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SIMPLICES AND SPECTRA OF GRAPHS

BOJAN MOHAR AND IGOR RIVIN

Abstract. In this note we show that the (n− 2)-dimensional volumes of codimen-
sion 2 faces of an n-dimensional simplex are algebraically independent quantities
of the volumes of its edge-lengths. The proof involves computation of the eigen-
values of Kneser graphs.

Introduction

Let Tn be the set of congruence classes of n-simplices in Euclidean space En.
The set Tn is an open manifold (also a semi-algebraic set) of dimension

(n+1
2

)
.

Coincidentally, a simplex T ∈ Tn is determined by the
(n+1

2

)
lengths of its edges.

Furthermore, the square of the volume of T ∈ Tn is a polynomial in the squares of
the edge-lengths �i j = ‖vi − vj‖2 (1 ≤ i < j ≤ n+ 1), where v1, . . . vn+1 are the vertices
of T. This polynomial is given by the Cayley-Menger determinant formula (cf.,
e.g., [5] or [2]):

(1) V2(T) =
(−1)n+1

2n(n!)2 det C ,

where C is the Cayley-Menger matrix of dimension (n+ 2)× (n+ 2), whose rows and
columns are indexed by {0, 1, . . . , n + 1} and whose entries are defined as follows:

Cij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, i = j
1, if i = 0 or j = 0, and i � j
�2i j , otherwise.

Note that an n-simplex has
(n+1

2

)
edges and the same number of (n−2)-dimensional

faces, and so the following question is natural:
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Question 1. Is the congruence class of every n-simplex determined by the (n − 2)-
dimensional volumes of its (n − 2)-faces?

Question 1 must be classical, but the earliest reference stating it that we are
aware of is Warren Smith’s PhD thesis [10].

At the AIM workshop on Rigidity and Polyhedral Combinatorics, Bob Connelly
(who was unaware of the reference [10]) raised the following:

Question 2. Is the volume of every n-simplex determined by the (n−2)-dimensional
volumes of its (n − 2)-faces?

In fact, Connelly stated Question 2 for n = 4, which is the first case where the
question is open. For n = 3 the answer is trivially ”Yes”, since 3 − 2 = 1, and we
are simply asking if the volume of the simplex is determined by its edge-lengths.
In dimension 2, the answer is trivially ”No”, since 2 − 2 = 0, and the volume of
codimension-2 faces of a triangle carries no information.

Clearly, the affirmative answer to Question 1 would imply an affirmative answer
to Question 2. In this paper we first show that the answer to Question 2, and hence
also to Question 1 is negative for every n ≥ 4. We actually found out that this
has been answered previously for n = 4 in [1], where an example is given and
attributed to Philip Tuckey; see also [3].

Our examples are given in a separate section. Several reasons suggest that the
following question may still have an affirmative answer:

Question 3. Is it true that for every choice of
(n+1

2

)
positive real numbers, there are

only finitely many congruence classes of n-simplices whose (n − 2)-dimensional
volumes of the (n − 2)-faces are equal to these numbers?

In this note we show that a weaker statement holds:

Theorem 4. The
(n+1

2

)
(n − 2)-dimensional volumes of the (n − 2)-faces of an n-simplex

are algebraically independent over C[�i j; 1 ≤ i < j ≤ n + 1].

Theorem 4 is clearly a necessary step in the direction of resolving Question 3, but
is far from sufficient. To show it, consider the map of R(n+1)n/2 to R(n+1)n/2, which
sends the vector � of edge-lengths of an n-simplex to the vector Y of volumes
of (n − 2)-dimensional faces. To show Theorem 4, it is enough to check that the
Jacobian J(�) = ∂Y/∂� is non-singular at one point. We will use the most obvious
point p1, the one corresponding to a regular simplex with all edge-lengths equal
to 1. By symmetry considerations, the Jacobian J(p1) can be written as J(p1) = cM,
where c is a constant and M is

Me,F =

{
1, if the edge e is incident with the (n − 2)-face F
0, otherwise.
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The first observation is that the constant c above is not equal to 0:

Lemma 5. J(p1) =
1

(n − 2)! (n − 1)1/2 2(n−4)/2
M.

Proof. Let ν =
(n − 1)1/2

(n − 2)! 2(n−2)/2
denote the (n− 2)-dimensional volume of the regular

(n − 2)-simplex with all edge-lengths 1. Let us observe that the volume of a k-
dimensional simplex is a homogeneous function of degree k of the edge-lengths. An
application of Euler’s Homogeneous Function Theorem shows that at p1,

∂YF

∂�e
=

{ 2
n−1 ν, if the edge e is incident with the (n − 2)-face F
0, otherwise.

This implies that c = 2
n−1 ν and completes the proof. �

The eigenvalues ofM

As shown above, Theorem 4 reduces to the assertion that the determinant of the
matrix M is not zero. We will actually be able to compute all eigenvalues of M,
which is of interest in its own right.

Theorem 6. Eigenvalues of M are λ1 =
(n−1

2

)
(simple eigenvalue), λ2 = 1 with multiplic-

ity 1
2(n + 1)(n − 2), and λ3 = 2 − n with multiplicity n.

Corollary 7. The absolute value of the determinant of M equals
1
2(n − 2)n+1(n − 1) � 0,

for n > 2.

To prove Theorem 6, let us first observe that the
(n+1

2

)
rows of M are indexed by

the 2-element subsets of the set R = {1, . . . , n+1}, and its columns are indexed by the
(n−1)-subsets F of R. By replacing each column index F with its complement R\F,
then the columns are indexed by the same set as the rows. After this convention,
the matrix M becomes a symmetric matrix with zero diagonal since Me, f = 1 if and
only if e ⊆ R \ f , which is equivalent to f ⊆ R \ e. Therefore, M is the adjacency
matrix of a graph Gn whose vertices are the 2-element subsets of R, and two of
them are adjacent if and only if they are disjoint. Thus, the complement Gn of Gn is
isomorphic to the line graph L(Kn+1) of the complete graph Kn+1 on n + 1 vertices.

The eigenvalues of L(Kn+1) are (see [4, p. 19]): t1 = 2n− 2, t2 = −2, and t3 = n− 3,
with the same multiplicities (respectively) as claimed above for the eigenvalues of
M. Since the graph L(Kn+1) is regular, it is an easy exercise to see that its adjacency
matrix A and the adjacency matrix M of its complement have the same set of
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eigenvectors. By using the fact that A + M + I = xt · x, where x = (1, . . . , 1)t is
the eigenvector of A and M corresponding to the dominant eigenvalues of these
matrices, we conclude that the eigenvalues of M areλ1 =

(n+1
2

)−t1−1 andλi = −ti−1
for i = 2, 3 (preserving multiplicities). Thus, λ1 =

(n+1
2

)
− 2n + 1 =

(n−1
2

)
, λ2 = 1, and

λ3 = 2 − n, respectively.

Singular examples

Let us consider the n-simplex in Rn with vertices v0, v1, . . . , vn given as follows.
The vertex v0 has the first n − 2 coordinates equal to ((n − 1)1/2 + 1)/(21/2(n − 2)),
while its last two coordinates are 0. For i = 1, 2, . . . , n − 2, the vertex vi has ith
coordinate equal to 2−1/2 and all other coordinates 0. These n − 1 vertices form
a regular (n − 2)-simplex contained in Rn−2 ⊂ Rn with all side lengths 1. Let
a = 1

n−1

∑n−2
i=0 vi be its barycenter, and let c := ‖v0 − a‖2 denote the distance from a

to the vertices vi. A short calculation shows that c2 = 1
2 −

1
2(n−1) . Now, let vn−1 be

obtained from a by changing its last two coordinates to be real numbers p and q
satisfying p2+q2 = 1− c2. Similarly, let vn be obtained in the same way by choosing
another pair r, s of numbers satisfying r2+s2 = 1−c2. This gives rise to an n-simplex
whose all sides are equal to 1 except for the side vn−1vn whose square length is
t := (p− r)2 + (q− s)2. By fixing t, this simplex is determined up to congruence, and
we denote it by T(t). Observe that t may take any value between 0 and 4(1 − c2),
by selecting p, q, r, s appropriately.

Next we observe that the volumes of the (n−2)-faces of T(t) take only two values.
If an (n − 2)-face does not contain both vn−1 and vn, then it is a regular simplex,
whose volume is independent of t. On the other hand if an (n−2)-simplex contains
vn−1 and vn, its volume w = w(t) is uniquely determined by t. In fact, if we put the
square distances in the Cayley-Menger determinant, we conclude that w(t)2 is a
quadratic polynomial in t, w(t)2 = αt2 + βt + γ. If t = 0, the volume is 0, so γ = 0.
For t = 1 we have the regular (n − 2)-simplex, so α + β = n−1

2n−2((n−2)!)2 . Finally, using
(1) (with the value of n being replaced by n− 2) and looking at the Cayley-Menger
determinant expansion term with t2, we conclude that

α = − (−1)n−1

2n−2((n − 2)!)2 det(Jn−2 − In−2),

where Jn−2 is the all-1-matrix and In−2 is the identity matrix of order n − 2. Since
det(Jn−2 − In−2) = (−1)n−3(n − 3), we conclude that α = −(n − 3)22−n/((n − 2)!)2 and
β = (n − 2)21−n/((n − 2)!)2. In particular,

w(t)2 =
1

2n−2((n − 2)!)2 ((3 − n)t2 + (2n − 4)t).
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This function is symmetric around the point t0 = n−2
n−3 . Consequently, the non-

congruent n-simplices T(t0 − x) and T(t0 + x) have the same (n − 2)-volumes of
their (n − 2)-faces for each admissible value of x, i.e. for 0 < x < n−2−4/(n−1)

n−3 . These
examples thus show that Questions 1 and 2 have negative answers.

Concluding remarks

One can ask the same question as above for other dimension-complementary
volumes, i.e. about the volumes of the (k − 1)-faces and the (n − k)-faces of an
n-simplex, where 2 ≤ k ≤ n/2. If one would compare, similarly as in the case k = 2
above, the dependence of (n−k)-volumes of an (n−k)-face Q on the (k−1)-volumes
of the (k− 1)-faces F ⊂ Q, the corresponding “Jacobian” would again be a constant
multiple of a symmetric matrix M, whose entries are indexed by the k-subsets
of the set R = {1, . . . , n + 1} (after the column indices pass to the complementary
subsets), and

(2) ME,F =

{
1, if the E ∩ F = ∅
0, otherwise.

The graph whose adjacency matrix is M is known as the Kneser graph K(n + 1, k).
Its eigenvalues can be comuted using the methods from the theory of association
schemes and can be found, for example, in [8, Section 9.4].

Theorem 8. Let n and k be integers, where 2 ≤ k ≤ n/2, and let M be the matrix of order(n+1
k

) × (n+1
k

)
whose entries are determined by (2). The eigenvalues of M are the integers

λi = (−1)i

(
n − k − i + 1

k − i

)
, i = 0, 1, . . . , k.

Since 2 ≤ k ≤ n/2, none of the eigenvalues in Theorem 8 is zero. This raises the
question whether there is an analogy with Theorem 4 for 2 ≤ k ≤ n/2, between
the collection of the

(n+1
k

)
(n − k)-dimensional volumes of the (n − k)-faces of an

n-simplex and the collection of all (k − 1)-dimensional volumes of its (k − 1)-faces.
As a final remark, we would like to point out that our original approach to this

problem [9] used results about divisors [6] (also known as equitable partitions [8])
combined with the representation theory of the symmetric group and the notion
of Gelfand pairs as developed in [7].
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