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Abstract

Pach and Tóth [6] introduced a new version of the crossing num-
ber parameter, called the degenerate crossing number, by considering
proper drawings of a graph in the plane and counting multiple crossing
of edges through the same point as a single crossing when all pairwise
crossings of edges at that point are transversal. We propose a related
parameter, called the genus crossing number, where edges in the draw-
ing need not be represented by simple arcs. This relaxation has two
important advantages. First, the genus crossing number is invariant
under taking subdivisions of edges and is also a minor-monotone graph
invariant. Secondly, it is “computable” in many instances, which is a
rare phenomenon in the theory of crossing numbers. These facts fol-
low from the proof that the genus crossing number is indeed equal to
the non-orientable genus of the graph. It remains an open question if
the genus crossing number can be strictly smaller than the degenerate
crossing number of Pach and Tóth. A relation to the minor crossing
number introduced by Bokal, Fijavž, and Mohar [1] is also discussed.

1 Introduction

Let G be a graph. The crossing number of G, denoted by cr(G), is the
minimum number of edge-crossings taken over all proper drawings of G
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in the plane. By a drawing we refer to a representation of the graph in
the Euclidean plane, where vertices are points in the plane and edges are
piecewise linear arcs joining their end-vertices. A drawing is proper if edges
are simple arcs and their interiors do not contain vertices of the graph. If
k edges intersect at the same point (not a vertex), then each of the

(k
2

)
pairwise crossings counts towards the computation of the total number of
crossings of the drawing when we consider cr(G).

Pach and Tóth [6] introduced a modified definition of the crossing num-
ber of a graph G, called the degenerate crossing number and denoted by
cr(G), where a multiple crossing at a point p in the plane is counted as a
single crossing if all pairs of edges passing through p intersect transversally ,
i.e., they locally intersect at p and the intersection is not tangential. Such a
point p will be referred to as a crossing point . The initial goal to introduce
this notion was to investigate to what extent does this modification affect
the value of the crossing number.

Pach and Tóth [6] also introduced the notion of a crossing number, de-
noted bt cr∗(G), where multiple, pairwise transversal crossing at the same
point is counted as a single crossing, but two distinct edges are allowed to
cross each other at most once. While cr∗(G) ≥ cr(G) holds for any graph
G, it is proved in [6] that cr∗(G) can be much bigger than cr(G), thus
showing that multiple crossings between distinct edges may help reducing
the corresponding value of the crossing number.

The purpose of this paper is to propose another modification, where we
do not insist that edges are simple arcs. We allow self-crossings of arcs rep-
resenting the edges, but all self-crossings should be transversal. For reasons
that will become apparent soon, we call the minimum number of crossing
points of such drawings of G the genus crossing number of G and denote it
by gcr(G). It is clear that

gcr(G) ≤ cr(G) ≤ cr∗(G) ≤ cr(G). (1)

It is an open question if gcr(G) can be strictly smaller than cr(G). We
shall discuss this issue in Section 3. Other inequalities in (1) can be strict
inequalities, see [6].

The newly introduced version of the crossing number has some advan-
tages over other notions of the crossing number mentioned above or treated
elsewhere in the literature, see, e.g. [5, 7]:

(1) The genus crossing number is the first crossing number invariant, for
which exact values can be determined for important families of graphs,
like the complete or complete multipartite graphs, the hypercubes,
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etc. See Section 2 for details. Despite this fact, it is still NP-hard to
compute the genus crossing number for arbitrary graphs.

(2) The genus crossing number is minor-monotone, i.e., if a graph H is a
minor of G, then gcr(H) ≤ gcr(G).

(3) Unlike cr and cr∗, the genus crossing number is a topological invari-
ant , i.e., it does not change if we subdivide edges. Moreover, if we
subdivide each edge of G by inserting sufficiently many vertices of de-
gree 2, then we can get rid of all multiple crossings and all self-crossings
of edges with respect to some optimal drawing of G. Consequently,
the resulting subdivision S satisfies

cr∗(G) ≥ cr(G) ≥ cr∗(S) = cr(S) = gcr(S) = gcr(G).

2 The genus crossing number

As stated in the introduction, we shall consider the version of the crossing
number where edges need not be simple Jordan curves. They are allowed
to self-intersect and also two distinct edges are allowed to intersect more
than once. However, interiors of edges should not contain vertices of the
graph and all intersections should be transversal, i.e., non-tangential. In
particular, if edges cross at a point p, possibly some edges passing through p
more than once, we require that all passes through p are transversal to each
other. Now we define gcr(G) as the minimum integer k such that G has
a drawing in the plane with the above properties and with k points where
distinct edges cross each other.

Recall that the nonorientable genus g̃(G) of a graph G is the minimum
genus of a non-orientable surface in which G can be embedded, cf. [4]. Hav-
ing a drawing of G in the plane with g = gcr(G) points at which the edges
cross, each such crossing can be replaced by a crosscap, yielding an embed-
ding of G into the non-orientable surface of genus g (if g > 0). This shows
that gcr(G) ≥ g̃(G) if G is nonplanar. It is interesting that the converse
also holds:

Theorem 2.1 Let G be a non-planar graph. Then gcr(G) = g̃(G).

Proof. Let g = g̃(G), and let us consider an embedding of G in the non-
orientable surface S of genus g. Since S is homeomorphic to the connected
sum of g projective planes, it contains g pairwise disjoint 1-sided simple
closed curves α1, . . . , αg. We may assume that none of these curves passes
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through a vertex of G and that each of them intersects G in finitely many
points. By cutting the surface along all curves α1, . . . , αg, we obtain the
surface homeomorphic to the sphere with g holes. By contracting each of
these holes to a point, a drawing of G in the plane is obtained. It is easy to
see that each contracted hole gives rise to a (multiple) crossing, in which all
edges cross transversally. This shows that gcr(G) ≤ g = g̃(G).

Known results about the nonorientable genus of graphs (see, e.g., [2, 4,
9]) yield exact values for all most common families of graphs, in particular
for the complete and complete bipartite graphs:

Corollary 2.2 For n ≥ 8 and for k ≥ l ≥ 3, we have:

gcr(Kn) =
⌈

(n − 3)(n − 4)
6

⌉
and gcr(Kk,l) =

⌈
(k − 2)(l − 2)

2

⌉
.

We refer to monographs on topological graph theory [2, 4, 9] for many
other exact results about the non-orientable genus, and hence also for the
genus crossing number of graphs. Theorem 2.1 thus enables us to compute
or estimate the genus crossing number for most important families of graphs,
like the complete or complete multipartite graphs, the hypercubes, etc. In
that sense, gcr is the first crossing number invariant, for which exact values
can be determined for so many graphs.

Nevertheless, it is still hard to compute the genus crossing number for
arbitrary graphs. This follows from Thomassen’s results in [8], where it is
shown that it is NP-hard to compute the non-orientable genus.

Corollary 2.3 It is NP-hard to determine the genus crossing number.

There are other consequences of Theorem 2.1. For instance, it is clear
that gcr is a minor-monotone graph parameter. This issue is treated in
more details in Section 4. Another easy consequence are upper and lower
bounds on gcr(G).

Theorem 2.4 Let G be a connected graph of order n = |G|, with e = ‖G‖
edges, and let g be the girth of G. Let r be the maximum number of edges
in an outerplanar subgraph of G. Then

g − 2
g

e − n + 2 ≤ gcr(G) ≤
{

e − r − 1 if r < e,
0 if r = e.
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Proof. Let c = gcr(G), and let us consider an embedding of G in Nc. Let
f be the number of facial walks. The girth condition shows that f ≤ 2e/g.
Now, Euler’s formula implies that c ≥ 2 − n + e − f ≥ 2 − n + (g − 2)e/g.
This yields the lower bound.

To prove the upper bound, let H be a maximal outerplanar graph of G.
Consider an embedding of H in the plane so that all vertices of G are
on the boundary of the outer face. Clearly, H is a spanning subgraph
of G. Now let us define an embedding of G as follows. (Cf. [4] for details
about combinatorial description of 2-cell embeddings using rotation systems
and signatures.) First, define an arbitrary rotation system for G so that
all bounded faces of H remain facial walks with respect to the extended
embedding. Finally, if |E(G) \ E(H)| = e − r > 0, set the signature on one
edge e0 ∈ E(G)\E(H) to be positive, and set it negative for all other edges
in E(G) \ E(H). By extending the embedding of H edge-by-edge, e0 being
the last one to be added, we see that in all partial embeddings obtained
during this process, the outer face of H is replaced by a single facial walk.
This means that each added edge decreases the Euler characteristic of the
resulting surface by 1. On the other hand, the last edge e0 divides the outer
facial walk into two, and hence does not change the Euler characteristic.
Thus, the nonorientable genus of the resulting surface (if e− r ≥ 2) is equal
to e − r − 1. If e − r ≤ 1, then clearly, G is planar, so this completes the
proof of the upper bound.

Let us observe that r ≥ n − 1 since every spanning tree is outerplanar,
and that r ≥ n if G is not a tree.

Theorem 2.4 is a slight improvement over the bounds derived in [6] for
the degenerate crossing number. The lower bound is the same as the one in
[6] but is given for gcr(G) instead for cr(G). The upper bound improves
the bound cr(G) ≤ e proved in [6].

3 Degenerate and genus crossing number

As we have observed earlier, the genus crossing number is always a lower
bound for the degenerate crossing number. However, it is an open question
if these two notions define different graph invariants. In fact, after several
unsuccessful attempts to construct examples showing that the genus and
the degenerate crossing number are distinct, we are inclined to propose the
following

Conjecture 3.1 For every graph G, we have gcr(G) = cr(G).
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Let us outline some thoughts related to this problem. Recall that the
genus crossing number is related to the notion of having the graph embedded
in a non-orientable surface Ng of genus g and having a collection of g pairwise
disjoint 1-sided simple closed curves in Ng which yield an embedding in a
planar surface (homeomorphic to the sphere with g discs cut out) when
the surface is cut along them. Such a collection of curves will be called a
planarizing system of disjoint 1-sided curves, shortly a PD1S-system in Ng.
The following result is a simple consequence of the definitions.

Lemma 3.2 Let G be a graph and g be a positive integer. Then cr(G) ≤ g
if and only if G has an embedding in the non-orientable surface Ng of genus
g and there exists a PD1S-system Γ of curves in Ng such that every curve
in Γ intersects each edge of G at most once.

This lemma may be of use when trying to settle Conjecture 3.1. Our
next result shows that in order to prove Conjecture 3.1, it suffices to verify
it for triangulations of non-orientable surfaces.

Proposition 3.3 Conjecture 3.1 is equivalent to the statement that for
every positive integer g, every triangulation G of the non-orientable sur-
face Ng admits a PD1S-system Γ of curves in Ng such that every curve in
Γ intersects each edge of G at most once.

Proof. Clearly, if a triangulation G would not satisfy the stated property,
it would be a counterexample to Conjecture 3.1.

Conversely, let H be a counterexample to the conjecture and let g =
g̃(H) < cr(H). Embed H in Ng and and extend it to a triangulation G of Ng

(by adding edges and, if necessary, new vertices). Then gcr(G) = g̃(G) = g
and cr(G) ≥ cr(H) > g.

It may be that a stronger conjecture holds. Recall that a pseudotrian-
gulation of a surface S is a multigraph (where we allow loops and multiple
edges), which is 2-cell embedded in S such that each facial walk has length
three.

Conjecture 3.4 For every positive integer g, every loopless pseudotrian-
gulation G of Ng admits a PD1S-system Γ of curves in Ng such that every
curve in Γ intersects each edge of G at most once.

We do not even know of examples of pseudotriangulations with loops,
where the only requirement is that loops are surface non-separating, for
which Conjecture 3.4 would not hold. However, if we allow surface separat-
ing loops, counterexamples are easy to find.
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4 Minor and genus crossing number

Bokal, Fijavž, and Mohar [1] introduced the notion of a crossing number,
called the minor crossing number and denoted by mcr(G), which is minor-
monotone: if a graph H is a minor of a graph G, then mcr(H) ≤ mcr(G).
This is achieved by defining the minor crossing number in the following way:

mcr(G) = min{cr(H) | G is a minor of H}.

Theorem 2.1 implies that the genus crossing number is also minor-monotone.

Proposition 4.1 If a graph H is a minor of a graph G, then gcr(H) ≤
gcr(G).

After having noted this relationship between the minor and the genus
crossing number, it may be of interest to see to what extent are they related.

Proposition 4.2 For every graph G we have gcr(G) ≤ mcr(G).

Proof. Let H be a graph such that G is a minor of H and cr(H) = mcr(G).
By replacing each crossing in an optimal drawing of H by a crosscap, we
see that g̃(H) ≤ cr(H). Since G is a minor of H, we have g̃(G) ≤ g̃(H).
Combining all these inequalities, we see that

gcr(G) = g̃(G) ≤ g̃(H) ≤ cr(H) ≤ mcr(G),

which he were to prove.

It can happen that the minor crossing number is much bigger than the
genus crossing number. For example, it is proved in [1] that mcr(Kn) ≥
�1

4 (n− 3)(n− 4)�. On the other hand, Corollary 2.2 shows that gcr(Kn) =
�1

6 (n−3)(n−4)�. This implies not only that mcr and gcr are distinct, but
also that these crossing number parameters may be much different even for
very sparse graphs.

Theorem 4.3 For every positive integer n there is a graph G of order n
such that mcr(G)−gcr(G) ≥ Ω(n2). Moreover, if n is even, there exists a
cubic graph H of order n such that cr(H) = mcr(H) ≥ gcr(H) + Ω(n).

Proof. The first claim holds for G = Kn as argued above. To prove the
second claim, we shall assume that n is of the form n = m(m− 3), where m
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is a positive integer. The general case follows easily from this one, and the
details are left to the reader.

Let us consider an embedding of the complete graph Km into the nonori-
entable surface of genus g = �1

6 (m − 3)(m − 4)�. By expanding each vertex
into a tree on m − 3 vertices, we can obtain a cubic graph H embedded
in the same surface such that Km is a minor of H. This shows that the
nonorientable genus of H is equal to g. Since H has n = m(m− 3) vertices,
we conclude that gcr(H) = g = 1

6 n + O(n1/2).
On the other hand, mcr(H) = cr(H) ≥ mcr(Km) ≥ 1

4 n − O(n1/2).
Both inequalities show that mcr(H) − gcr(H) ≥ 1

12 n − O(n1/2).
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