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Abstract

Let Σ be a surface. We prove that rigidity indices of graphs which admit a
polyhedral embedding in Σ and 5-connected graphs admitting an embedding
in Σ are bounded by a constant depending on Σ. Moreover if the Euler
characteristic of Σ is negative, then the separation index of graphs admitting
a polyhedral embedding in Σ is also bounded. As a side result we show that
distinguishing number of both Σ-polyhedral and 5-connected graphs which
admit and embedding in Σ is also bounded.

1 Introduction and results

Let Ln be the lattice of partitions of the n-set [n] = {1, 2, . . . , n}, with minimal
element 0 (partition into singletons), and maximal element 1 (having one block
only).

Let G be a graph of order n with vertex set V (G) = [n], and let Γ = Aut(G) be
the group of automorphisms of G with its natural action on V (G). For v ∈ V (G)
let Γv ≤ Γ be the stabilizer of v in Γ, and let Pv be the corresponding partition of
V (G) into the orbits of Γv.

The separation index of G, denoted by sep(G) is the minimum k such that there
exists a vertex set U ⊆ V (G) of cardinality k so that∧

u∈U

Pu = 0 (1)
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Figure 1: 4-connected graphs in torus (or Klein bottle) can have arbitrarily large
rigidity index.

in Ln. We also say that the vertices of U (as in (1)) separate G.
Clearly (1) implies that

⋂
w∈W Γw = {id}, though the converse may not hold.

This motivates us to define the rigidity index of G, denoted by rig(G) as the mini-
mum k, such that there exists a vertex set W ⊆ V (G) of cardinality k so that⋂

w∈W

Γw = {id}. (2)

The vertices of W are said to fix graph G. For example: sep(Kn) = rig(Kn) = n−1,
sep(Km,n) = rig(Km,n) = m+n− 2, sep(G) = sep(G), and also rig(G) = rig(G). As
a subset separating vertices of G also fixes G we have

sep(G) ≤ rig(G). (3)

Inequality may occur in (3), and Paley graphs [4] may serve as the extreme cases.
Vince [13] proved:

Theorem 1.1 Let G be a 3-connected planar graph. Then sep(G) ≤ 3.

There exist 3-connected planar graphs whose rigidity and separation indices are
equal to 3, K4 is an example. On the other hand, one cannot relax the 3-connectivity
condition since the graph K2,n is planar and 2-connected, yet its rigidity (and also
separation) index equals n.

Theorem 1.1 cannot be generalized to other surfaces. Consider an example in
Figure 1, showing a toroidal graph G whose connectivity is (at most) 4 and whose
toroidal embedding has face-width 2. Yet its rigidity index, and consequently also
its separation index, is large. Both connectivity at most 4 and a lack of a more
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representative embedding are natural obstacles when trying to bound separation
and rigidity indices of graphs.

A combinatorial embedding of G on Σ is described by a collection of faces (more
precisely facial walks). In case when a graph G has a unique combinatorial embed-
ding on Σ (the faces of G on Σ are uniquely defined) the set of three consecutive
vertices on an arbitrary face fixes G. Therefore:

Proposition 1.2 If G has a combinatorially unique embedding on Σ then rig(G) ≤
3.

Let PΣ denote the class of graphs which admit a polyhedral embedding (to be
defined later) on surface Σ. The main results of our paper are the following two
theorems.

Theorem 1.3 For every surface Σ with negative Euler characteristic there exists a
constant sΣ so that for every G ∈ PΣ the separation index of G satisfies sep(G) ≤ sΣ.

Theorem 1.4 For every surface Σ there exists a constant pΣ so that every graph
G which either belongs to PΣ or is 5-connected and admits an embedding in Σ the
rigidity index of G satisfies rig(G) ≤ pΣ.

We shall devote the entire Section 2 for the proof of the above two theorems.
The example in Figure 1 cannot be embedded on the projective plane. How-

ever there exist 3-connected projective-planar graphs with arbitrarily large rigidity
indices, see Figure 2. In view of this the following theorem is best possible.

Theorem 1.5 There exists a constant p so that every 4-connected graph G embed-
dable in the projective plane satisfies rig(G) ≤ p.

We will postpone the proof until Section 3.
In the remainder of this first section we shall make a digression towards a graph-

symmetry measure defined by Albertson and Collins [1]: a graph is said to be
d-distinguishable if there exists a labelling ` : V (G) → {1, . . . , d}, so that no auto-
morphism other than the identity preserves the labels assigned by `. The smallest
number d so that G is d-distinguishable is called the distinguishing number of G,
and is denoted by D(G).

Choose a vertex set U = {v1, v2, . . . , vk}, for every i = 1, . . . , k let `(vi) = i, and
let `(v) = k + 1 for every v ∈ V (G) \ U . We have described a k + 1-labelling of G
and every automorphism which preserves this labelling belongs to

Γv1 ∩ Γv2 ∩ . . . ∩ Γvk
.

Therefore:
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Figure 2: A 3-connected graph in the projective plane with rigidity index equal to
n.

Proposition 1.6 For every graph G we have D(G) ≤ rig(G) + 1.

Negami [11] investigated distinguishing numbers of triangulations and was able
to show that for every surface Σ there exists a constant tΣ so that D(G) ≤ tΣ for
every graph G which triangulates Σ. A direct consequence of Theorem 1.4 and
Proposition 1.6 is an extension to polyhedral and 5-connected graphs which admit
an embedding on Σ.

Theorem 1.7 For every surface Σ there exists a constant dΣ so that for every graph
G which either belongs to PΣ or is 5-connected and admits an embedding in Σ the
distinguishing number of G satisfies D(G) ≤ dΣ.

In this paper we shall use standard graph terminology as in [3], and take notation
and definitions concerning embeddings of graphs from [8].

2 Polyhedral and 5-connected graphs

This entire section is devoted to the proof of Theorems 1.3 and 1.4.
Choose a surface Σ. We say that G is Σ-polyhedral if G is 3-connected and

admits an embedding Π : G→ Σ so that fw(G,Π) ≥ 3. Both conditions imply that
every facial walk of a face of Π(G) is a cycle and that every pair of faces intersect
in either a vertex, an edge, or do not meet at all. By PΣ we denote the class of
Σ-polyhedral graphs.

Proof.(of Theorem 1.3) Let Σ be a surface with negative Euler characteristic, ie. Σ
is neither the sphere, projective plane, torus, nor Klein bottle. Let ΓΣ be a finite
group of homeomorphisms acting on Σ. Hurwitz’ Theorem [6] (see also [5]) states
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that every finite group of homeomorphisms of Σ is of bounded order: |ΓΣ| ≤ bΣ =
168(g − 1), where g denotes the genus of Σ.

Choose an arbitrary graph G ∈ PΣ and let Π0 be a fixed polyhedral embedding
of G, so that fw(G,Π0) ≥ 3.

Let ϕ be an automorphism of G. The composition Πϕ := Π0 ◦ϕ is also a polyhe-
dral embedding of G in Σ. Let ΓΣ ≤ Aut(G) denote the subgroup of automorphisms
ϕ so that Πϕ and Π0 induce the same collection of faces. Every automorphism in
ΓΣ can be extended to a homeomorphism of Σ. We can think of ΓΣ as a finite group
of homeomorphisms acting on Σ, hence |ΓΣ| ≤ bΣ.

Let Φ be the set of left coset representatives of ΓΣ in Aut(G). The embeddings
in Φ form a maximal collection of nonequivalent polyhedral embeddings of G. By a
theorem of Mohar and Robertson [9] there exists a constant pΣ, so that |Φ| ≤ pΣ.

This bounds the order of the automorphism group as

|Aut(G)| = |Φ| · |ΓΣ| ≤ bΣ · pΣ (4)

Finally let U ⊆ V (G) be an inclusionwise minimal vertex set which separates
G. Clearly if u1 and u2 are distinct vertices from U then also the corresponding
vertex stabilizers Γu1 and Γu2 are incomparable as subgroups/subsets of Aut(G).
But a set/group of size n can have at most

(
n

bn/2c

)
pairwise incomparable sub-

sets/subgroups, which finishes the proof of Theorem 1.3. 2

Now let us turn to proving Theorem 1.4. We shall first introduce a tool that
turns a graph G from one class of graphs into another by a small perturbation.

Let G and G ′ be classes of graphs. We say that G is adaptable to G ′, G  G ′, if
there exists a constant n ∈ N so that for every graph G ∈ G there exists a graph
G′ ∈ G ′ which can be obtained from G by performing at most n of the following
operations:

(A1) deleting an isolated vertex,

(A2) adding an isolated vertex,

(A3) deleting an edge,

(A4) adding an edge.

Observe that being adaptable to is not a symmetric relation and also that subdivision
of an edge with one additional vertex can be modeled by exactly 4 of the above
operations.

Lemma 2.1 Let G and G ′ be classes of graphs and assume that G is adaptable to
G ′, G  G ′. Assume that there exists a constant c′, so that rig(G′) ≤ c′ for every
G′ ∈ G ′. Then there exists a constant c so that rig(G) ≤ c for every G ∈ G.
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Proof. It is enough to see that rigidity indices of graphs G−w,G+w,G−uv,G+uv
are not much bigger that rig(G) for every (potential) edge uv and an isolated (in G
or G+ w) vertex w.

Let U = {v1, v2, . . . , vk} ⊆ V (G) that fixes G for which rig(G) = |U | and let
G′ = G + w where w is isolated in G′. By Γ′v we denote the stabilizer of v in the
automorphism group of G′, and if v 6= w then Γv denotes the stabilizer of v in
Aut(G).

Γ′w ∩
(
Γ′v1
∩ Γ′v2

∩ . . . ∩ Γ′vk

)
=
(
Γ′u ∩ Γ′v1

)
∩
(
Γ′u ∩ Γ′v2

)
∩ . . . ∩

(
Γ′u ∩ Γ′vk

)
≤Γv1 ∩ Γv2 ∩ . . . ∩ Γvk

= {id}

By similar arguments we also show that

• U \ {w} fixes G− w, hence rig(G− w) ≤ rig(G),

• U ∪ {w} fixes G+ w, hence rig(G+ w) ≤ rig(G) + 1,

• U ∪ {u, v} fixes G− uv, hence rig(G− uv) ≤ rig(G) + 2,

• U ∪ {u, v} fixes G+ uv, hence rig(G+ uv) ≤ rig(G) + 2.

2

The above lemma is not true in the case of separation index. Paley graphs, as
shown in [4], can have arbitrarily large separation indices. But deletion of a single
edge in a Paley graph results in a graph with just one nontrivial automorphism [10].

Lemma 2.2 Let Σ0 be a fixed surface. If Σ and Σ′ are surfaces so that Σ′ is
connected sum of surfaces Σ and Σ0, then PΣ  PΣ′.

Proof. There is nothing to prove if Σ0 is a 2-sphere. By induction it is enough to
consider cases where Σ0 is either projective plane or torus. Note that K6 triangulates
the projective plane N1, hence K6 ∈ PN1 . On the other hand K7 ∈ PS1 as K7

triangulates the torus S1.
Let Π be a polyhedral embedding of G in Σ and let f be an arbitrary face of Π.

Let v1, v2, v3 be three arbitrary vertices lying on f and let v4, v5, v6 (and v7 in case
Σ0 is the torus) be the additional vertices. By forming a clique of size 6 (or 7) on
v1, v2, v3 and the additional vertices we obtain a graph G′ which admits a polyhedral
embedding in a surface which is a connected sum of Σ and either projective plane
or torus. And G′ is obtained from G by adding at most 4 + 15 new vertices and
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edges. 2

Let Π be an embedding of G on surface Σ. A k-curve is an essential simple
closed curve on Σ that intersects Π(G) in exactly k vertices (if an essential closed
curve intersects Π(G) in k points we may homotopically shift its image to obtain
a curve that (i) intersects Π(G) in vertices and (ii) does so in at most k vertices.)
Every such curve corresponds to a cycle in the vertex-face graph of (G,Π), see [8].

We say that a k-curve is short if k ≤ 2. If Π is a polyhedral embedding then no
short curves exist.

Lemma 2.3 Let Ck,Σ denote the class of all k-connected graphs that admit a mini-
mum genus embedding in surface Σ. If k ≥ 5 then Ck,Σ  PΣ.

Proof. Let G be a 5-connected graph and assume that Π is a minimum genus
embedding of G on Σ ie. G does not embed on a surface of smaller genus and the
same orientability type. This implies that no 0-curves exist.

We shall argue that we can by applying a bounded number of operations (A1),. . . ,
(A4) transform the embedding of G into a polyhedral embedding of a slightly per-
turbed graph.

Let C be a 2-curve. We can assign to C a face f = fC that has the following
property: C runs through f and intersects vertices uC and vC which do not lie
consecutively along f . This also implies that fC is not a triangular face. Also if C is
a 1-curve and runs through face f then the facial walk along f is of length at least
6 and f contains at least 5 different vertices.

Let C be the collection of all short curves. Every pair of curves C1, C2 ∈ C can
intersect in at most 3 vertices and/or faces. By a result of Juvan, Malnič, and Mo-
har [7] there exists a number n = nΣ, so that the number of pairwise nonhomotopic
curves in C is at most n.

On the other hand a collection of pairwise homotopic curves from C can intersect
G in at most 4 vertices. Namely, let C1, . . . , Cm be a maximal collection of pairwise
homotopic short curves (we may assume that the indices are selected according to
their relative position): if 1 ≤ i < j < k ≤ m then Cj lies in the annulus A (can be a
degenerate one) which has Ci and Ck as its boundary components. Now either a set
of 4 vertices V (Ci)∪V (Ck) separates V (Cj) from V (G)\A or V (Cj) ⊆ V (Ci)∪V (Ck).

The above observations imply that |C| is bounded.
Now for every 1-curve C put a vertex vC in the interior of fC making it adjacent

to 5 different vertices along f so that at least one pair interlaces the run of C. We
have thus obtained an embedding of a 5-connected graph G1 ⊇ G that allows no
1-curves.

Let C1 be the collection of 2-curves of the embedding of G1 and let F1 = {fC ;C ∈
C1}, which, by above arguments, contains a bounded number of faces.
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Now for every f ∈ F1 we put a vertex vf in the interior of f and for every curve
C so that fC = f make vf adjacent to a pair of vertices which are interlaced with
vC and uC along f . Finally if at the end of this process vf has degree 2 we may
suppress it in order to keep our newly obtained graph G2 3-connected. The obtained
embedding of G2 is polyhedral and the proof is complete. 2

We shall finish this section by giving the proof of Theorem 1.4.

Proof.(of Theorem 1.4) Assume first that G admits a polyhedral embedding in Σ.
If χ(Σ) < 0 then rig(G) is bounded by (3) and theorem 1.3. If χ(Σ) ≥ 0, we are
forced to apply Lemmas 2.1 and 2.2 beforehand to obtain a polyhedral embedding
on a surface of negative Euler characteristic. Hence rigidity index is bounded on the
class of Σ-polyhedral graphs.

Let G be a 5-connected graph that admits an embedding on Σ. Inductively we
may assume that an embedding of G on Σ is a minimal genus embedding. An ap-
plication of Lemma 2.3 together with Lemma 2.1 finishes the proof. 2

3 4-connected graphs in the projective plane

In this section we shall give a proof of Theorem 1.5. The proof itself will share some
flavor with the proof of Theorem 1.4 given in the previous section.

The basic tool is the following theorem by Negami [12].

Theorem 3.1 If G is 4-connected and admits an embedding Π on projective plane
with face width ≥ 4 then G has a combinatorially unique embedding.

It is a fundamental property of the projective plane that every two essential
curves are homotopic an are not disjoint. Further if G admits an embedding on
projective plane N1 with face-width 1 then G is planar. Hence we may limit ourselves
to embeddings with face-width ≥ 2.

On the other hand 4-connected graphs embedded on N1 may allow an arbitrary
number of 2- or 3-curves. In view of Theorem 3.1 let us call both 2- and 3-curves
short in this section.

Let us construct a graph H which has a combinatorially unique embedding in
the projective plane, see [12, Lemma 2,2]: V (H) = {v0, v1, . . . , v12}. Start with a
12-cycle on vertices {v1, . . . , v12}, and add four edges v1v8, v3v9, v5v11, and v6v12. We
have now obtained a subdivision of the Möbius 4-ladder M4. Finally we connect v0

with v1, v4, v7, and v10.
Given a 4-connected graph G, which is embedded in the projective plane we shall

show that G can be perturbed slightly so that either (i) the newly obtained graph
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contains a subdivision of H or (ii) the newly obtained graph (or rather embedding)
is 4-connected and has face-width ≥ 4. In both cases the slightly perturbed graph
would have bounded rigidity index by Proposition 1.2.

Let C2 be a collection of 2-curves and fix a 2-curve C0. By above observation
every other 2-curve crosses C0 in either a common vertex or a common face. No
more than 7 curves from C2 run throug the same vertex v, as otherwise we would
obtain a contradicition to 4-connectivity of G (note than two curves from C2 can
share both their vertices as hey can still run throug different faces). If at least 7
curves from C2 run through the same face f , our graph G contains as a subgraph a
subdivision of M4. By adding a vertex and four edges in the interior of f we obtain
a subdivion of H. This implies that G admits a bounded number (≤ 24) of distinct
2-curves. As every 2-curve C runs through a nontriangular face fC we can for every
curve C plant a vertex vC in the interior of fC and connect it to a suitable set of
four vertices in order to eliminate the 2-curve C. The newly obtained graph G1 is
4-connected by construction and is embedded with face width at least 3.

Let C3 be a collection of 3-curves of G1 and let us, as above, fix a 3-curve C1.
Every other 3-curve crosses C1 in either a common vertex or a common face. Assume
first that more than 28 3-curves share a vertex v. The same collection of curves would
yield at least 7 2-curves in G − v (a single 2-curve in G − v can be routed as ≤ 4
different 3-curves in G), and hence a subdivision of M4 in G− v. By subdividing at
most 4 edges and adding at most 4 edges to G we obtain a subdivision of H.

Let f be a face where a collection of 3-curves all cross C1. Then f is not a
triangle and C1 does not intersect two consecutive vertices of f . By adding a vertex
v in the interior of f and connecting it to a suitable set of four vertices from f we
eliminate both C1 and all 3-curves that cross it in the interior of f .

Hence we may assume thatG1 admits a bounded number of 3-curves C1, C2, C3, . . . , Ck.
For each Ci in turn we do one of the following:

(a) If the 3-curve Ci runs parallel to an essential triangle v1v2v3 then let u and w
be two vertices of two different faces that share the edge v1v2. Let us subdivide
the edge v1v2 by a single vertex v12 and make it adjacent also to vertices u
and w.

(b) Otherwise let fi be the face so that Ci contains nonconsecutive vertices ui, vi

along f . Put a new vertex wi in the interior of f and make it adjacent to ui,
vi and two additional vertices so that ui and vi are not consecutive neighbors
around wi.

Applying (a) or (b) eliminates Ci, preserves 4-connectivity, and may, much to our
favour, also eliminate another 3-curve Cj, for some j > i. Let us call the resulting
graph G2.
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As the number of 3-curves in G1 is bounded we have obtained a 4-connected
graph G2 embedded with face-width ≥ 4 by using a bounded number of operations
(A1),. . . ,(A4). By Theorem 3.1 and Proposition 1.2 G2 has bounded rigidity index.
By Lemma 2.1 also rig(G) is bounded and the proof of Theorem 1.5 is complete.

4 Conclusions

Finally it is worth mentioning that Theorems 1.3 and 1.4 do not extend to more
general minor closed families of graphs. Let Fn denote the family of all graphs of
tree-width at most n. It is well-known that Fn is a minor closed family. Consider
the strong product Kk�T of a complete graph Kk and a tree T . It is not too difficult
to argue that Kk � T is a k-connected graph, its tree width is at most 2k − 1, yet
its rigidity index is at least (k − 1)|V (T )|.
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