University of LJubluana
Institute of Mathematics, Physics and Mechanics
Department of Mathematics
Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series, Vol. 47 (2009), 1079

RIGIDITY AND SEPARATION
 INDICES OF GRAPHS IN
 SURFACES

Gašper Fijavž Bojan Mohar

ISSN 1318-4865

Ljubljana, February 2, 2009

Rigidity and separation indices of graphs in surfaces

Gašper Fijavž* ${ }^{* \dagger}$ and Bojan Mohar**

December 19, 2008

Abstract

Let Σ be a surface. We prove that rigidity indices of graphs which admit a polyhedral embedding in Σ and 5 -connected graphs admitting an embedding in Σ are bounded by a constant depending on Σ. Moreover if the Euler characteristic of Σ is negative, then the separation index of graphs admitting a polyhedral embedding in Σ is also bounded. As a side result we show that distinguishing number of both Σ-polyhedral and 5 -connected graphs which admit and embedding in Σ is also bounded.

1 Introduction and results

Let \mathcal{L}_{n} be the lattice of partitions of the n-set $[n]=\{1,2, \ldots, n\}$, with minimal element 0 (partition into singletons), and maximal element 1 (having one block only).

Let G be a graph of order n with vertex set $V(G)=[n]$, and let $\Gamma=\operatorname{Aut}(G)$ be the group of automorphisms of G with its natural action on $V(G)$. For $v \in V(G)$ let $\Gamma_{v} \leq \Gamma$ be the stabilizer of v in Γ, and let P_{v} be the corresponding partition of $V(G)$ into the orbits of Γ_{v}.

The separation index of G, denoted by $\operatorname{sep}(G)$ is the minimum k such that there exists a vertex set $U \subseteq V(G)$ of cardinality k so that

$$
\begin{equation*}
\bigwedge_{u \in U} P_{u}=0 \tag{1}
\end{equation*}
$$

[^0]

Figure 1: 4-connected graphs in torus (or Klein bottle) can have arbitrarily large rigidity index.
in \mathcal{L}_{n}. We also say that the vertices of U (as in (1)) separate G.
Clearly (1) implies that $\bigcap_{w \in W} \Gamma_{w}=\{\mathrm{id}\}$, though the converse may not hold. This motivates us to define the rigidity index of G, denoted by $\operatorname{rig}(G)$ as the minimum k, such that there exists a vertex set $W \subseteq V(G)$ of cardinality k so that

$$
\begin{equation*}
\bigcap_{w \in W} \Gamma_{w}=\{\mathrm{id}\} . \tag{2}
\end{equation*}
$$

The vertices of W are said to fix graph G. For example: $\operatorname{sep}\left(K_{n}\right)=\operatorname{rig}\left(K_{n}\right)=n-1$, $\operatorname{sep}\left(K_{m, n}\right)=\operatorname{rig}\left(K_{m, n}\right)=m+n-2, \operatorname{sep}(\bar{G})=\operatorname{sep}(G)$, and also $\operatorname{rig}(\bar{G})=\operatorname{rig}(G)$. As a subset separating vertices of G also fixes G we have

$$
\begin{equation*}
\operatorname{sep}(G) \leq \operatorname{rig}(G) \tag{3}
\end{equation*}
$$

Inequality may occur in (3), and Paley graphs [4] may serve as the extreme cases.
Vince [13] proved:
Theorem 1.1 Let G be a 3-connected planar graph. Then $\operatorname{sep}(G) \leq 3$.
There exist 3-connected planar graphs whose rigidity and separation indices are equal to $3, K_{4}$ is an example. On the other hand, one cannot relax the 3-connectivity condition since the graph $K_{2, n}$ is planar and 2-connected, yet its rigidity (and also separation) index equals n.

Theorem 1.1 cannot be generalized to other surfaces. Consider an example in Figure 1, showing a toroidal graph G whose connectivity is (at most) 4 and whose toroidal embedding has face-width 2 . Yet its rigidity index, and consequently also its separation index, is large. Both connectivity at most 4 and a lack of a more
representative embedding are natural obstacles when trying to bound separation and rigidity indices of graphs.

A combinatorial embedding of G on Σ is described by a collection of faces (more precisely facial walks). In case when a graph G has a unique combinatorial embedding on Σ (the faces of G on Σ are uniquely defined) the set of three consecutive vertices on an arbitrary face fixes G. Therefore:

Proposition 1.2 If G has a combinatorially unique embedding on Σ then $\operatorname{rig}(G) \leq$ 3.

Let \mathcal{P}_{Σ} denote the class of graphs which admit a polyhedral embedding (to be defined later) on surface Σ. The main results of our paper are the following two theorems.

Theorem 1.3 For every surface Σ with negative Euler characteristic there exists a constant s_{Σ} so that for every $G \in \mathcal{P}_{\Sigma}$ the separation index of G satisfies $\operatorname{sep}(G) \leq s_{\Sigma}$.

Theorem 1.4 For every surface Σ there exists a constant p_{Σ} so that every graph G which either belongs to P_{Σ} or is 5 -connected and admits an embedding in Σ the rigidity index of G satisfies $\operatorname{rig}(G) \leq p_{\Sigma}$.

We shall devote the entire Section 2 for the proof of the above two theorems.
The example in Figure 1 cannot be embedded on the projective plane. However there exist 3 -connected projective-planar graphs with arbitrarily large rigidity indices, see Figure 2. In view of this the following theorem is best possible.

Theorem 1.5 There exists a constant p so that every 4 -connected graph G embeddable in the projective plane satisfies $\operatorname{rig}(G) \leq p$.

We will postpone the proof until Section 3.
In the remainder of this first section we shall make a digression towards a graphsymmetry measure defined by Albertson and Collins [1]: a graph is said to be d-distinguishable if there exists a labelling $\ell: V(G) \rightarrow\{1, \ldots, d\}$, so that no automorphism other than the identity preserves the labels assigned by ℓ. The smallest number d so that G is d-distinguishable is called the distinguishing number of G, and is denoted by $D(G)$.

Choose a vertex set $U=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, for every $i=1, \ldots, k$ let $\ell\left(v_{i}\right)=i$, and let $\ell(v)=k+1$ for every $v \in V(G) \backslash U$. We have described a $k+1$-labelling of G and every automorphism which preserves this labelling belongs to

$$
\Gamma_{v_{1}} \cap \Gamma_{v_{2}} \cap \ldots \cap \Gamma_{v_{k}} .
$$

Therefore:

Figure 2: A 3-connected graph in the projective plane with rigidity index equal to n.

Proposition 1.6 For every graph G we have $D(G) \leq \operatorname{rig}(G)+1$.
Negami [11] investigated distinguishing numbers of triangulations and was able to show that for every surface Σ there exists a constant t_{Σ} so that $D(G) \leq t_{\Sigma}$ for every graph G which triangulates Σ. A direct consequence of Theorem 1.4 and Proposition 1.6 is an extension to polyhedral and 5 -connected graphs which admit an embedding on Σ.

Theorem 1.7 For every surface Σ there exists a constant d_{Σ} so that for every graph G which either belongs to P_{Σ} or is 5 -connected and admits an embedding in Σ the distinguishing number of G satisfies $D(G) \leq d_{\Sigma}$.

In this paper we shall use standard graph terminology as in [3], and take notation and definitions concerning embeddings of graphs from [8].

2 Polyhedral and 5-connected graphs

This entire section is devoted to the proof of Theorems 1.3 and 1.4.
Choose a surface Σ. We say that G is Σ-polyhedral if G is 3 -connected and admits an embedding $\Pi: G \rightarrow \Sigma$ so that $\mathrm{fw}(G, \Pi) \geq 3$. Both conditions imply that every facial walk of a face of $\Pi(G)$ is a cycle and that every pair of faces intersect in either a vertex, an edge, or do not meet at all. By \mathcal{P}_{Σ} we denote the class of Σ-polyhedral graphs.
Proof.(of Theorem 1.3) Let Σ be a surface with negative Euler characteristic, ie. Σ is neither the sphere, projective plane, torus, nor Klein bottle. Let Γ_{Σ} be a finite group of homeomorphisms acting on Σ. Hurwitz' Theorem [6] (see also [5]) states
that every finite group of homeomorphisms of Σ is of bounded order: $\left|\Gamma_{\Sigma}\right| \leq b_{\Sigma}=$ $168(g-1)$, where g denotes the genus of Σ.

Choose an arbitrary graph $G \in \mathcal{P}_{\Sigma}$ and let Π_{0} be a fixed polyhedral embedding of G, so that $\operatorname{fw}\left(G, \Pi_{0}\right) \geq 3$.

Let φ be an automorphism of G. The composition $\Pi_{\varphi}:=\Pi_{0} \circ \varphi$ is also a polyhedral embedding of G in Σ. Let $\Gamma_{\Sigma} \leq \operatorname{Aut}(G)$ denote the subgroup of automorphisms φ so that Π_{φ} and Π_{0} induce the same collection of faces. Every automorphism in Γ_{Σ} can be extended to a homeomorphism of Σ. We can think of Γ_{Σ} as a finite group of homeomorphisms acting on Σ, hence $\left|\Gamma_{\Sigma}\right| \leq b_{\Sigma}$.

Let Φ be the set of left coset representatives of Γ_{Σ} in $\operatorname{Aut}(G)$. The embeddings in Φ form a maximal collection of nonequivalent polyhedral embeddings of G. By a theorem of Mohar and Robertson [9] there exists a constant p_{Σ}, so that $|\Phi| \leq p_{\Sigma}$.

This bounds the order of the automorphism group as

$$
\begin{equation*}
|\operatorname{Aut}(G)|=|\Phi| \cdot\left|\Gamma_{\Sigma}\right| \leq b_{\Sigma} \cdot p_{\Sigma} \tag{4}
\end{equation*}
$$

Finally let $U \subseteq V(G)$ be an inclusionwise minimal vertex set which separates G. Clearly if u_{1} and u_{2} are distinct vertices from U then also the corresponding vertex stabilizers $\Gamma_{u_{1}}$ and $\Gamma_{u_{2}}$ are incomparable as subgroups/subsets of $\operatorname{Aut}(G)$. But a set/group of size n can have at most $\binom{n}{\lfloor n / 2\rfloor}$ pairwise incomparable subsets/subgroups, which finishes the proof of Theorem 1.3.

Now let us turn to proving Theorem 1.4. We shall first introduce a tool that turns a graph G from one class of graphs into another by a small perturbation.

Let \mathcal{G} and \mathcal{G}^{\prime} be classes of graphs. We say that \mathcal{G} is adaptable to $\mathcal{G}^{\prime}, \mathcal{G} \rightsquigarrow \mathcal{G}^{\prime}$, if there exists a constant $n \in \mathbb{N}$ so that for every graph $G \in \mathcal{G}$ there exists a graph $G^{\prime} \in \mathcal{G}^{\prime}$ which can be obtained from G by performing at most n of the following operations:
(A1) deleting an isolated vertex,
(A2) adding an isolated vertex,
(A3) deleting an edge,
(A4) adding an edge.
Observe that being adaptable to is not a symmetric relation and also that subdivision of an edge with one additional vertex can be modeled by exactly 4 of the above operations.

Lemma 2.1 Let \mathcal{G} and \mathcal{G}^{\prime} be classes of graphs and assume that \mathcal{G} is adaptable to $\mathcal{G}^{\prime}, \mathcal{G} \rightsquigarrow \mathcal{G}^{\prime}$. Assume that there exists a constant c^{\prime}, so that $\operatorname{rig}\left(G^{\prime}\right) \leq c^{\prime}$ for every $G^{\prime} \in \mathcal{G}^{\prime}$. Then there exists a constant c so that $\operatorname{rig}(G) \leq c$ for every $G \in \mathcal{G}$.

Proof. It is enough to see that rigidity indices of graphs $G-w, G+w, G-u v, G+u v$ are not much bigger that $\operatorname{rig}(G)$ for every (potential) edge $u v$ and an isolated (in G or $G+w)$ vertex w.

Let $U=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)$ that fixes G for which $\operatorname{rig}(G)=|U|$ and let $G^{\prime}=G+w$ where w is isolated in G^{\prime}. By Γ_{v}^{\prime} we denote the stabilizer of v in the automorphism group of G^{\prime}, and if $v \neq w$ then Γ_{v} denotes the stabilizer of v in $\operatorname{Aut}(G)$.

$$
\begin{aligned}
& \Gamma_{w}^{\prime} \cap\left(\Gamma_{v_{1}}^{\prime} \cap \Gamma_{v_{2}}^{\prime} \cap \ldots \cap \Gamma_{v_{k}}^{\prime}\right) \\
= & \left(\Gamma_{u}^{\prime} \cap \Gamma_{v_{1}}^{\prime}\right) \cap\left(\Gamma_{u}^{\prime} \cap \Gamma_{v_{2}}^{\prime}\right) \cap \ldots \cap\left(\Gamma_{u}^{\prime} \cap \Gamma_{v_{k}}^{\prime}\right) \\
\leq & \Gamma_{v_{1}} \cap \Gamma_{v_{2}} \cap \ldots \cap \Gamma_{v_{k}}=\{\operatorname{id}\}
\end{aligned}
$$

By similar arguments we also show that

- $U \backslash\{w\}$ fixes $G-w$, hence $\operatorname{rig}(G-w) \leq \operatorname{rig}(G)$,
- $U \cup\{w\}$ fixes $G+w$, hence $\operatorname{rig}(G+w) \leq \operatorname{rig}(G)+1$,
- $U \cup\{u, v\}$ fixes $G-u v$, hence $\operatorname{rig}(G-u v) \leq \operatorname{rig}(G)+2$,
- $U \cup\{u, v\}$ fixes $G+u v$, hence $\operatorname{rig}(G+u v) \leq \operatorname{rig}(G)+2$.

The above lemma is not true in the case of separation index. Paley graphs, as shown in [4], can have arbitrarily large separation indices. But deletion of a single edge in a Paley graph results in a graph with just one nontrivial automorphism [10].

Lemma 2.2 Let Σ_{0} be a fixed surface. If Σ and Σ^{\prime} are surfaces so that Σ^{\prime} is connected sum of surfaces Σ and Σ_{0}, then $\mathcal{P}_{\Sigma} \rightsquigarrow \mathcal{P}_{\Sigma^{\prime}}$.

Proof. There is nothing to prove if Σ_{0} is a 2 -sphere. By induction it is enough to consider cases where Σ_{0} is either projective plane or torus. Note that K_{6} triangulates the projective plane \mathbb{N}_{1}, hence $K_{6} \in \mathcal{P}_{\mathbb{N}_{1}}$. On the other hand $K_{7} \in \mathcal{P}_{\mathbb{S}_{1}}$ as K_{7} triangulates the torus \mathbb{S}_{1}.

Let Π be a polyhedral embedding of G in Σ and let f be an arbitrary face of Π. Let v_{1}, v_{2}, v_{3} be three arbitrary vertices lying on f and let v_{4}, v_{5}, v_{6} (and v_{7} in case Σ_{0} is the torus) be the additional vertices. By forming a clique of size 6 (or 7) on v_{1}, v_{2}, v_{3} and the additional vertices we obtain a graph G^{\prime} which admits a polyhedral embedding in a surface which is a connected sum of Σ and either projective plane or torus. And G^{\prime} is obtained from G by adding at most $4+15$ new vertices and
edges.

Let Π be an embedding of G on surface Σ. A k-curve is an essential simple closed curve on Σ that intersects $\Pi(G)$ in exactly k vertices (if an essential closed curve intersects $\Pi(G)$ in k points we may homotopically shift its image to obtain a curve that (i) intersects $\Pi(G)$ in vertices and (ii) does so in at most k vertices.) Every such curve corresponds to a cycle in the vertex-face graph of (G, Π), see [8].

We say that a k-curve is short if $k \leq 2$. If Π is a polyhedral embedding then no short curves exist.

Lemma 2.3 Let $\mathcal{C}_{k, \Sigma}$ denote the class of all k-connected graphs that admit a minimum genus embedding in surface Σ. If $k \geq 5$ then $\mathcal{C}_{k, \Sigma} \rightsquigarrow \mathcal{P}_{\Sigma}$.

Proof. Let G be a 5 -connected graph and assume that Π is a minimum genus embedding of G on Σ ie. G does not embed on a surface of smaller genus and the same orientability type. This implies that no 0 -curves exist.

We shall argue that we can by applying a bounded number of operations (A1),..., (A4) transform the embedding of G into a polyhedral embedding of a slightly perturbed graph.

Let C be a 2-curve. We can assign to C a face $f=f_{C}$ that has the following property: C runs through f and intersects vertices u_{C} and v_{C} which do not lie consecutively along f. This also implies that f_{C} is not a triangular face. Also if C is a 1-curve and runs through face f then the facial walk along f is of length at least 6 and f contains at least 5 different vertices.

Let \mathcal{C} be the collection of all short curves. Every pair of curves $C_{1}, C_{2} \in \mathcal{C}$ can intersect in at most 3 vertices and/or faces. By a result of Juvan, Malnič, and Mohar [7] there exists a number $n=n_{\Sigma}$, so that the number of pairwise nonhomotopic curves in \mathcal{C} is at most n.

On the other hand a collection of pairwise homotopic curves from \mathcal{C} can intersect G in at most 4 vertices. Namely, let C_{1}, \ldots, C_{m} be a maximal collection of pairwise homotopic short curves (we may assume that the indices are selected according to their relative position): if $1 \leq i<j<k \leq m$ then C_{j} lies in the annulus A (can be a degenerate one) which has C_{i} and C_{k} as its boundary components. Now either a set of 4 vertices $V\left(C_{i}\right) \cup V\left(C_{k}\right)$ separates $V\left(C_{j}\right)$ from $V(G) \backslash A$ or $V\left(C_{j}\right) \subseteq V\left(C_{i}\right) \cup V\left(C_{k}\right)$.

The above observations imply that $|\mathcal{C}|$ is bounded.
Now for every 1-curve C put a vertex v_{C} in the interior of f_{C} making it adjacent to 5 different vertices along f so that at least one pair interlaces the run of C. We have thus obtained an embedding of a 5 -connected graph $G_{1} \supseteq G$ that allows no 1-curves.

Let \mathcal{C}_{1} be the collection of 2-curves of the embedding of G_{1} and let $\mathcal{F}_{1}=\left\{f_{C} ; C \in\right.$ $\left.\mathcal{C}_{1}\right\}$, which, by above arguments, contains a bounded number of faces.

Now for every $f \in \mathcal{F}_{1}$ we put a vertex v_{f} in the interior of f and for every curve C so that $f_{C}=f$ make v_{f} adjacent to a pair of vertices which are interlaced with v_{C} and u_{C} along f. Finally if at the end of this process v_{f} has degree 2 we may suppress it in order to keep our newly obtained graph $G_{2} 3$-connected. The obtained embedding of G_{2} is polyhedral and the proof is complete.

We shall finish this section by giving the proof of Theorem 1.4.
Proof.(of Theorem 1.4) Assume first that G admits a polyhedral embedding in Σ. If $\chi(\Sigma)<0$ then $\operatorname{rig}(G)$ is bounded by (3) and theorem 1.3. If $\chi(\Sigma) \geq 0$, we are forced to apply Lemmas 2.1 and 2.2 beforehand to obtain a polyhedral embedding on a surface of negative Euler characteristic. Hence rigidity index is bounded on the class of Σ-polyhedral graphs.

Let G be a 5 -connected graph that admits an embedding on Σ. Inductively we may assume that an embedding of G on Σ is a minimal genus embedding. An application of Lemma 2.3 together with Lemma 2.1 finishes the proof.

3 4-connected graphs in the projective plane

In this section we shall give a proof of Theorem 1.5. The proof itself will share some flavor with the proof of Theorem 1.4 given in the previous section.

The basic tool is the following theorem by Negami [12].
Theorem 3.1 If G is 4 -connected and admits an embedding Π on projective plane with face width ≥ 4 then G has a combinatorially unique embedding.

It is a fundamental property of the projective plane that every two essential curves are homotopic an are not disjoint. Further if G admits an embedding on projective plane \mathbb{N}_{1} with face-width 1 then G is planar. Hence we may limit ourselves to embeddings with face-width ≥ 2.

On the other hand 4 -connected graphs embedded on \mathbb{N}_{1} may allow an arbitrary number of 2 - or 3 -curves. In view of Theorem 3.1 let us call both 2 - and 3 -curves short in this section.

Let us construct a graph H which has a combinatorially unique embedding in the projective plane, see [12, Lemma 2,2]: $V(H)=\left\{v_{0}, v_{1}, \ldots, v_{12}\right\}$. Start with a 12 -cycle on vertices $\left\{v_{1}, \ldots, v_{12}\right\}$, and add four edges $v_{1} v_{8}, v_{3} v_{9}, v_{5} v_{11}$, and $v_{6} v_{12}$. We have now obtained a subdivision of the Möbius 4 -ladder M_{4}. Finally we connect v_{0} with v_{1}, v_{4}, v_{7}, and v_{10}.

Given a 4-connected graph G, which is embedded in the projective plane we shall show that G can be perturbed slightly so that either (i) the newly obtained graph
contains a subdivision of H or (ii) the newly obtained graph (or rather embedding) is 4 -connected and has face-width ≥ 4. In both cases the slightly perturbed graph would have bounded rigidity index by Proposition 1.2 .

Let \mathcal{C}_{2} be a collection of 2 -curves and fix a 2 -curve C_{0}. By above observation every other 2 -curve crosses C_{0} in either a common vertex or a common face. No more than 7 curves from \mathcal{C}_{2} run throug the same vertex v, as otherwise we would obtain a contradicition to 4 -connectivity of G (note than two curves from \mathcal{C}_{2} can share both their vertices as hey can still run throug different faces). If at least 7 curves from \mathcal{C}_{2} run through the same face f, our graph G contains as a subgraph a subdivision of M_{4}. By adding a vertex and four edges in the interior of f we obtain a subdivion of H. This implies that G admits a bounded number (≤ 24) of distinct 2 -curves. As every 2-curve C runs through a nontriangular face f_{C} we can for every curve C plant a vertex v_{C} in the interior of f_{C} and connect it to a suitable set of four vertices in order to eliminate the 2 -curve C. The newly obtained graph G_{1} is 4 -connected by construction and is embedded with face width at least 3 .

Let \mathcal{C}_{3} be a collection of 3 -curves of G_{1} and let us, as above, fix a 3 -curve C_{1}. Every other 3 -curve crosses C_{1} in either a common vertex or a common face. Assume first that more than 283 -curves share a vertex v. The same collection of curves would yield at least 72 -curves in $G-v$ (a single 2-curve in $G-v$ can be routed as ≤ 4 different 3-curves in G), and hence a subdivision of M_{4} in $G-v$. By subdividing at most 4 edges and adding at most 4 edges to G we obtain a subdivision of H.

Let f be a face where a collection of 3 -curves all cross C_{1}. Then f is not a triangle and C_{1} does not intersect two consecutive vertices of f. By adding a vertex v in the interior of f and connecting it to a suitable set of four vertices from f we eliminate both C_{1} and all 3-curves that cross it in the interior of f.

Hence we may assume that G_{1} admits a bounded number of 3-curves $C_{1}, C_{2}, C_{3}, \ldots, C_{k}$. For each C_{i} in turn we do one of the following:
(a) If the 3 -curve C_{i} runs parallel to an essential triangle $v_{1} v_{2} v_{3}$ then let u and w be two vertices of two different faces that share the edge $v_{1} v_{2}$. Let us subdivide the edge $v_{1} v_{2}$ by a single vertex v_{12} and make it adjacent also to vertices u and w.
(b) Otherwise let f_{i} be the face so that C_{i} contains nonconsecutive vertices u_{i}, v_{i} along f. Put a new vertex w_{i} in the interior of f and make it adjacent to u_{i}, v_{i} and two additional vertices so that u_{i} and v_{i} are not consecutive neighbors around w_{i}.

Applying (a) or (b) eliminates C_{i}, preserves 4-connectivity, and may, much to our favour, also eliminate another 3 -curve C_{j}, for some $j>i$. Let us call the resulting graph G_{2}.

As the number of 3 -curves in G_{1} is bounded we have obtained a 4 -connected graph G_{2} embedded with face-width ≥ 4 by using a bounded number of operations (A1), .., (A4). By Theorem 3.1 and Proposition $1.2 G_{2}$ has bounded rigidity index. By Lemma 2.1 also $\operatorname{rig}(G)$ is bounded and the proof of Theorem 1.5 is complete.

4 Conclusions

Finally it is worth mentioning that Theorems 1.3 and 1.4 do not extend to more general minor closed families of graphs. Let \mathcal{F}_{n} denote the family of all graphs of tree-width at most n. It is well-known that \mathcal{F}_{n} is a minor closed family. Consider the strong product $K_{k} \boxtimes T$ of a complete graph K_{k} and a tree T. It is not too difficult to argue that $K_{k} \boxtimes T$ is a k-connected graph, its tree width is at most $2 k-1$, yet its rigidity index is at least $(k-1)|V(T)|$.

References

[1] M. O. Albertson, K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996).
[2] J. A. Bondy, U. S. R. Murty, Graph theory with applications, Macmillan, London, 1976.
[3] R. Diestel, Graph theory, 3rd ed., GTM 173, Springer-Verlag, Berlin, 2005
[4] G. Fijavž, B. Mohar, Rigidity and separation indices of Paley graphs, 'Discrete Math. 289 (2004), 157-161
[5] J. Gross, T. Tucker, Topological Graph Theory, John Wiley \& Sons, New York, 1987.
[6] A. Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 403-442.
[7] M. Juvan, A. Malnič, B. Mohar, Systems of curves on surfaces, J. Combin. Theory Ser. B 68 (1996), 7- 22.
[8] B. Mohar, C. Thomassen, Graphs on surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.
[9] B. Mohar, N. Robertson, Flexibility of Polyhedral Embeddings of Graphs in Surfaces, J. Combin. Theory Ser. B 83 (2001), 38-57.
[10] M. E. Muzychuk, Automorphism group of a Paley graph, Vopr. Teor. Grupp Gomologicheskoj Algebry 7 (1987), 64-69 (in Russian).
[11] S. Negami, Re-embedding of projective-planar graphs, J. Combin. Theory Ser. B 44 (1988), 276-299.
[12] S. Negami, The distinguishing numbers of graphs on closed surfaces, manuscript.
[13] A. Vince, Separation Index of a Graph, J. Graph Theory 41 (2002), 53-61.

[^0]: *Supported in part by the Ministry of Science and Technology of Slovenia, Research Program P1-0297.
 ${ }^{\dagger}$ University of Ljubljana, Slovenia. email:gasper.fijavz@fri.uni-lj.si
 ${ }^{\ddagger}$ Simon Fraser University, Burnaby, BC, Canada. email:mohar@sfu.ca

