CROSSING-CRITICAL GRAPHS
 WITH LARGE MAXIMUM
 DEGREE

Zdeněk Dvořák Bojan Mohar

ISSN 1318-4865

Ljubljana, July 9, 2009

Crossing-critical graphs with large maximum degree

Zdeněk Dvořák* ${ }^{* \dagger}$
Department of Mathematics
Simon Fraser University
Burnaby, B.C. V5A 1S6
email: rakdver@kam.mff.cuni.cz

Bojan Mohar ${ }^{\ddagger}{ }^{\ddagger}$
Department of Mathematics
Simon Fraser University
Burnaby, B.C. V5A 1S6
email: mohar@sfu.ca

March 14, 2009

Abstract

A conjecture of Richter and Salazar about graphs that are critical for a fixed crossing number k is that they have bounded bandwidth. A weaker well-known conjecture is that their maximum degree is bounded in terms of k. In this note we disprove these conjectures for every $k \geq 171$, by providing examples of k-crossing-critical graphs with arbitrarily large maximum degree.

A graph is k-crossing-critical (or simply k-critical) if its crossing number is at least k, but every proper subgraph has crossing number smaller than k. Using the Excluded Grid Theorem of Robertson and Seymour [8], it is not hard to argue that k-crossing-critical graphs have bounded tree-width [2]. However, all known constructions of crossing-critical graphs suggested that their structure is "path-like". Salazar and Thomas conjectured (cf. [2]) that they have bounded path-width. This problem was solved by Hliněný [3], who proved that the path-width of k-critical graphs is bounded above by $2^{f(k)}$, where $f(k)=\left(432 \log _{2} k+1488\right) k^{3}+1$.

In the late 1990's, two other conjectures were proposed (see [7] or [6]).

[^0]Conjecture 1. For every positive integer k, there exists an integer $D(k)$ such that every k-crossing-critical graph has maximum degree less than $D(k)$.

The second conjecture was proposed as an open problem in the 1990's by Carsten Thomassen and formulated as a conjecture by Richter and Salazar [7].

Conjecture 2. For every positive integer k, there exists an integer $B(k)$ such that every k-crossing-critical graph has bandwidth at most $B(k)$.

Conjecture 2 would be a strengthening of Hliněný's theorem about bounded path-width and would also imply Conjecture 1.

Hliněný and Salazar [5] recently made a step towards Conjecture 1 by proving that k-crossing-critical graphs cannot contain a subdivision of $K_{2, N}$ with $N=30 k^{2}+200 k$.

In this note we give examples of k-crossing-critical graphs of arbitrarily large maximum degree, thus disproving both Conjectures 1 and 2.

A special graph is a pair (G, T), where G is a graph and $T \subseteq E(G)$. The edges in the set T are called thick edges of the special graph. A drawing of a special graph (G, T) is a drawing of G such that the edges in T are not crossed. The crossing number $\operatorname{cr}(G, T)$ of a special graph is the minimum number of edge crossings in a drawing of (G, T) in the plane. (We set $\operatorname{cr}(G, T)=\infty$ if a thick edge is crossed in every drawing of G.) An edge $e \in E(G) \backslash T$ is k-critical if $\operatorname{cr}(G, T) \geq k$ and $\operatorname{cr}(G-e, T)<k$. Let $\operatorname{crit}_{k}(G, T)$ be the set of k-critical edges of (G, T). If $T=\emptyset$, then we write just $\operatorname{cr}(G)$ for the crossing number of G and $\operatorname{crit}_{k}(G)$ for the set of k-critical edges of G. Note that the graph G is k-critical if $\operatorname{crit}_{k}(G)=E(G)$.

A standard result (see, e.g., [1]) is that we can eliminate the thick edges by replacing them with sufficiently dense subgraphs. (In fact, one can replace every edge $x y$ by $t=\operatorname{cr}(G, T)+1$ parallel edges or by $K_{2, t}$ if multiple edges are not desired.)

Lemma 3. For every special graph (G, T) with $\operatorname{cr}(G, T)<\infty$ and for any k, there exists a graph $\tilde{G} \supseteq G$ such that $\operatorname{cr}(G, T)=\operatorname{cr}(\tilde{G})$ and $\operatorname{crit}_{k}(G, T) \subseteq$ $\operatorname{crit}_{k}(\tilde{G})$.

Furthermore, note the following:
Lemma 4. Let k be an integer. Any graph G with $\operatorname{cr}(G) \geq k$ contains a k-crossing-critical subgraph H such that $\operatorname{crit}_{k}(G) \subseteq E(H)$.

Proof. For a contradiction, suppose that G is a smallest counterexample. If G were k-critical, then we would set $H=G$, hence G contains a non- k critical edge e. It follows that $\operatorname{cr}(G-e) \geq k$. Let f be a k-critical edge in
G, i.e., $\operatorname{cr}(G-f)<k$. As $\operatorname{cr}((G-e)-f) \leq \operatorname{cr}(G-f)<k, f$ is a k-critical edge in $G-e$. Therefore, $\operatorname{crit}_{k}(G) \subseteq \operatorname{crit}_{k}(G-e)$. Since G is the smallest counterexample, $G-e$ has a k-critical subgraph H with $\operatorname{crit}_{k}(G-e) \subseteq E(H)$. However, $H \subseteq G$ and $\operatorname{crit}_{k}(G) \subseteq E(H)$, which is a contradiction.

Let us now proceed with the main result. Two paths P_{1} and P_{2} in a special graph are almost edge-disjoint if all the edges in $E\left(P_{1}\right) \cap E\left(P_{2}\right)$ are thick.

Lemma 5. For any d, there exists a special graph (G, T) such that $\operatorname{crit}_{171}(G, T)$ contains at least d edges incident with one of the vertices of G.

Proof. Let (G, T) be the special graph drawn as follows: we start with $d+1$ thick cycles $C_{0}, C_{1}, \ldots, C_{d}$ intersecting in a vertex v, i.e., $C_{i} \cap C_{j}=\{v\}$ for $0 \leq i<j \leq d$. Their lengths are $\left|C_{0}\right|=28,\left|C_{d}\right|=24$ and $\left|C_{i}\right|=7$ for $1 \leq$ $i<d$. They are drawn in the plane so that all their vertices are incident with the unbounded face and their clockwise order around v is $C_{0}, C_{1}, \ldots, C_{d}$. See Figure 1 illustrating the case $d=5$. Let $C_{0}=v a_{1} a_{2} \ldots a_{19} b_{1} b_{2} b_{3} c_{1}^{0} c_{2}^{0} \ldots c_{5}^{0}$, $C_{d}=v t^{d} b_{3}^{\prime} b_{2}^{\prime} b_{1}^{\prime} a_{1}^{\prime} a_{2}^{\prime} \ldots a_{19}^{\prime}$ and $C_{i}=v t^{i} c_{1}^{i} c_{2}^{i} \ldots c_{5}^{i}$ for $1 \leq i<d$. Furthermore, add d vertices s^{1}, \ldots, s^{d} adjacent to v. The clockwise cyclic order of the neighbors of v is $a_{1}, c_{5}^{0}, s^{1}, t^{1}, c_{5}^{1}, s^{2}, t^{2}, c_{5}^{2}, \ldots, s^{d-1}, t^{d-1}, c_{5}^{d-1}, s^{d}, t^{d}, a_{19}^{\prime}$. For $1 \leq i \leq d$, add thick cycles K_{i} whose vertices in the clockwise order are t^{i}, s^{i}, and five new vertices $\tilde{c}_{5}^{i-1}, \tilde{c}_{4}^{i-1}, \ldots, \tilde{c}_{1}^{i-1}$. Finally, add the following edges: $c_{j}^{i} \tilde{c}_{j}^{i}$ for $0 \leq i<d$ and $1 \leq j \leq 5, a_{i} a_{i}^{\prime}$ for $1 \leq i \leq 19$ and $b_{i} b_{i}^{\prime}$ for $1 \leq i \leq 3$. As described, $T=\bigcup_{i=0}^{d} E\left(C_{i}\right) \cup \bigcup_{i=1}^{d} E\left(K_{i}\right)$. Let $M=\left\{a_{1} a_{1}^{\prime}, a_{2} a_{2}^{\prime}, \ldots, a_{19} a_{19}^{\prime}, b_{1} b_{1}^{\prime}, b_{2} b_{2}^{\prime}, b_{3} b_{3}^{\prime}\right\}$.

This drawing \mathcal{G} of (G, T) has $\binom{19}{2}=171$ crossings, as the edges $a_{i} a_{i}^{\prime}$ and $a_{j} a_{j}^{\prime}$ intersect for each $1 \leq i<j \leq 19$, and there are no other crossings. Let us show that $\operatorname{cr}(G, T)=171$. Let \mathcal{G}^{\prime} be an arbitrary drawing of (G, T), and for a contradiction assume that it has less than 171 crossings. Let us first observe that every thick cycle C_{i} and K_{j} is an induced nonseparating cycle of G. Therefore it bounds a face of \mathcal{G}^{\prime}. Consider the cyclic clockwise order of the neighbors of v according to the drawing \mathcal{G}^{\prime}. For each cycle $C_{i}(0 \leq i \leq d)$, the two edges of C_{i} incident with v are consecutive in this order, since C_{i} bounds a face. Without loss on generality, we assume that each cycle C_{i} bounds a face distinct from the unbounded one. If the cyclic order of the vertices around the face C_{i} is the same as in the drawing \mathcal{G}, we say that C_{i} is drawn clockwise, otherwise it is drawn anti-clockwise. We may assume that C_{0} is drawn clockwise. If C_{d} were drawn clockwise as well, then each pair of edges $a_{i} a_{i}^{\prime}$ and $a_{j} a_{j}^{\prime}$ with $1 \leq i<j \leq 19$ would intersect, and the drawing \mathcal{G}^{\prime} would have at least 171 crossings. Therefore, C_{d} is drawn anti-clockwise. It

Figure 1: A special graph with critical edges $v s^{i}$
follows that the edges $a_{i} a_{i}^{\prime}$ and $b_{j} b_{j}^{\prime}$ intersect for $1 \leq i \leq 19$ and $1 \leq j \leq 3$, and the edges $b_{i} b_{i}^{\prime}$ and $b_{j} b_{j}^{\prime}$ intersect for $1 \leq i<j \leq 3$, giving 60 crossings. For $1 \leq i \leq 5$, let P_{i} be the path $c_{i}^{0} \tilde{c}_{i}^{0} \tilde{c}_{i-1}^{0} \ldots \tilde{c}_{1}^{0} t^{1} c_{1}^{1} c_{2}^{1} \ldots c_{i}^{1} \tilde{c}_{i}^{1} \ldots \tilde{c}_{1}^{1} t^{2} \ldots t^{d}$. These paths are mutually almost edge-disjoint and each of them intersects all edges of M in the drawing \mathcal{G}^{\prime}, thus contributing at least 110 crossings all together. Therefore, the drawing \mathcal{G}^{\prime} has at least 170 crossings. Since we assume that this drawing has less than 171 crossings, we conclude that there are no other crossings.

The cycle $v a_{1} a_{1}^{\prime} a_{2}^{\prime} \ldots a_{19}^{\prime}$ splits the plane into two regions R_{1} and R_{2}, such that R_{1} contains the face bounded by C_{0} and R_{2} contains the face bounded by C_{d}. For $j=1,2$, let A_{j} be the set of cycles $C_{i}(0 \leq i \leq d)$ such that the face bounded by C_{i} lies in the region R_{j}. As P_{1} intersects the edge $a_{1} a_{1}^{\prime}$ only once, $A_{1}=\left\{C_{0}, C_{1}, \ldots, C_{k-1}\right\}$ and $A_{2}=\left\{C_{k}, C_{k+1}, \ldots, C_{d}\right\}$ for some k with $1 \leq k \leq d$. As the path P_{1} does not intersect itself, all cycles in A_{1} are drawn clockwise and their clockwise order around v is C_{0}, C_{1}, \ldots, C_{k-1}. Similarly, all cycles in A_{2} are drawn anti-clockwise and their clockwise order around v is $C_{d}, C_{d-1}, \ldots, C_{k}$.

Let us now consider the cycle K_{k}. Since the edges $c_{4}^{k-1} \tilde{c}_{4}^{k-1}$ and $c_{5}^{k-1} \tilde{c}_{5}^{k-1}$ do not intersect, the thick path $c_{5}^{k-1} v t^{k} s^{k} \tilde{c}_{5}^{k-1}$ is not intersected, and C_{k-1} is drawn clockwise, K_{k} is drawn clockwise as well. Since C_{k} lies in the region R_{2}, the vertex t^{k} and thus the whole thick cycle K_{k} lie in R_{2}. However, that means that the edge $s^{k} v$ intersects either the path P_{1} or the edge $a_{1} a_{1}^{\prime}$, which is a contradiction. We conclude that $\operatorname{cr}(G, T)=171$.

On the other hand, $\operatorname{cr}\left(G-v s^{k}, T\right)<171$, for $1 \leq k \leq d$ (in fact, $\left.\operatorname{cr}\left(G-v s^{k}, T\right)=170\right)$. To see that, consider the drawing of $\left(G-v s^{k}, T\right)$ in which the cycles $C_{0}, C_{1}, \ldots, C_{k-1}$ are drawn clockwise, the cycles C_{k}, C_{k+1}, \ldots, C_{d} are drawn anti-clockwise, and the cyclic order of the neighbors of v is $a_{1} c_{5}^{0} s^{1} t^{1} c_{5}^{1} \ldots s^{k-1} t^{k-1} c_{5}^{k-1} a_{19}^{\prime} t^{d} c_{5}^{d-1} s^{d-1} t^{d-1} \ldots c_{5}^{k} t^{k}$. The intersections of this drawing are of edges $a_{i} a_{i}^{\prime}$ with $b_{j} b_{j}^{\prime}$ for $1 \leq i \leq 19$ and $1 \leq j \leq 3$, the edges $b_{i} b_{i}^{\prime}$ with $b_{j} b_{j}^{\prime}$ for $1 \leq i<j \leq 3$, and the edges $c_{i}^{k-1} \tilde{c}_{i}^{k-1}$ with all edges of M for $1 \leq i \leq 5$. Therefore, the edge $v s^{k}$ is 171-critical for each k, so v is incident with d critical edges.

We are ready for our main result.
Theorem 6. For every $k \geq 171$ and every d, there exists a k-crossingcritical graph H containing a vertex of degree at least d.

Proof. Let (G, T) be the special graph constructed in Lemma 5. By Lemma 3, there exists a graph $H^{\prime} \supseteq G$ such that $\operatorname{cr}\left(H^{\prime}\right)=\operatorname{cr}(G, T) \geq 171$ and
$\operatorname{crit}_{171}(G, T) \subseteq \operatorname{crit}_{171}\left(H^{\prime}\right)$. Let H be the 171-critical subgraph of H^{\prime} obtained by Lemma 4. As $\operatorname{crit}_{171}(G, T) \subseteq \operatorname{crit}_{171}\left(H^{\prime}\right) \subseteq E(H), H$ contains at least d edges incident with one vertex, hence $\Delta(H) \geq d$. For $k>171$ we add to $H k-171$ copies of the graph K_{5} in order to get a k-crossing-critical graph.

Actually, in the proof of Theorem 6, we can take $t=\left\lfloor\frac{k}{171}\right\rfloor$ copies of the graph H and $k-171 t$ copies of K_{5}. This gives rise to a k-critical graph with $t=\Omega(k)$ vertices of (arbitrarily) large degree. We conjecture that this is best possible in the following sense:

Conjecture 7. For every positive integer k there exists an integer $D=D(k)$ such that every k-crossing-critical graph contains at most k vertices whose degree is larger than D.

It is not even obvious if there exist k-crossing-critical graphs with arbitrarily many vertices of degree more than 6 . Surprisingly, such examples have been constructed recently by Hliněný [4]. His examples may contain arbitrarily many vertices of any even degree smaller than $2 k-1$.

References

[1] M. DeVos, B. Mohar, R. Šamal, Unexpected behaviour of crossing sequences, submitted.
[2] J.F. Geelen, R.B. Richter, G. Salazar, Embedding grids in surfaces, European J. Combin. 25 (2004) 785-792.
[3] P. Hliněný, Crossing-number critical graphs have bounded path-width, J. Combin. Theory Ser. B 88 (2003) 347-367.
[4] P. Hliněný, New infinite families of almost-planar crossing-critical graphs, Electr. J. Combin. 15 (2008) \#R102.
[5] P. Hliněný, G. Salazar, Stars and bonds in crossing-critical graphs, preprint, 2008.
[6] B. Mohar, J. Pach, B. Richter, R. Thomas, C. Thomassen, Topological graph theory and crossing numbers, Report on the BIRS 5-Day Workshop, 2007, 18 pages. http://www.birs.ca/workshops/2006/06w5067/report06w5067.pdf
[7] R.B. Richter, G. Salazar, A survey of good crossing number theorems and questions, to appear.
[8] N. Robertson and P. D. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory, Ser. B 41 (1986) 92-114.

[^0]: *Supported in part through a postdoctoral position at Simon Fraser University.
 ${ }^{\dagger}$ On leave from: Institute of Theoretical Informatics, Charles University, Prague, Czech Republic.
 ${ }^{\ddagger}$ Supported in part by the Research Grant P1-0297 of ARRS (Slovenia), by an NSERC Discovery Grant (Canada) and by the Canada Research Chair program.
 ${ }^{\S}$ On leave from: IMFM \& FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.

