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Abstract

The two-coloring number of graphs, which was originally introduced
in the study of the game chromatic number, also gives an upper bound on
the degenerate chromatic number as introduced by Borodin. It is proved
that the two-coloring number of any planar graph is at most nine. As a
consequence, the degenerate list chromatic number of any planar graph
is at most nine. It is also shown that the degenerate diagonal chromatic
number is at most eleven and the degenerate diagonal list chromatic num-
ber is at most tweleve for all planar graphs.

1 Introduction

The two-coloring number of a graph was introduced by Chen and Schelp [6] in
the study of Ramsey properties of graphs and used later in the study of the
game chromatic number [9, 10, 15, 16]. In [10] it was shown that the two-
coloring number is related to the acyclic chromatic number. It turns out that
the two-coloring number is also related to the notion of degenerate colorings
introduced by Borodin [1], which was the starting motivation for the results of
this paper.

Let G be a graph, and let L be a linear ordering of V (G). A vertex x is
k-reachable from y if x <L y and there is an xy-path P of length at most k such
that y <L z for all interior vertices z of P . Let RL,k(y) be the set of all vertices
x that are k-reachable from y with respect to the linear order L. The k-coloring

number of G is defined as

colk(G) = 1 + min
L

max
y∈V (G)

|RL,k(y)|,

where the minimum is taken over all linear orderings L of V (G). If k = 1, then
col1(G) is also known as the coloring number of G since it provides an upper
bound for the chromatic number of G. The higher k-coloring numbers provide
upper bounds for some other coloring parameters [17].

Let k be a positive integer. A graph G is k-degenerate if every subgraph of
G has a vertex of degree less than k. A coloring of a graph such that for every
k ≥ 1, the union of any k color classes induces a k-degenerate subgraph is a
degenerate coloring. Note that this strengthens the notion of acyclic colorings,
for which it is required that every color class is 1-degenerate and union of any two
color classes induces a 2-degenerate graph (a forest). The degenerate chromatic
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number of G, denoted as χd(G), is the least n such that G admits a degenerate
coloring with n colors. Suppose that for each vertex v ∈ V (G) we assign a
list L(v) ⊂ N of admissible colors which can be used to color the vertex v. A
list coloring of G is a function f : V (G) → N, such that f(v) ∈ L(v) for each
v ∈ V (G) and f(u) 6= f(v) whenever u and v are adjacent in G. If the coloring
is also degenerate, we say that f is a degenerate list coloring. If for any choice of
lists L(v), v ∈ V (G), such that |L(v)| ≥ k, there exists a list coloring of G, then
we say that G is k-choosable. The list chromatic number (or the choice number)
of G, denoted as ch(G), is the least k, such that G is k-choosable. Analogously
we define the degenerate choice number and denote it by chd(G).

In 1976 Borodin proved [2, 3] that every planar graph admits an acyclic 5-
coloring and thus solved a conjecture proposed by Grünbaum [7]. At the same
time, he proposed the following conjecture:

Conjecture 1 (Borodin [1, 3]) Every planar graph has a 5-coloring such that

the union of every k color classes with 1 ≤ k ≤ 4 induces a k-degenerate graph.

Thomassen settled a weakening of Conjecture 1 by proving that the vertex
set of every planar graph can be decomposed into two sets that respectively
induce a 2-degenerate graph and a 3-degenerate graph [13], and that the vertex
set of every planar graph can be decomposed into an independent set and a
set that induces a 4-degenerate graph [14]. However, Conjecture 1 remained
basically untouched since there are no tools to deal with degenerate colorings.
Very recently, the barrier was overriden by Rautenbach [11] who proved that
every planar graph admits a degenerate coloring using at most 18 colors.

In this paper we introduce two different approaches for dealing with degen-
erate colorings. Both are based on the following observation.

Observation 1 Let G be a graph and let c be a degenerate coloring of a vertex-

deleted subgraph G − v. If the neighbors of v are colored by pairwise distinct

colors and we color v by a color which is different from all of those colors, then

the resulting coloring of G is degenerate.

The above observation, whose easy proof is left to the reader, is a link
between the 2-coloring number and the degenerate chromatic number, since it
implies the following:

Corollary 1 For any graph G, chd(G) ≤ col2(G).

Proof. Suppose that L is a linear ordering of V (G), and suppose that each
vertex y has a list of |RL,2(y)| + 1 colors. Then we can color the vertices of
G, one by one according to the linear ordering L, so that each vertex y is
colored by a color different from the colors of vertices in RL,2(y). This strategy
guarantees that all neighbors of y, which are already colored, have pairwise
different colors. To see this, let y1 <L y2 be any two neighbors of y, where
y1, y2 <L y. Then y1 ∈ RL,2(y2), so y2 has been colored differently from y1. It
follows from Observation 1 that the obtained coloring of G is degenerate and
hence chd(G) ≤ col2(G).
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In this paper we shall use two-colorings to get an efficient bound on the
degenerate chromatic number. It is proved in [9] that planar graphs have 2-
coloring number at most 10. Our main result gives currently best upper bound
for the two-coloring number of every planar graph G, and henceforth a bound
on chd(G).

Theorem 1 If G is a planar graph, then col2(G) ≤ 9, and therefore also

chd(G) ≤ 9.

Theorem 1 will be proved in Section 2. In fact, we will prove a slightly
stronger statement that there is a linear ordering L of V (G) such that for each
vertex x, |RL,1(x)| ≤ 5 and |RL,2(x)| ≤ 8. See Theorem 2.

An example given in [9] shows that there are planar graphs whose 2-coloring
number is 8. That example is quite complicated. Here we give a much simpler
one. Consider a 5-connected triangulation T of the plane in which no two
vertices of degree 5 are adjacent. It is well known and easy to see that there are
infinitely many such triangulations. Let L be a linear ordering of vertices of T ,
and let x be the last vertex that has a larger neighbor with respect to L. Suppose
that y1, . . . , yk are the neighbors of x such that x <L yi for i = 1, . . . , k, and let
N−(x) be the set of neighbors of x distinct from y1, . . . , yk. By the choice of x,
all neighbors of y1, . . . , yk are 2-reachable from x. Note that each yi has at most
two neighbors in N−(x). If k = 1, it is easy to see that N−(x) and the neighbors
of y1 contain at least 7 vertices distinct from x. Thus, |RL,2(x)| ≥ 7. On the
other hand, if k ≥ 2, then y1 and y2 have only x and possibly one neighbor of
x as common neighbors. If one of them has degree at least 6, then they have at
least 7 neighbors distinct from x, hence |RL,2(x)| ≥ 7. If they both have degree
5, then x has degree at least 6, and it is again easy to see that |RL,2(x)| ≥ 7.
This shows that col2(T ) ≥ 8.

The following remains a challenging open problem:

Question 1 Is it true that every planar graph G satisfies col2(G) ≤ 8?

F
1

F
2

u

v

xy

Figure 1: x and y are opposite with respect to e = uv

The second tool which can be used to control degeneracy when dealing with
graph embedded in surfaces is based on the notion of diagonal colorings defined
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below. Let G be a plane graph and e = uv be an edge of G. Suppose that
the faces F1 and F2 incident with e are both triangles. If x, y are the vertices
distinct from u, v on the boundary of F1 and F2, respectively, then we say that
x, y are opposite with respect to e (see Fig. 1). Vertices x and y of G are said
to be opposite if they are opposite with respect to some edge of G. Note that
for a vertex of degree k, there are at most k vertices that are opposite to it.

Bouchet et al. [5] introduced the notion of diagonal colorings of plane graphs,
for which one requires that any two adjacent or opposite vertices receive different
colors. They proposed the following conjecture:

Conjecture 2 (Bouchet, Fouquet, Jolivet, Riviere [5]) Every plane graph

has a diagonal 9-coloring.

Figure 2: A triangulation which needs 9 colors

The graph shown in Figure 2 is an example which needs 9 colors. Bouchet
at al. proved in [5] that 12 colors suffice in general. Borodin [4] showed how to
save one color, and Sanders and Zhao [12] proved that 10 colors suffice. See also
[8, Problem 2.15].

2 The two-coloring number

First we need some properties of plane triangulations. Suppose G = (V, E) is
a triangulation whose vertices are partitioned into two subsets U and C, where
C is an independent set and each vertex in C has degree 4. For each vertex x,
let dU (x) be the number of neighbours of x in U and dC(x) be the number of
neighbours of x in C. Observe that

∑

x∈U

dC(x) = 4|C| .

Let w(x) = dU (x) + dC(x)/2 be the weight of x. Then

2|E| =
∑

x∈V

dG(x) =
∑

x∈U

dG(x) + 4|C| =
∑

x∈U

w(x) + 6|C| . (1)
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Euler’s formula implies that |E| < 3|V | = 3|U |+3|C|. This implies that 6|U | >
∑

x∈U w(x), so there is a vertex x ∈ U with w(x) < 6 (hence w(x) ≤ 5.5).
For a graph G and x, y ∈ V (G) we write x ∼ y when x is adjacent to y in G

and x 6∼ y otherwise. We say that x ∈ U is a vertex of type (a, b) if dU (x) = a
and dC(x) = b. If x ∼ y, x is of type (5,0) or (5,1) and y is of type (5,0),(5,1)
or (5,2), then (x, y) is called a good pair. If xyz is a triangle in G, z is of type
(5,0) or (5,1) and x, y are both of type (6,0), then (x, y, z) is a good triple. If
x, y are of types (5,0) or (5,1) and z is of type (6,1) and x ∼ z, y ∼ z, x 6∼ y,
then (x, y, z) is also called a good triple.

Lemma 1 Let G = (V, E) be a planar triangulation. Suppose that C ⊂ V is

an independent set where each vertex of C has degree four, let U = V − C and

suppose that dU (x) ≥ 5 for all x ∈ U . Then G has a good pair or a good triple.

Proof. Assume that there is no good pair and no good triple. Observe that
U 6= ∅. For each x ∈ U , let c(x) = w(x) − 6 be the initial charge of x. A vertex
x is called a major vertex if c(x) > 0 and a vertex x with c(x) < 0 is called a
minor vertex. Euler’s formula implies that |E| = 3|V |− 6 and together with (1)
we conclude that

∑

x∈U

c(x) =
∑

x∈U

w(x) − 6|U | = 2|E| − 6|C| − 6|U | = −12 . (2)

If x is a minor vertex of type (5,0), then we let each major neighbour of
x send a charge of 1/3 to x. If x is a minor vertex of type (5,1), then each
major neighbour of x is asked to send a charge of 1/6 to x. Let us consider the
resulting charge c′(x) for all vertices of G. We shall show that c′(x) ≥ 0 for each
x, which will contradict (2) and complete the proof.

Note that every vertex, which is not a major vertex, is of type (5, 0), (5, 1), (5, 2)
or (6, 0). If x is a minor vertex then its type is (5, 0) or (5, 1). Since there are no
good pairs, x is not adjacent to a vertex of type (5, 0), (5, 1) or (5, 2). Addition-
ally, since there are no good triples, x is not adjacent to two adjacent vertices of
type (6, 0). It follows that every minor vertex has at least three major neighbors.
Therefore c′(x) ≥ 0 for all minor vertices x.

Suppose now that x is a major vertex. Since there are no good pairs, no two
minor vertices are adjacent and hence x sends charge only to non-neighboring
vertices. If a minor U -neighbor y of x is adjacent to a C-neighbor of x then y
is of type (5,1) and hence x sends to y only 1/6 charge. A U -neighbor adjacent
to two C-neighbors of x receives 0. Therefore the total charge sent out from x
is at most bdU (x)/2c/3. Hence c′(x) ≥ 0 if dU (x) ≥ 7.

Assume now that dU (x) = 6. If dC(x) ≥ 2, then it is easy to see that
the charge sent out from x is at most 2/3, and hence c′(x) ≥ 0. So, assume
dU (x) = 6 and dC(x) = 1. If x has at least two minor neighbours, then these
two minor neighbours are not adjacent (for otherwise we have a good pair). But
then we have a good triple, contrary to our assumption. Thus x has at most one
minor neighbour, and hence the charge sent out from x is at most 1/3. Since
c(x) = 1/2 we conclude that c′(x) ≥ 1/2 − 1/3 > 0.
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If c(x) = 0, then no charge is sent out from x and hence c′(x) = 0. Now
every vertex has a non-negative charge, which is a contradiction.

Let G = (V, E) be a graph and C ⊆ V . A C-ordering of G is a partial
ordering L of V (G) such that the following conditions hold:

(i) The restriction of L to C is a linear ordering of C.

(ii) The vertices in V −C are incomparable (that is, neither x <L y nor y <L x
for x, y ∈ V − C).

(iii) y <L x for every x ∈ C and y ∈ V − C.

Let L be a C-ordering of G and x ∈ C. The set RL,2(x) is the set of all
y <L x, such that either y ∼ x or there exists a z ∈ C with x ∼ z, y ∼ z and
x <L z. In the latter case we say that y is two-reachable from x with respect to
L. Suppose that v is a vertex of G and C = C′ − {v}. If L′ is a C′-ordering of
G and L is a C-ordering of G such that L′ and L are equal on C and v <L′ u
for all u ∈ C, then clearly |RL,2(x)| = |RL′,2(x)| for all x ∈ C. Thus, extending
the C-ordering to a C′-ordering does not increase the size of any set RL,2(x).

Theorem 2 If G is a planar graph, then there is a linear ordering L of V (G)
such that for each vertex x, |RL,1(x)| ≤ 5 and |RL,2(x)| ≤ 8. In particular,

col2(G) ≤ 9.

Proof. We need to find a linear ordering L of V (G) such that for each vertex
x, |RL,1(x)| ≤ 5 and |RL,2(x)| ≤ 8. Let C ⊆ V and U = V − C. We say that a
C-ordering L of G is valid if each vertex x ∈ C has at most four neighbours in
U and |RL,2(x)| ≤ 8.

In the following we shall produce a sequence of valid orderings of G so that
the ordered set C becomes larger and larger, and eventually produce a linear
ordering of V (G). At the beginning C = ∅ (which is certainly a valid ordering).
Suppose we have a valid C-ordering L of G and U 6= ∅. To produce a larger
valid ordering we change the graph G as follows.

First we delete all edges between vertices of C. If x ∈ C has at most
three neighbours in U , then delete x and add edges between each pair of the U -
neighbours of x. Observe that this operation preserves planarity of the graph. If
x ∈ C has four neighbours in U , then add edges in the cyclic order (according to
the plane embedding) so that the four neighbours form a 4-cycle. The resulting
graph G1 is planar and every vertex of G1 in C is of degree four and is contained
only in triangular faces. Therefore we can add edges only among vertices of U
to obtain a plane triangulation G′ in which the vertex set F = C ∩ V (G′) is
independent and all its vertices have degree four.

Since G′ is a triangulation and F is an independent set of G′, we know
that for each vertex x ∈ U , dU (x) ≥ dF (x). If there is a vertex x ∈ U with
dU (x) ≤ 4, then extend the ordering L by letting x be the next ordered vertex.
The obtained ordering L′ is an ordering with x <L′ y for all y ∈ C and u <L′ x
for all u ∈ U − {x}.
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Let z be a neighbor of x, which is in C. If z ∈ F , then it has four neighbors
in U and at most one of them is not x or a neighbor of x. Consequently at
most one new vertex is two-reachable from x through z. On the other hand if
z ∈ C − F , then z has at most three neighbors in U and all of them are either
x or its neighbors in G′. We infer that |RL,2(x)| ≤ 8 holds in the original graph
G. By assumption, x has at most four neighbors in U , so the extended ordering
is valid.

yx

x y

z

a

b

c

d

e
f

g

h

ji
k

a

b

c

def

g

h

ij

l

m

n
o

p

r

q

sk

lm

n

Figure 3: A case of an extension of ordering, where both x and y are of type
(5, 1). Diagonal vertices are indicated by broken lines. Vertices of F are full,
vertices of U are hollow.

Suppose now that dU (x) ≥ 5 in G′ for each x ∈ U . We will apply Lemma
1 for G′ and the set F playing the role of C. The lemma implies that there is
either a good pair (x, y) or a good triple (x, y, z).

If there is a good pair (x, y), then we extend the ordering by requesting that
for any u ∈ U − {x, y} and v ∈ C we have u <L′ x <L′ y <L′ v. We claim that
the obtained ordering L′ is valid in G for the preordered set C1 = C ∪ {x, y}.
We treat the case when x and y are of type (5, 1) in detail, and leave all other
cases to the reader. Let h be the neighbor of x in F and let b be the neighbor of
y in F (possibly b = h). Note that h and b are of degree 4 in G′ and that each
of them has at most one neighbor that is two-reachable from x (resp. y) and is
not a neighbor of x (resp. y). An example of this case is shown in Fig. 3. Note
that the type (5,1) and the drawing in Fig. 3 are with respect to G′. The unique
neighbors of x and y in F are chosen in Fig. 3 as vertices h and b, respectively,
but they can be any other neighbors, including the possibility of being one of
the common neihbors of x and y. Since the extension L′ of L is defined so
that x <L′ y, we see that the number of neighbors u of x with u <L′ x is four
(in Fig. 3 these are a, g, f and e). Moreover, the number of vertices that are
two-reachable in G from x (and are different from the U -neighbors of x in G′)
is at most 3, one through h and two more through y (these are j, c and d). On
the other hand, y has five neighbors u with u <L′ y (namely a, x, e, d and c) and
one additional two-reachable vertex through b that is not its neighbor in G′,
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that is i. We proved that |RL′,2(x)|, |RL′,2(y)| ≤ 7 and each of x, y has at most
four neighbors in U − {x, y}. Therefore the extended ordering is valid. Other
configurations, when (x, y) is a good pair, are treated similarly.

If (x, y, z) is a good triple such that x and y are of types (5, 0) or (5, 1) and
z is of type (6, 1), then extend the C-ordering L to L′ by finding positions for
x, y and z as follows: for any u ∈ U − {x, y, z} and v ∈ C, we set u <L′ x <L′

z <L′ y <L′ v. If (x, y, z) is a good triple such that x and y are of type (6, 0)
and z is of type (5, 0) or (5, 1), then extend the C-ordering L to L′ by seting
u <L′ x <L′ y <L′ z <L′ v for each u ∈ U −{x, y, z} and v ∈ C. As before, it is
easy to verify that |RL′,2(x)|, |RL′,2(y)|, |RL′,2(z)| ≤ 8 and each of x, y, z has at
most four neighbours in U − {x, y, z}. We conclude that L′ is a valid ordering.
Note also that the newly defined partial order L′ satisfies |RL′,1(x)| ≤ 5 for all
x. One of the cases is shown in Fig. 3 for the convenience of the reader.

A slight change in the above proof yields an application to degenerate diag-
onal list colorings using at most twelve colors at each vertex.

Corollary 2 Every plane graph has a degenerate diagonal list coloring from

lists of size at least twelve.

Proof. Let L be a C-ordering and let Rd
L,2(y) be the set of all vertices that are

two-reachable from y, together with all vertices x, such that x <L y and x is
opposite y. For the purpose of this proof we say that L is a valid ordering if for
each vertex x ∈ C, |Rd

L,2(x)| ≤ 11, and x has at most four neighbours in U . We

prove the existence of a linear order L so that |Rd
L,2(y)| ≤ 11 for each vertex

y ∈ V (G). We proceed analogously as in the proof of Theorem 1, that is, we
construct a sequence of valid orderings until we eventually get a linear ordering
of V (G). So suppose that we are given a valid C-ordering L, where C 6= V (G).
Then change the graph G as in the proof of Theorem 1 to obtain a plane graph
G′. It is easy to see that the construction of G′ was done so that if x, y ∈ U
and x is opposite y in G, then either x is adjacent or opposite y in G′. Again
we arrive at few cases, where we have to determine how to extend the ordering
L.

If there is a vertex x with dU (x) ≤ 4 in G′, then extend the ordering L
to L′ so that the next ordered vertex is x and observe that any vertex that is
two-reachable from x and is not a neighbor of x is also opposite to x. It follows
that |Rd

L′,2(y)| ≤ 8 holds in G.
Otherwise G′ has either a good pair or a good triple. If (x, y) is a good

pair then let x <L′ y. If x, y are of type (5,1) (see Fig. 3) then observe that
x has four adjacent vertices smaller than x (these are a, g, f, e), two vertices
which are two reachable and diagonal at the same time (these are j and d), two
diagonal vertices which are not 2-reachable (these are m and n) and one other
two-reachable vertex (c). This is altogether nine, hence |Rd

L′,2(x)| ≤ 9. It is

easy to check that Rd
L′,2(y) = {a, x, e, d, c, i, k, l, f}, so its size is 9. Other cases

of good pairs are treated similarly but |Rd
L′,2(x)| and |Rd

L′,2(y)| are always at
most ten.
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If (x, y, z) is a good triple such that x, y are of types (5,0) or (5,1) and z is of
type (6, 1), we extend L to L′ so that z <L′ x <L′ y (see Fig. 3). Then we have
Rd

L′,2(z) = {g, k, d, e, l, s, c, j, h, b}. Similarly Rd
L′,2(x) = {k, z, d, c, b, e, q, r, p}

and Rd
L′,2(y) = {h, g, z, k, j, m, n, k, o}, hence in any case the size is less than

10. If (x, y, z) is a good triple where z is of type (5,0) or (5,1) and x, y are of type
(6,0), then let x <L′ y <L′ z and it is easy to check that |Rd

L′,2(x)|, |Rd
L′,2(y)|,

|Rd
L′,2(z)| ≤ 11.

3 Degenerate diagonal 11-colorings

The following theorem is an improvement of Corollary 2 by one color for the non-
list version of degenerate and diagonal colorings. We have decided to include it
despite the fact that it is slightly longer since the methods used in the proof of
this result are different from the methods of the previous section.

Theorem 3 Every plane graph has a degenerate diagonal coloring with eleven

colors.

Proof. Supppose that the theorem is not true, and let G be a minimum
counterexample (with respect to the number of vertices).

Claim 0: G has no vertices of degree three.

Proof: Suppose on the contrary, that v ∈ V (G) is a vertex of degree three.
Since G is a minimum counterexample, there is a degenerate coloring of G − v,
such that no two opposite vertices are colored with the same color. A desired
coloring of G is obtained from the coloring of G−v, by coloring the vertex v with
a color different from the colors of its neigbors and its opposite vertices. Note
that this is always possible, since there are at most six neighbors or opposite
vertices of v, therefore in the set of eleven colors there are five possible colors
for v. This is a contradiction to the choice of G.

Claim 1: G has no vertices of degree four.

Proof: Suppose on the contrary, that v is a vertex of degree four. See Fig. 4.
Without loss of generality assume that ac is not an edge in G. Delete the vertex
v, add the edge ac, and call the obtained graph G∗. By the minimality of G,
there is a degenerate coloring of G∗ such that b and d are colored with distinct
colors (since they are opposite). This coloring induces a degenerate coloring
of G − v. In G there are at most four vertices opposite to v and there are
four vertices adjacent to v. We color the vertex v with a color different from
colors of the vertices adjacent or opposite to v. Since a, b, c and d are colored by
pairwise distinct colors, we infer from Observation 1 that the obtained coloring
is degenerate. Moreover, any two opposite vertices are colored with distinct
colors.
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cb

a d

v

cb

a d

Figure 4: A vertex of degree four

Let us now introduce some notation. If G has a separating 3-cycle, then
let C be a separating 3-cycle with the least number of vertices in its interior.
Otherwise let C be the 3-cycle on the boundary of the infinite face. Denote by C
the graph induced by vertices of C and those in the interior of C. If C contains
a 4-cycle or a 5-cycle with at least two vertices in its interior, then let D be the
one with the least number of vertices in its interior; otherwise, let D = C. Let
D be the graph induced by the vertices of D and those in the interior of D. We
shall denote by int(D) the set of internal vertices of D.

Claim 2: In C, no two internal vertices of degree five are adjacent.

Proof: Suppose on the contrary, that u, v are adjacent internal vertices of
degree five; see Fig. 5 for notation. Since C has no separating 3-cycles, ad, bd
and bf are not edges of G. Delete the vertices u and v, add the edges ad, bd and
bf , and call the obtained graph G∗ (see Fig. 5).

u v

c d f

a b e

c d f

a b e

Figure 5: Two internal adjacent vertices of degree five

Observe that b and c, and d and e are opposite in G∗, therefore there exist a
degenerate coloring of G∗ such that the vertex sets {a, b, c, d} and {b, d, e, f} are
colored by pairwise distinct colors. Since both u and v are vertices of degree 5,
there are at most 9 (5 on opposite and 4 on adjacent vertices) colors prohibited
for u and v. Therefore, a coloring of G can be obtained from the coloring of
G∗ by coloring u and v by distinct available colors. Observe that the obtained
coloring is degenerate (by Observation 1) and that any two opposite vertices are
colored by distinct colors.

Claim 3: An internal vertex u of D of degree 5 cannot be adjacent to three
internal vertices v, x, z of D of degree 6, where z is adjacent to x and v.
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e
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d
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c

d

g
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Figure 6: u, v, z and x are vertices of degrees 5, 6, 6 and 6, respectively

Proof: Suppose that u, v, z and x are internal vertices of D contradicting the
claim (see Fig. 6). We claim that vertices i and e are neither adjacent nor they
have a common neighbor.

Assume (for a contradiction) that they are adjacent and that the edge ei is
embeded as shown in Fig. 6. Consider the 4-cycle E = eiuve and observe that it
contains at least 2 vertices in the interior. By the minimality of D, the 4-cycle E
is not contained in D. So assume that t is a vertex of D contained in the interior
of E. If t is adjacent to both e and i, then tevuit is a 5-cycle contradicting the
minimality of D. Otherwise, there are two vertices of D contained in the interior
of E and a vertex t′ ∈ V (D) in the exterior of E; in this case t′ is adjacent to e
and i. Again we conclude that t′evuit′ is a 5-cycle, contradicting the minimality
of D. Analogous arguments prove that e and i cannot have a common neighbour.
Note also that the vertices a, b, . . . , i shown in Fig. 6 are pairwise distinct, since
otherwise D would contain a separating 3-cycle or a 4-cycle (different from D).
Moreover, the same arguments show that none of eh, ea, ge, ec, and ca is an
edge of G.

Let us delete vertices u, v, z and x and identify i and e. Further, add the
edges ge, ec and ca as shown in Fig. 6, and call the obtained graph G∗. As
proved above, G∗ is a graph without loops or multiple edges. By the minimality
of G, there is a degenerate coloring of G∗, such that each of the vertex sets
{i, a, b, c}, {c, d, e}, {e, f, g, h}, and {h, i} are colored by pairwise distinct colors
(note that i and b, and f and h are opposite in G∗). This coloring induces a
coloring of (a subgraph of) G, where i and e receive the same color. Since e and
i are at distance at least 3 in G, this coloring is degenerate and has opposite
vertices colored with distinct colors. We now color the vertices x, z, v and u in
this order. Since x is colored before u, v and z and the color of e equals the color
of i, we find that there are at most 9 prohibited colors for x; these are the colors
used for the vertices a, b, c, d, h, i and additional three opposite vertices distinct
from d, v and h. We color the vertex x with one of the two remaining colors
not prohibited for x. Next we color z, which has 10 prohibited colors; these are
the colors used for the vertices e, d, c, x, f, g, h, b and the two opposite vertices
with respect to edges dc and ed. Note that we have requested that color of z be
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different from g in order to be able to apply Observation 1 when coloring v. So
there is a color not prohibited for z, and we use this color to color it. Since i
and e have the same color, the color of x is distinct from the color of e. Hence,
the colors on the neighbors of z are all distinct. Therefore the coloring is still
degenerate. Next we color v, which has at most 10 prohibited colors: it has six
neighbours and six opposite vertices, but u is not yet colored, and e, i have the
same color. Finally, we color u, which has also at most 9 prohibited colors (the
colors of 5 opposite and 5 adjacent vertices, where two of them coincide, namely
the colors of e and i).

By applying Observation 1 at each step, we conclude that the resulting color-
ing of G is degenerate. It was constructed in such a way that all opposite vertices
have different colors. This contradiction to non-colorability of G completes the
proof of Claim 3.

Claim 4: An internal vertex u of D of degree 7 cannot be adjacent to three
internal vertices v, x, z of D of degree 5 and two vertices y and t of degree 6,
such that y is adjacent to v and x and t is adjacent to x and z.

Proof: Suppose that u, v, x, z, y, t are vertices of D contradicting the claim.
See Fig. 7 for additional notation. Since u, v, z and x are internal vertices of
D, we find that b and g are neither adjacent nor they have a common neighbor
(since otherwise one would find a 4 or 5-cycle with fewer vertices in the interior
when compared to D).

u

v

x

z

y t

a b

c

d

e
fgh

i

j

a

b

c

d

e
fgh

i

j

Figure 7: u, v, z and x are vertices of degrees 7, 5, 5 and 5, respectively

Let us remove vertices t, u, v, x, y, z. Then identify vertices b and g, add
edges ig, ia, fd and gd (or fc) and call the obtained graph G∗. The degenerate
coloring of G∗ induces a degenerate coloring of a subgraph of G, where b and
g receive the same color. We will color the vertices u, y, t, x, v, z in this order.
Observe that for the vertex u, there are at most 10 = 14 + 2− 5− 1 prohibited
colors: 14 colors for adjacent and opposite vertices, +2 colors for j and c (which
we want different from u to use Observation 1 when later coloring y and t), −5
for not yet colored adjacent vertices, and −1 because the color of g is equal to the
color of b. Similarly one can argue that for y there are at most 8 restrictions,
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and for t, v, x, z, there are at most 10 prohibited colors. Since we color with
11 colors and for each vertex u, y, t, x, v, z there are fewer than 11 prohibited
colors, we can extend the partial coloring of G induced by the coloring of G∗ to
a degenerate diagonal coloring of G.

Claim 4 implies that, if u is a vertex of degree 7 with three (non-adjacent)
neigbours v, x, z of degree 5 and distributed as shown in Fig. 7, then either y or
t has degree at least 7.

We complete the proof of the theorem by applying the discharging method
in D. We define the charge c(v) of a vertex v ∈ V (D) as

c(v) =

{

degD(v) − 6, if v ∈ int(D),
degD(v) − 3, if v ∈ V (D).

(3)

It follows from the Euler formula that
∑

v∈V (D)

(degD(v) − 6) = −6 − 2|D| ,

and herefrom
∑

v∈V (D)

c(v) =
∑

v∈V (D)

(degD(v) − 3) +
∑

v∈int(D)

(degD(v) − 6) = |D| − 6 . (4)

We now perform the discharging procedure as follows:

(i) Every vertex of D gives 1 to each neighbor of degree 5 in int(D).

(ii) Every vertex in int(D) of degree at least 8 gives 1/2 to each neighbor of
degree 5 in int(D).

(iii) Every vertex in int(D) of degree 7 with at most two neighbors of degree
5 in int(D), gives 1/2 to each neighbor of degree 5 in int(D).

(iv) A vertex u ∈ int(D) of degree 7 with three neighbors of degree 5 in int(D)
has its neighborhood as shown in Fig. 7, except that y and t are not
necessarily of degree 6.

(a) If deg(y) ≥ 7 and deg(t) ≥ 7, then u gives 1/2 to x and 1/4 to v
and z.

(b) If deg(y) ≥ 7 and deg(t) = 6, then u gives 1/2 to z and 1/4 to v
and x.

(c) If deg(y) = 6 and deg(t) ≥ 7, then u gives 1/2 to v and 1/4 to z
and x.

Note that a vertex of D cannot have degree ≤ 3 in D, since this would imply
that D is not a 3, 4 or 5-cycle with minimum number of vertices in its interior.
Moreover, if v is a vertex of D and has α > 1 neighbors of degree 5 in int(D),
then the degree of v in D is at least 2α + 1, by Claim 2. This implies that
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every vertex of D retains (after discharging) at least 0 of its charge. Also, by
Claim 2, a vertex of degree α ≥ 7 has at most

⌊

α
2

⌋

neighbors of degree 5. So we
infer from the discharging rules that every vertex of int(D) of degree ≥ 7 has
non-negative charge after the discharging procedure. Since internal vertices of
degree 6 keep their charge at zero, and there are no vertices of degree less than
5, the only candidates for having negative charge are internal vertices of degree
5.

Observe that every vertex v ∈ int(D) of degree 5 is either adjacent to a
vertex of D or it has, by Claims 0, 1, 2 and 3, at least two neighbors of degree
≥ 7. If v has 4 or 5 neighbors of degree ≥ 7, then after discharging, its charge
will be at least 0, since every vertex of degree ≥ 7 gives at least 1/4 to each
of its neighbors of degree 5. If v has three neighbors of degree ≥ 7 and one of
them is not of degree 7 or does not have three neighbors of degree 5, then this
neighbor will give 1/2 to v and thus v will have charge at least 0. Otherwise v
has three neighbors of degree 7, and each of them has three neighbors of degree
5. It follows from the rule (iv) that one of the neighbors of v will give 1/2 to
v, so the final charge of v will be non-negative. In the remaining case, where
v has exactly two neighbors of degree ≥ 7, we see that these two neighbors are
not adjacent, by Claim 3. Therefore the discharging rule (iv) implies that both
of them give 1/2 to v. Thus, the final charge at v is non-negative.

This discharging process proves that the left side of equation (4) is non-
negative, while the right side is negative, a contradiction. This completes the
proof of Theorem 3.

Finally we turn to the proof of the diagonal list coloring result. Observe
that identification of vertices cannot be done with list colorings, so the proofs
of Claims 3 and 4 from the above proof cannot be extended to list colorings.
We next give a different proof of Corollary 2.

The proof is similar to the proof of Theorem 3. We start by assuming the
contrary, and let G be a minimum counterexample. Define C, C, D and D the
same way as in the proof of Theorem 3. The proofs of Claims 0, 1 and 2 from
the proof of Theorem 3 also hold for list colorings.

Claim 5: An internal vertex of D of degree 5 cannot be adjacent to two
adjacent internal vertices of D of degree 6.

Proof: Suppose on the contrary, that u, v, z are vertices of degree 5, 6 and
6, respectively. See Fig. 8 for further notation. We do the reduction as follows.

Delete the vertices u, v and z and add edges be, bd, he and hf . Note that these
are not edges of G, since D has no separating 3-cycles. Let us call the obtained
graph G∗. The lists for vertices of G∗ are inherited G. By the minimality
of G, there is a degenerate list coloring of G∗, such that b, c, d, e and e, f, g, h
(respectively) are colored by pairwise distinct colors (since e and c, and e and
g are opposite in G∗). This coloring induces a coloring of a subgraph of G. We
next color v, z and u (in this order). Observe that v and z have at most 11
prohibited colors (6 opposite vertices and 4 resp. 5 neighbors, and the color of c
is prohibited for v); the vertex u is of degree 5, thus it has at most 10 prohibited
colors. Thus, for all three remaining vertices there is a free color so that we
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Figure 8: u, v and z are vertices of degree 5, 6 and 6, respectively

can extend the list coloring of G∗ to a degenerate list coloring of G; this is a
contradiction proving the claim.

Finally, the following dicharging procedure leads to a contradiction.

(i) Every vertex of D gives 1 to each neighbor of degree 5 in int(D).

(ii) Every vertex of degree at least 7 of int(D), gives 1/3 to each neighbor of
degree 5 in int(D).

Since every vertex of degree 5 of int(D) has (by Claims 0, 1, 2, and 5) at least
three neighbors of degree ≥ 7 or it has a nighbor in D, and every vertex of
degree α ≥ 7 of int(D) has at most

⌊

α
2

⌋

neighbors of degree 5 in int(D), we
conclude that the left side of equation (4) is non-negative, while the right side
is negative, a contradiction.
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