no induced cycle disjoint from the
boundary contains a vertex of degree less than 4, and if C contains a vertex
u of degree 4, it passes through two opposite neighbors a, c of u. Let b, d be
the other two neighbors of u. Since the cylinder-width of Q is more than 2,
we may assume that b ∈ V (Q′). Since every 4-cycle contains at most one
vertex in its interior, the degree of b is at least 5. Therefore, changing the
cycle C by replacing the path auc by abc, contradicts (2). This shows that
(F2) holds.

To verify (F3), observe that 2-jumps xiyxj and xizxj (y 
= z) form a
4-cycle, which is contractible since the edge-width of Q is bigger than 4
and the cylinder-width is at least 6. Therefore, we may assume that z does
not belong to the boundary of Q. The 3-path-property and (1) then imply
that these 2-jumps are short. Thus, xixi+1xi+2yxi and xixi+1xi+2zxi are
also contractible 4-cycles. Since they contain at most one vertex in their
interiors, it is easy to see that either y, z, or xi+1 is a vertex of degree 4
contained in the interior of one of these 4-cycles. By (F2), this cannot be
xi+1, and (F3) follows.

Suppose that xiyxj is a long 2-jump. Since C is a shortest cycle ho-
motopic to the boundary, the 3-path property of such cycles implies that
the apex y of the 2-jump is not in Q′, i.e., y ∈ C1 ∪ C2. This observation
shows that two long 2-jumps cannot interlace. Suppose now that xkzxl is
a short 2-jump interlacing with xiyxj . By (F3) we may assume that the
degree of z is at least 5. We may also assume that k = j − 1 and l = j + 1.
Let us now replace C by the cycle C′ obtained by changing the segment
xj−1xjxj+1 to xj−1zxj+1. The new cycle satisfies (1), has no small degree
vertices and has fewer long jumps than C. This contradicts (3) and proves
(F4).

Let us now show that (F5) is satisfied. By (F3) and (F4) we may assume
(reductio ad absurdum) that i ≤ k < l < j. Then z is contained in the disk
bounded by the contractible cycle xixi+1 . . . xjyxi. Moreover, since y and z

are both in C1 ∪ C2, this yields a contradiction.

5. CHANGING COLORS ACROSS A CYLINDER

The following result was essentially proved in [6] but we include a sketch
of the proof for completeness.

Lemma 5.1. Let Q be a cylinder of cylinder-width d ≥ 11, and let Q′ be
obtained from Q by contracting the boundary cycles of Q to single vertices
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x1 and x2, respectively. Then for every a, b ∈ {1, . . . , 5}, there exists an
acyclic 6-coloring f of Q′ such that the following conditions hold:

(i) f(x1) = a and f(x2) = b.
(ii) No vertex at distance at most two from x1 or x2 is colored 6.
(iii) There is no bi-colored path from x1 to x2.

Proof. By Theorem 1.1, there is an acyclic 5-coloring f of Q′, and we
may assume that f(x1) = a. Let Q0, Q1, . . . , Qd be the homotopic cycles
showing that the cylinder-width of Q is at least d. For 1 ≤ i < j ≤ d, let
us denote by Ri,j ⊆ Q′ the subgraph of Q′ obtained from the subcylinder
of Q between Qi and Qj, where Qd is contracted to the vertex x2 if j = d.
Observe that R1,d ⊃ R2,d ⊃ · · · ⊃ Rd−1,d.

Let us now change the coloring of Q′ as follows. If f(x2) = b, we replace
color a with color 6 in R3,4. Let us observe that changing certain color
with another color t gives rise to a new acyclic coloring if t is not used in
the first and the second neighborhood of the vertices where the change has
been made. The performed change will assure that (iii) is satisfied, and
(i)–(ii) are clear. Thus, we are done.

Suppose now that f(x2) = c 
= b. Let us also suppose that b 
= a. Then
we change color a to color 6 on the whole R3,d. Next, we replace color b
with color a on R5,d. If c 
= a, we next change color c to b on R7,d and
finally replace color 6 to c on R9,d (in order to assure (ii)). If c = a then,
after the change on R5,d, the current color of x2 is 6, so we can simply
replace 6 by color b on R7,d.

The only remaining case is when f(x2) = c 
= b and b = a. In this case we
first replace color a by color 6 on R3,d, and afterwards replace color c by a on
R5,d.

We shall need another coloring result for Möbius bands. The proof of
this statement is implicit in the proof of Theorem 2 in [2] and will not be
repeated here.

Lemma 5.2. Let M be a triangulated Möbius band and let M ′ be obtained
from M by contracting the boundary cycle of M to a single vertex x1. Let
C be a shortest one-sided cycle in M . If the distance of every vertex of C
to the boundary of M is at least four, then for every a ∈ {1, . . . , 5}, there
exists an acyclic 7-coloring f of M ′ such that

(i) f(x1) = a, and
(ii) no vertex at distance at most two from x1 is colored 6 or 7.
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6. PROOF OF THE MAIN THEOREM

This section is devoted to the proof of Theorem 1.2. Let G be a graph
that is embedded in a surface S of Euler genus g with edge-width at least
w, where w will be specified below. Since the edge-width cannot be de-
creased by taking induced subgraphs (and their induced embeddings), we
may assume that G is critical. By Proposition 3.1 we may assume that
every contractible 4-cycle contains at most one vertex in its interior. By
Proposition 3.2, we may assume that G is a triangulation of edge-width at
least w whose contractible 4-cycles still contain at most one vertex in their
interiors. However, we no longer require G to be critical. We will prove
in the sequel that our graph is acyclically 7-colorable, thus completing the
proof.

We assume that w is large enough such that Corollary 2.1 can be applied
to obtain h = �g/2� pairwise disjoint cylinders Q◦

1, . . . , Q
◦
h of cylinder-width

at least 24, and (if g is odd) a Möbius band M◦ of depth at least 24 such
that cutting out these cylinders and Möbius band (when g is odd) results
in a connected plane graph. Moreover, if M◦ exists, then it satisfies the
condition of having a shortest one-sided cycle “deep inside” as required in
Lemma 5.2.

Let Q◦
k (1 ≤ k ≤ h) be one of these cylinders, and let R0, . . . , R24 be

disjoint cycles homotopic to the boundary showing that the cylinder width
of Q◦

k is at least 24. Let Ri,j be the subcylinder with boundary cycles Ri and
Rj . We apply Lemma 4.1 in R1,7 to obtain a fit cycle C1 in R1,7−(R1∪R7).
Similarly, we can obtain a fit cycle C2 in R17,23 − (R17 ∪ R23). We apply
the similar procedure to M◦ if it exists.

By applying the above procedure, we replace the cylinders (and the
Möbius band) by their subgraphs and obtain a collection of h = �g/2�
pairwise disjoint cylinders Q1, . . . , Qh of cylinder-width at least 11, and (if
g is odd) a Möbius band M of depth at least 4, whose boundary cycles are
all fit, and such that cutting out these cylinders and Möbius band (when
g is odd) results in a connected plane graph H0. Moreover, if M◦ exists,
then it contains a shortest one-sided cycle of G and the distance from it to
the boundary of M◦ is at least 4.

Observe that H0 has precisely g nontriangular faces whose boundaries
are disjoint cycles C1, . . . , Cg of G, corresponding to the boundary cycles
of the removed cylinders and Möbius band. Moreover, distinct boundary
cycles are at distance at least 5 from each other since the constructed fit
cycles C1, C2 (and similarly others) are disjoint from R0, R1, R23, and R24.

Let H1 be the plane graph obtained from H0 by contracting each cycle
Ci into a single vertex ci, i = 1, . . . , g. By Theorem 1.1, H1 has an acyclic
5-coloring f1 : V (H1) → {1, . . . , 5}.
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From the cylinders Qi and the possible Möbius band M we form graphs
Q′

i and M ′ by contracting their boundary cycles to single vertices. For
each of them we apply Lemma 5.1 or 5.2 to get an acyclic 7-coloring under
which each contracted boundary cycle Ci has color f1(ci), same as the
corresponding vertex ci has under the coloring of H1. It is important to
observe that under all these colorings, the vertices, which are at distance
at most 2 from C1 ∪ · · · ∪ Cg in G, use only colors 1, . . . , 5.

We shall now define a coloring f of G. This coloring coincides with acyclic
colorings obtained above for H1, Q

′
1, . . . , Q

′
h and M ′ (if applicable). In the

sequel we shall describe how to color the vertices on all cycles C1, . . . , Cg in
such a way that the resulting coloring f will be an acyclic 7-coloring of G.
The procedure is the same for all cycles, and we shall describe it only for
C1. We assume that C1 is the boundary cycle in Q1 and that f1(c1) = 5.
To color C1 we shall use colors 5, 6 and 7 (each at least once) such that no
consecutive vertices on C1 receive the same color. Since C1 is an induced
cycle and since colors 5, 6, 7 do not occur on the neighbors of c1 (neither
in H1 nor in Q′

1), this gives rise to a proper coloring of G. All we have to
argue is that there are no bi-colored cycles.

Suppose that C would be a bi-colored cycle. Clearly, C would need to
contain a vertex from one of C1, . . . , Cg (say from C1). The two colors on
C are therefore a ∈ {5, 6, 7} and b ∈ {1, 2, 3, 4}. If a ∈ {6, 7}, then every
second vertex on C is colored a, and since vertices at distance at most 2
from C1 are not colored 6 or 7, all these vertices belong to C1. The same
holds if a = 5: the cycle C cannot start at one side of C1 and come back
from the other side, and can neither cross any other cylinder Qj , because
of condition (iii) in Lemma 5.1. Therefore, the edges of C would give rise
to a (5, b)-colored cycle in H1 if at least one vertex of C colored 5 would
not belong to C1. This proves our assertion that every vertex of C, whose
color is a, belongs to C1.

Before examining the structure of bi-colored cycles in more details, let
us describe the requirements that we shall impose on the coloring of C1.
Roughly speaking, we will color vertices of C1 in order by using colors 5,
6, 7 so that no two vertices on C1 which are a base of a short 2-jump, are
colored the same. Under such assumption, 2-colored cycles would not be
able to use short 2-jumps. In fact, we will have to allow a few exceptions to
the above condition, but they will be apart from each other, so it will still
not be possible to use short 2-jumps to make a bi-colored cycle. Henceforth,
any bi-colored cycle would need to use apices of long 2-jumps outside of
C1. Because C1 is fit, the only possibility for this to happen would be that
long 2-jumps form a cycle homotopic to C1. If such a cycle exists, it is
uniquely determined and consists of all long 2-jumps. Therefore, it suffices
to arrange that not all vertices which are bases of long 2-jumps over C1 are
colored the same.
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Let C1 = v1v2 . . . vkv1. Every coloring c : V (C1) → {5, 6, 7} of C1 with
c(v1) = 5 and c(v2) = 6 is completely determined by specifying the set N of
those vertices vi for which c(vi−1) = c(vi+1) (indices considered modulo k).
The vertices in N are called exceptional , since they may provide exceptions
to our goal of coloring base vertices of short 2-jumps by distinct colors.

Let us first characterize sets N ⊆ V (C1) which are exceptional sets of
colorings of C1 with three colors. The first condition is that |N | is even.
To see this, look at the corresponding coloring c as a homomorphism into
the 3-cycle and consider its winding around the 3-cycle. Each exceptional
vertex represents the change of clockwise direction to anticlockwise (or vice
versa). Since the direction is clockwise at the beginning and again at the
end, the total number of changes is even.

TABLE 1.

Effect of having two exceptional vertices at a given spread

Coloring Spread modulo 3

. . . 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 . . . –

. . . 5 6 75 7 6 5 7 65 6 7 5 6 7 . . . 0

. . . 5 6 75 7 6 5 7 6 57 5 6 7 5 . . . 1

. . . 5 6 75 7 6 5 7 6 5 76 7 5 6 . . . 2

Let N = {vi1 , vi2 , . . . , vi2r} (r ≥ 0), where 1 ≤ i1 < i2 < · · · < i2r ≤ k.
Define the spread of vij ∈ N to be the “distance” to the next exceptional
vertex, i.e., ij+1 − ij (if j = 2r, then the spread is deffined accordingly to
be k− i2r + i1). So, the sum of all spreads is equal to k. Table 1 shows that
the change of coloring made by two consecutive exceptional vertices vij and
vij+1 , when compared to the coloring without exceptional vertices, has the
same effect as “prolonging” the cycle C1 by the spread of vij (modulo 3).
The colors of exceptional vertices are shown in bold.

Conclusions of the last two paragraphs imply that a set N ⊆ V (C1) is
the set of exceptional vertices of some 3-coloring of C1 if and only if |N | is
even and (with the above notation) the sum of spreads of vi1 , vi3 , vi5 , . . . ,
vi2r−1 is congruent to −k (mod 3). Observe that the sum of all spreads is
equal to k, so the sum of “complementary” spreads is also congruent to −k
(mod 3).

To describe a coloring of C1, we shall only define its exceptional set which
will consist of 0, 2, or 4 vertices. If k ≡ 0 (mod 3) and there exists a cycle
Ĉ composed of long 2-jumps, whose lengths are all multiples of 3, then we
select four long 2-jumps with disjoint bases {j1, l1}, {j2, l2}, {j3, l3}, {j4, l4},
j1 < l1 < j2 < l2 < j3 < l3 < j4 < l4 < k. Since the edge-width of G is
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more than 16, such 2-jumps exist. For t = 1, 2, 3, 4, we select it, jt < it < lt,
such that i2−i1 ≡ 1 (mod 3) and i4−i3 ≡ 2 (mod 3). Since our 2-jumps are
long, i1, . . . , i4 exist. Finally, we set N = {i1, i2, i3, i4}. If k ≡ 0 (mod 3)
and the cycle Ĉ with the properties stated above does not exist, then we
set N = ∅.

For the remaining case, suppose that k 
≡ 0 (mod 3). If there is a cycle
Ĉ composed of long 2-lumps, then the length of at least one of long 2-
jumps is not a multiple of 3. In such a case we may assume that such a
2-jump has basis {vj , vk}. If there is a cycle Ĉ homotopic to C1, which is
composed of long 2-jumps and one or two short 2-jumps, then we assume
that j = k−2 and that {vj, vk} is the basis of one of these two 2-jumps. We
define N = {v2, v8+t}, where t ∈ {1, 2} is selected so that t ≡ −k (mod 3).
(Note that 8 + t < j when Ĉ exists.)

Using the above characterization of exceptional sets, it is easy to see
that N defines a coloring c of C1 with colors 5, 6, 7. The choices made in
various cases assure that possible cycle Ĉ composed of long 2-jumps is not
2-colored. In the first case this is because vi1 and vi2 guarantee that the
base of the long 2-jump following the jump with basis {vj2 , vl2} will be
colored differently than the vertex vj1 . In the second case, this is because
one of the long 2-jumps has length not divisible by 3. We argue similarly
in the third case because of the 2-jump with basis {vj , vk}, for which one
can show that c(vj) 
= c(vk).

The only remaining possibility for a bi-colored cycle would be to contain
some short 2-jumps. However, this cannot occur since such a cycle would
either contain two 2-jumps viyvi+2, vizvi+2 over the same base, or would
be composed of a short 2-jump viyvi+2 and the apex z of a long 2-jump
adjacent to both vi and vi+2, or would contain two consecutive 2-jumps
viyvi+2 and vi+2zvi+4. The latter possibility is excluded by our choice of
N not containing an element with spread 2. The former two cases are not
possible since y and z are adjacent by Proposition 3.1 and by property (F2)
of the fit cycle C1. This completes the proof of Theorem 1.2.

7. PROOF OF THE STAR COLORING THEOREM

This section is devoted to the proof of Theorem 1.5. As the proof builds
on the similar principles as the proof of Theorem 1.2, we shall be vague
at those points which are identical to that proof, and will try to be clear
about the differences.

One difference here is that we do not have the result corresponding to
Proposition 3.1. However, that proposition is needed only to achieve prop-
erty (F2) of fit cycles, which is used at the very end of the proof in Section
6 to exclude bi-colored 4-cycles when an exceptional vertex is covered by
two short 2-jumps. Accordingly, the corresponding Proposition 3.2 has to



16 K. KAWARABAYASHI AND B. MOHAR

be understood without the assumption and without the conclusion about
contractible 3-cycles and 4-cycles.

The application of Lemma 5.2 will be replaced by the following one:

Proposition 7.1. Let G be a triangulation of the projective plane and
let C be a shortest non-contractible cycle in G. Then G has a star coloring
with colors 1, 2, . . . , s∗0 + 4 such that the colors s∗0 + 1, . . . , s∗0 + 4 are used
only on the vertices of C.

Proof. Let C = v1 . . . vkv1. The graph G−{v1, . . . , vk−1} is planar and
thus admits a star coloring with colors 1, . . . , s∗0. Now we color v1, . . . , vk−2

with three new colors in such a way that for every i = 1, . . . , k − 4, ver-
tices vi, vi+1, vi+2 receive three distinct colors. Finally, we color vk−1 with
the fourth color. Since C is a shortest noncontractible cycle in G, the
3-path property implies (if k ≥ 6) that no two vertices on C which are
at distance at most 2 in G have the same color. Obviously, this prop-
erty holds also for k ≤ 5 since then all vertices of C are colored differ-
ently. This implies that we have a star coloring of the whole graph G.

The definition of a fit cycle has to be changed in order to be used for star
colorings. On one hand, Proposition 3.1 does not hold for star colorings,
so we will no longer require (F2), and we will have to replace (F3) by an-
other, similar condition stated below as (F3’). We shall need an additional
property, henceforth denoted by (F2’):

(F2’) If a vertex xl ∈ V (C) is adjacent to the apex y of a long 2-jump
J = xiyxj and if J ′ = xly

′xm or J ′ = xmy′xl is a 2-jump based on xl,
where i ≤ m ≤ j, then y and y′ are on the same side of C.

(F3’) If two distinct 2-jumps over C are based on the same pair of
vertices of C, then they are short 2-jumps, and they are both on the same
side of C.

As in the proof of Lemma 4.1 we show that a cycle C = x1x2 . . . xk with
properties (F1) and (F4)–(F5) exists by imposing conditions (1) and (3)
stated in that proof. Now, among all cycles satisfying (1) and (3), we select
one for which

(4) the number of pairs J, J ′ which violate (F3’) is minimum, and
(5) the number of pairs J, J ′ which violate (F2’) is minimum.

It is easy to see that (4) implies (F3’). So, let us concentrate on proving
(F2’). If C does not fulfil (F2’), let J = xiyxj and J ′ = xly

′xm (say) be as
in (F2’), where y and y′ are on different sides of C.

Clearly, J ′ is a short 2-jump. We may assume that m = l + 2, and then
we replace C by the cycle C′ = x1 . . . xly

′xl+2 . . . xk. Since y′ is on the
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other side than y, and y being the apex of a long 2-jump is on C1 ∪ C2,
we conclude that y′ /∈ C1 ∪ C2. This implies that C′ is an eligible cycle,
and it suffices to show that we improve on one of the imposed minimality
conditions. We may also assume that y′ is not contained in a disk bounded
by another 2-jump J ′′ = xly

′′xl+2. In that case, we would rather consider
J ′′ instead of J ′.

Under the above assumptions, the new cycle C′ still satisfies (F3’) and
(4) is not affected. However, (5) is improved. This contradiction to the
fact that C was chosen optimally proves that (F2’) holds as well.

We are ready to proceed with the conclusion of our proof of Theorem
1.5. We start with a graph G embedded with large edge-width. We may
assume G is a triangulation of large edge-width, and we decompose G into
a plane graph G0 and h = �g/2� wide cylinders Q1, . . . , Qh and possibly
one deep Möbius band M , whose boundary cycles are all fit (according to
the modified definition) and which are at distance at least five from each
other. We color Q1, . . . , Qh and M with s∗0 and s∗0 + 4 colors, respectively,
so that the four additional colors are used only on the shortest one-sided
cycle “deep inside” M . Next we use colors s∗0 + 1, . . . , 2s∗0 to color G0. Let
us observe that, unlike in the proof of Theorem 1.2, we do not contract
boundary cycles to single vertices. We shall combine these star colorings
into a star coloring of G. In order to achieve this, we will need to specify the
coloring of vertices on the boundary cycles C1, . . . , Cg. To color them, we
will either use their color from the coloring of G0 or from the corresponding
cylinder or the Möbius band.

Let us describe how we color C1. The procedure for other cycles is
identical. Let c0 be the star coloring of G0 with colors s∗0 + 1, . . . , 2s∗0 and
let c1 be the star coloring of the cylinder or the Möbius band N whose
boundary cycle is C1. We think of using colors 1, . . . , s∗0 in c1 (and we may
neglect possibly used colors s∗0 + 1, . . . , s∗0 + 4 in the case of the Möbius
band M since they appear only at distance three or more from C1). If a
vertex v ∈ V (C1) is adjacent to the apex of a long 2-jump from G0 (or
from N , respectively), then we color it by c0(v) (c1(v), respectively). Let v
be a vertex that is not adjacent to the apex of a long 2-jump. If v is a base
of a short 2-jump in G0 but not of one in N , we color it by c0(v). If it is a
base of a short 2-jump in N but not of one in G0, we color it by c1(v). For
other cases, let us fix an orientation of the cycle C1. If v is a base vertex of
a 2-jump in G0 and of one in N , then by (F3’) one of the 2-jumps precedes
the other one, where precedence is considered with respect to the selected
orientation of C1. We use the color corresponding to the side containing
the 2-jump which is earlier with respect to the chosen orientation of C1. In
all other cases, we use the color c0(v).

Let us consider a 4-path P which is bi-colored under the constructed
coloring c of G. Since c0 and c1 themselves do not have bi-colored 4-paths,
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P = x1y1x2y2 has to use two vertices, say x1 and x2, whose color a comes
from c0, i.e., a = c0(x1) = c0(x2), and two vertices y1, y2 whose color b
comes from c1, i.e., b = c1(y1) = c1(y2). Clearly, at least two of these
vertices belong to C1. In particular, x1, x2 ∈ V (G0) and y1, y2 ∈ V (N).

Let us first suppose that y1 /∈ V (C1). Then either x1y1x2 is a 2-jump
in N or y1 is an apex of a long 2-jump and x1, x2 are both adjacent to it.
The colors for x1, x2 have been taken from c0 only because they may be
incident with a long 2-jump in G0 or incident with a short 2-jump in G0

preceding the 2-jump x1y1x2 in N . However, it is easy to conclude that
this is not possible having properties (F2’)–(F3’).

A similar conclusion holds when x2 /∈ V (C1). So, we may conclude that
y1 and x2 are both on C1. For every such bi-colored path P , we say that
its vertex y1 is problematic for N , and that x2 is problematic for G0.

We shall modify c so that the bi-colored 4-paths will all disappear. In
order to achieve this, we shall use three additional colors α = 2s∗0 + 1,
β = 2s∗0 + 2, and γ = 2s∗0 + 3 to recolor problematic vertices.

Let us first assume that all long 2-jumps at C1 have their apices in G0.
Then we will recolor problematic vertices for N . Let

Y = {y1 ∈ V (C1) | y1 is problematic for N}.

We now color all vertices in Y by using colors α, β, γ in such a way that
no two vertices of Y , which appear consecutively on C1, receive the same
color. Since the cycle C1 is induced and since every problematic vertex is
adjacent to a non-problematic vertex on C1, this requirement assures that
no bi-colored 4-path arises using two colors among α, β, γ. It is also clear
that former bi-colored paths are no longer bi-colored. The only possibility
for a new bi-colored path to arise would be that it contains two problematic
vertices re-colored with the same color (say α). Let y and y′ be two such
vertices and P = xyx′y′ be bi-colored. Since y and y′ are not consecutive
problematic vertices on C1, x′ is the apex of a long 2-jump. As assumed
above, x′ is in G0. But then y and y′ are incident to the apex of a long
2-jump in G0 and would not both be using a color of c1 at the first place.
This contradiction shows that bi-colored paths do not exist. Hence, the
constructed coloring is a star coloring.

The same approach works when all long 2-jumps at C1 have apices in N .
In that case we recolor problematic vertices for G0.

The remaining case needs an additional touch. First of all, it is possible
to partition C1 into segments C1

1 , . . . , C2s
1 (where s ≥ 1) such that long

2-jumps with apices in G0 are all based on segments Ci
1 where i is odd,

and long 2-jumps with apices in N are all based on segments Ci
1 where i is
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even. Now we define

Y = {x ∈ V (Ci
1) | i is odd, x problematic for G0} ∪

{y ∈ V (Ci
1) | i is even, y problematic for N}

and recolor vertices in Y as we did above. Make sure to use distinct three
colors when going along C1 and changing from a segment Ci

1 to Ci+1
1 . This

procedure eliminates all bi-colored 4-paths thus yielding a star coloring.
The proof is now complete.
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