
University of Ljubljana

Institute of Mathematics, Physics and Mechanics
Department of Mathematics

Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series, Vol. 47 (2009), 1077

IMMERSING SMALL COMPLETE
GRAPHS

Matt DeVos Ken-ichi Kawarabayashi
Bojan Mohar Haruko Okamura

ISSN 1318-4865

Ljubljana, February 2, 2009



Immersing small complete graphs

Matt DeVos ∗ Ken-ichi Kawarabayashi † Bojan Mohar ‡

Haruko Okamura §

July 25, 2008

Abstract

Following in the spirit of the Hadwiger and Hajós conjectures, Abu-
Khzam and Langston have conjectured that every k-chromatic graph
contains an immersion of Kk. They proved this for k ≤ 4. Here
we make the stronger conjecture that every simple graph of minimum
degree k−1 contains an immersion of Kk. We prove that this conjecture
holds for every k ≤ 7.

1 Introduction

In this paper, all graphs are finite and may have loops and multiple edges.
A graph H is a minor of a graph G if (a graph isomorphic to) H can
be obtained from a subgraph of G by contracting edges. A graph H is a
topological minor of a graph G if G contains a subgraph which is isomorphic
to a graph that can be obtained from H by subdividing some edges. In
such a case, we also say that G contains a subdivision of H. The chromatic
number of G, denoted χ(G), is the minimum number of colors required by
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G in any proper coloring of its vertices. The graph G is k-chromatic if
χ(G) = k.

Our paper is motivated by two famous conjectures concerning the chro-
matic number and the minor and topological order, namely, Hadwiger’s
conjecture and Hajós’ conjecture.

Hadwiger’s Conjecture from 1943 suggests a far-reaching generalization
of the Four Color Theorem [2, 3, 12] and is considered to be one of the
deepest open problems in graph theory. It states that every loopless graph
without a Kk-minor is (k − 1)-colorable. In 1937, Wagner [17] proved that
the case k = 5 of the conjecture is, in fact, equivalent to the Four Color
Theorem. In 1993, Robertson, Seymour and Thomas [15] proved that the
case k = 6 also follows from the Four Color Theorem. The cases k ≥ 7 are
open; For the case k = 7, a partial result in [11] is best known.

Hajós proposed a stronger conjecture that for all k ≥ 1, every k-chromatic
graph contains a subdivision of the complete graph on k vertices. He already
considered the conjecture in the 1940’s in connection with attacks on the
Four Colour Conjecture (now theorem). For k ≤ 4, the conjecture is true,
for k = 5, 6, it still remains open. But for every k ≥ 7, it was disproved
by Catlin [6]. In fact, Erdős and Fajtlowicz [7] proved that the conjecture
is false for almost all graphs, see also Bollobás and Catlin [4]. Recently,
Thomassen provided a variety of interesting natural examples where Hajós’
Conjecture fails [16].

In this paper, we consider a different containment relation – graph im-
mersions. A pair of adjacent edges uv and vw with u 6= w is lifted by deleting
the edges uv and vw, and adding the edge uw (possibly in parallel to an
existing edge). A graph H is said to be immersed in a graph G if a graph
isomorphic to H can be obtained from a subgraph of G by lifting pairs of
edges. If H is immersed in a graph G, then we also say that G contains an

H-immersion.
Previous investigation on immersions has been mainly conducted from

an algorithmic standpoint. We refer the reader to [5, 8]. On the other hand,
it would be interesting to consider structural issues, since the notions of an
immersion and a minor seem to be quite similar, and structural approach
concerning graph minors has been extremely successful. In fact, Robertson
and Seymour [14] extended their proof of the famous Wanger’s conjecture
[13] to prove that graphs are well-quasi-ordered by the immersion relation.
This proves a conjecture of Nash-Williams. The proof is based on the whole
series of graph minors papers. Hence, we may expect that structural ap-
proach concerning immersions is difficult, maybe as difficult as structure
results concerning graph minors.
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Immersion containment is quite different from that of topological or mi-
nor containment. It is immediate that a topological minor of H implies both
a minor and an immersion of H, but the converse is not generally true. The
existence of an H minor and an H immersion are easily seen to be incom-
parable. Therefore, it would be interesting to investigate relations between
the chromatic number of a graph G and the largest size of a complete graph
immersed in G. In fact, Abu-Khzam and Langston conjectured the following
in [1].

Conjecture 1 The complete graph Kk can be immersed in any k-chromatic

graph.

This conjecture, like Hadwiger’s conjecture and Hajós’ conjecture, is
trivially true for k ≤ 4. In fact, since Hajós’ conjecture is true if k ≤ 4, this
immediately implies Conjecture 1 for the cases k ≤ 4.

On the other hand, the case k = 5 does not seem to be trivial. Abu-
Khzam and Langston [1] proved a weaker statement that K−

5 is immersed
in every 5-chromatic graph. They also pointed out that structural investi-
gations are extensively studied for graphs without a K4-immersion (see [5]),
but almost nothing is done for graphs without a K5-immersion. Here we
would like to pose the following conjecture for complete immersions.

Conjecture 2 Every simple graph of minimum degree at least k−1 contains

an immersion of Kk.

This conjecture immediately implies Conjecture 1 since every k-chromatic
graph has a simple subgraph of minimum degree k − 1. Again, this conjec-
ture is trivial for k ≤ 4. The purpose of this paper is to prove the following
theorem which establishes our conjecture for some higher values of k.

Theorem 3 Conjecture 2 holds for k = 5, 6, 7.

Theorem 3 also shows that Conjecture 1 holds for k ≤ 7. Although the
methods of our proof may extend to the next case (k = 8), it appears that
there may be too many cases to make this approach feasible.

2 Immersing complete graphs

In this section we shall prove the main theorem. Actually, for inductive
purposes, we shall prove a slightly stronger statement. We begin with a
little notation.
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Our graphs may in general have parallel edges; If two vertices are joined
by more than one edge, the set of edges joining them is called a proper

parallel class. The degree of a vertex v, denoted deg(v), is the number of
edges incident with v (counting loops twice). We let N(v) denote the set of
vertices adjacent to v and we let N̄(v) = N(v) ∪ {v}.

Theorem 4 Let d ∈ {4, 5, 6}, let G = (V,E) be a loopless graph, and let

u ∈ V . Assume further that G satisfies the following properties:

• |V | ≥ d.

• deg(v) ≥ d for every v ∈ V \ {u}.

• There are at most d− 2 proper parallel classes, and every edge in such

a parallel class is incident with u.

Then there is an immersion of Kd+1 in G.

Proof. Suppose (for a contradiction) that G is a counterexample to the
theorem with |V |+ |E| minimum. We shall prove properties of G in several
steps.

(1) |V | ≥ d + 1.

It follows from the assumptions that there exists a vertex in V \ {u} not
incident with any proper parallel class. Consequently, |V | ≥ d + 1.

(2) Every edge has an end of degree at most d.

If e has no end of degree ≤ d, then G − e is a smaller counterexample.

(3) deg(v) = d for every v ∈ N(u).

If v ∈ N(u) has degree > d, then G − uv is a smaller counterexample.

(4) deg(v) ≤ d + 1 for every v ∈ V \ {u}.

If there exists v ∈ V \{u} with deg(v) > d+1, then either the neighbors
of v form a complete graph (giving us an immersion of Kd+1 in G) or there
exist w1, w2 ∈ N(v) which are nonadjacent, and the graph obtained from G

by lifting vw1 and vw2 to form the edge w1w2 is a smaller counterexample.

(5) N(u) induces a complete graph.

If v1, v2 ∈ N(u) are nonadjacent, then the graph obtained by lifting uv1

and uv2 to form the edge v1v2 is a smaller counterexample.
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(6) |N(u)| ≥ 3.

If |N(u)| ≤ 1, then G − u is a smaller counterexample. If |N(u)| = 2,
then we may let {v1, v2} = N(u) and assume that there are s edges between
u, v1 and t between u, v2 with s ≤ t. Now G immerses the graph G′ obtained
from G by deleting u and adding s new parallel edges between v1, v2, so G′

(with the special vertex v2) is a smaller counterexample.

(7) |N(u)| ≤ d − 2.

If |N(u)| ≥ d then N̄(u) contains a Kd+1 subgraph, so G immerses
Kd+1. If |N(u)| = d− 1, then G immerses the graph G′ obtained from G by
identifying N̄(u) to a single new vertex u′ and deleting any resulting loops
(here we use (3) and (5)). Now G′ (with the special vertex u′) is a smaller
counterexample.

(8) d = 6 and |N(u)| = 3.

Suppose (for a contradiction) that (8) fails. Then by (6) and (7) we must
have d ∈ {5, 6} and |N(u)| = d−2. Again in this case, we form a new graph
G′ from G by identifying N̄(u) to a single new vertex u′ and deleting any
resulting loops. By the minimality of G we find that G′ immerses Kd+1.
This immersed Kd+1 in G′ can be used to find an immersion of Kd+1 in G.
The “hardest” case is when d = 6, u′ has degree 8, and the immersed K7

uses all of these edges, and has u′ as a vertex. Up to symmetries, there are
two cases to be considered, and they are conveniently displayed in Figure 1.
This contradiction completes the proof of (8).

Figure 1: Extending K7-immersion from G′ to G when |N(u)| = 4

(9) G does not have exactly one proper parallel class.

Suppose (for a contradiction) that N(u) = {v1, v2, v3} and that the edges
between u and v1 form the only proper parallel class in G. Now, form a new
graph G′ by deleting u and adding edges v1v2 and v1v3. The graph G′ is
now immersed in G, and gives us a smaller counterexample (using the special
vertex v1).
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Figure 2: Extending K7-immersion from G′ to G for claim (10)

(10) There do not exist w1, w2 ∈
⋂

v∈N(u) N(v)\{u} so that either w1w2 ∈ E

or deg(w1) = 6 = deg(w2).

Suppose that such a pair w1, w2 exists and let us form the graph G′ from
G by identifying N̄(u) ∪ {w1, w2} to a single new vertex u′. It follows from
(2)–(5) and (8) that u′ will have degree ≤ 9 (so G′ will have at most four
proper parallel classes). It also follows that G has a vertex that is not adja-
cent to N(u), and this implies that G′ has at least 6 vertices. Consequently,
G′ contains an immersion of K7. This immersion of K7 in G′ can be used
to find an immersion of K7 in G. The “hardest” case is when eight of the
edges incident with u′ are used in the K7 and u′ is a vertex of the immersed
K7. As for the most general subcase, we may also assume that deg(u′) = 9.
This case can be divided into subcases depending on which pair of edges
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incident with u′ are lifted to form a new edge (drawn as a broken bold curve
in Figure 2). Up to symmetries, there are four subcases as shown in Figure
2: both edges are incident with w1, one is incident with w1 and the other
one with w2, one with w1 and the other with N(u), or both with N(u). In
Figure 2, bold paths represent partial routings for each of these four cases,
up to symmetries. In each subcase, one or two of the edges incident with
the vertex of degree 6 in K7 (drawn as the black vertex) are still missing.
In this way, each of these figures describes two or three additional subcases,
corresponding to which of the remaining edges a, b (or c) is not used in
the K7-immersion. It is easy to verify that all of these subcases can be
completed to form an immersion of K7 in G.

(11) |
⋂

v∈N(u) N(v) \ {u}| ≤ 2.

Suppose (for a contradiction) that w1, w2, w3 ∈
⋂

v∈N(u) N(v) \ {u} are
distinct. It follows from (10) that {w1, w2, w3} is an independent set, and
that at most one of these vertices has degree 6. Now, form a new graph G′

from G by deleting N̄(u) and then adding the new edges w1w2, w2w3, and
w3w1. The graph G′ is simple with at most one vertex of degree < 6 and
has at least 6 vertices, so it immerses K7. But then G immerses K7 as well,
since G′ is immersed in G. This yields a contradiction.

(12) Every v ∈ N(u) satisfies |N(v)| ≤ 5.

Let N(u) = {v1, v2, v3} and suppose (for a contradiction) that N(v3) =
{u, v2, v3, w1, w2, w3}. First suppose that v1w1, v2w2 6∈ E. Then the graph
G′ obtained from G by deleting v3 and adding the edges v1w1, v2w2, and
uw3 is immersed in G, and yields a smaller counterexample, a contradiction.
Next suppose that v1w1, v1w2 6∈ E. By the previous case, we may assume
that v2w1, v2w2, v2w3 ∈ E. It follows from this that v2 and v3 have six
distinct neighbors, so by (9) the graph G is simple. Now, form the graph
G′′ from G by deleting u and v3, then adding the edges v1w1 and v1w2, and
then adding a new edge v2w3 in parallel to the existing edge. The graph
G′′ is immersed in G, but then G′′ with the special vertex v2 is a smaller
counterexample, giving us a contradiction.

Using the two properties just demonstrated, we may now assume that
v1w2, v1w3, v2w2, v2w3 ∈ E. Further, by (11), we may assume that v1w1 6∈
E, and by (10) we may assume that w2w3 6∈ E. Now we form the graph G′′′

from G by deleting v3 and then adding the edges v1w1, w2w3, and uv2. Now
G′′′ is immersed in G, but then G′′′ is a smaller counterexample, giving us
a contradiction. This proves (12).
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Now, (12) implies that every neighbor of u is incident with a proper
parallel class. It follows from this and (3), (5), (8) that the graph obtained
from G by identifying N̄(u) to a single new vertex and deleting loops is im-
mersed in G. This new graph is a smaller counterexample, thus completing
the proof. �
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