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Abstract

Wilf’s eigenvalue upper bound on the chromatic number is extended
to the setting of digraphs. The proof uses a generalization of Brooks’
Theorem to digraph colorings.
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1 Introduction

The purpose of this note is two-fold. Firstly, a classical theorem of Wilf [11]
providing an upper bound on the chromatic number of a graph in terms of
its largest eigenvalue is extended to digraphs. The first impression might be
that such an extension is impossible since every transitive tournament (this
is an acyclic orientation of a complete graph) has all eigenvalues equal to
zero. However, with the right definition of digraph colorings, as introduced
by Neumann-Lara [10] and by Bokal et al. [2], this becomes reality. And
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this is also our second motivation – showing that the chromatic number of
digraphs introduced in [2, 10] is a natural concept with close ties to other
branches of graph theory and combinatorics.

In this note we treat directed graphs (shortly digraphs). They are always
assumed to be finite and simple, i.e. no loops and no multiple edges in the
same direction are allowed. However, it is allowed to have two oppositely ori-
ented edges joining the same pair of vertices. We use standard terminology
and notation and refer to [1] for an extensive treatment of digraphs.

We use xy to denote the edge joining vertices x and y, where x is the
initial vertex and y is the terminal vertex of the edge xy. For a digraph D
and v ∈ V (D), e ∈ E(D), we denote by D − v and D − e the subdigraph
of D obtained by deleting v and the subdigraph obtained by removing e,
respectively. If e = uv is not an edge of D, then we denote by D + e the
digraph obtained from D by adding the edge e. For a vertex v ∈ V (D) we
let deg+

D(v) and deg−D(v) denote the out-degree (the number of edges whose
initial vertex is v) and the in-degree (the number of edges whose terminal
vertex is v) of v in D, respectively. We denote by Δ+(D) and δ+(D) the
maximum and the minimum out-degree of D, respectively. Similarly, Δ−(D)
and δ−(D) denote the maximum and the minimum in-degree of D. If D′ is
a subdigraph of D, we write D′ ⊆ D. Every undirected graph G determines
a bidirected graph D(G) that is obtained from G by replacing each edge with
two oppositely directed edges joining the same pair of vertices.

For a digraph D, we let A(D) denote the adjacency matrix of D, and
let ρ(G) denote its spectral radius, the largest modulus of an eigenvalue
of A(D). It follows from the Perron-Frobenius theorem (see, e.g. [7]) that
ρ(D) is an eigenvalue of D and that there is a corresponding eigenvector
whose coordinates are all non-negative. The spectra of undirected graphs
are well treated in the literature, see [5, 8], but there is not much known
about digraphs. Recently, Brualdi wrote a stimulating survey on this topic
[3], and we refer the reader to that article for additional information.

2 Dichromatic number and critical digraphs

Let D be a digraph. A vertex set A ⊆ V (D) is acyclic if the induced
subdigraph D[A] is acyclic. A partition of V (D) into k acyclic sets is called
a k-coloring of D. The minimum integer k for which there exists a k-coloring
of D is the chromatic number χ(D) of the digraph D.

The above definition of the chromatic number of a digraph was first
introduced by Neumann-Lara [10]. The same notion was independently
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introduced much later by the author when considering the circular chromatic
number of weighted (directed or undirected) graphs [9]. The chromatic
number of digraphs was further investigated in [2].

Clearly, if G is an undirected graph, and D is the digraph obtained from
G by replacing each edge with the pair of oppositely directed edges joining
the same pair of vertices, then χ(D) is the same as the usual chromatic
number of the undirected graph G since any two adjacent vertices in D
induce a directed cycle of length two.

A digraph D is strongly connected if for every x, y ∈ V (D) there ex-
ists a directed path from x to y and a directed path from y to x. Vertices
of D can be partitioned into strongly connected components (the maximal
strongly connected subdigraphs). Colorings of different strongly connected
components cannot produce a monochromatic cycle. This implies that the
study of colorings of digraphs can be restricted to strongly connected di-
graphs.

Lemma 2.1 Let D1, . . . ,Dk be the strongly connected components of a di-
graph D. Then χ(D) = max{χ(Di) | 1 ≤ i ≤ k}.

Suppose that v ∈ V (D) is a vertex such that χ(D−v) < χ(D). Then we
say that v is a critical vertex . If every vertex of D is critical and χ(D) = k,
then we say that D is a k-critical digraph. Note that every digraph whose
chromatic number is ≥ k contains an induced subgraph that is k-critical.

Lemma 2.2 If v is a critical vertex in a digraph D whose chromatic number
is k, then deg+

D(v) ≥ k − 1 and deg−D(v) ≥ k − 1.

Proof. If deg+
D(v) ≤ k − 2, then a (k − 1)-coloring of D − v uses at most

k− 2 colors on the out-neighbors of v. By setting the color of v to be one of
the colors that are not used on the out-neighbors of v, we obtain a (k − 1)-
coloring of D, a contradiction. The proof for the in-degree bound is the
same.

The following result is a generalization of the Brooks Theorem char-
acterizing undirected graphs whose chromatic number is larger than the
maximum degree.

Theorem 2.3 Suppose that D is a k-critical digraph in which each vertex
v satisfies deg+

D(v) = deg−D(v) = k − 1. Then one of the following cases
occurs:
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(a) k = 2 and D is a directed cycle of length n ≥ 2.

(b) k = 3 and D is a bidirected cycle of odd length n ≥ 3.

(c) D is a bidirected complete graph of order k.

Proof. The proof is trivial for k ≤ 2, so we will assume that k ≥ 3. By
Lemma 2.1, D is strongly connected. If D is a bidirected graph, then we
have (b) or (c) by the Brooks Theorem. So we may assume that v1v2 is an
edge of D such that v2v1 /∈ E(D). Let U be the set of all out-neighbors
of v1. Suppose that U induces the bidirected complete graph on k − 1
vertices. Then we consider the set W of out-neighbors of v2. Note that
W = U ∪ {z} \ {v2}, where z �= v1. Since k ≥ 3, U ∩ W is non-empty. The
in-neighbors of every vertex in U ∩ W are v1 and k − 2 vertices in U , so z
is not among them. This shows that the out-neighbors of v2 do not induce
a bidirected complete graph. This proves that there is a vertex u whose
out-neighborhood contains two vertices u1, u2 such that u1u2 /∈ E(D). Let
n = |D| and set un := u.

Let us now consider the digraph D′ = D−un and observe that u1, u2 are
both out-neighbors of un. Another observation is that un has an in-neighbor
that is different from u1, u2. This implies that D′ has a vertex un−1 �= u1, u2

whose outdegree is less than k−1 (if n ≥ 4). We now repeat the process with
the digraph obtained after removing the vertex un−1, etc. In the ith step (i =
n−1, n−2, . . . , 3), we find a vertex ui �= u1, u2 whose outdegree or indegree
is less than k − 1 in the current digraph Di = D − {ui+1, ui+2, . . . , un}. We
end up with the vertex list u1, . . . , un and now we color the vertices starting
with u1 and u2, giving them both color 1. When we are about to color ui, we
already have a coloring of u1, . . . , ui−1 and since ui has in- or outdegree less
than k − 1, there is an available color that we can use on ui thus obtaining
a (k − 1)-coloring of Di. (If color t does not appear among the in-neighbors
of ui or among the out-neighbors of ui, then giving that color to ui cannot
create a directed cycle.) This argument works all the way to un, but un

has in- and outdegree equal to k − 1. However, it has two out-neighbors,
namely u1 and u2, of the same color. Therefore there is a color that does
not occur among the out-neighbors of un, and we can use that color to get
a (k − 1)-coloring of D. This contradiction to k-criticality of D completes
the proof.

Let us observe that graphs in (a)–(c) in Theorem 2.3 are k-critical and
that cases (b) and (c) are the same as the cases from Brooks Theorem
concerning colorings of undirected graphs.
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3 The spectral radius of digraphs

In this section we review basic properties of the spectral radius. These
results are well known (cf., e.g., [7]), but we include them for completeness.
The basic property of the spectral radius is its monotonicity [7, Theorem
1.8.18].

Lemma 3.1 If A is a non-negative matrix and A ≤ B (element-wise), then
ρ(A) ≤ ρ(B).

Corollary 3.2 If D′ ⊆ D, then ρ(D′) ≤ ρ(D).

If A is a symmetric matrix, then its spectral radius is equal to the numer-
ical radius of A. However, this property does not hold for non-symmetric
matrices. For non-negative matrices one can use the following property for a
similar effect: If A is a non-negative matrix and x ≥ 0 is a non-negative vec-
tor such that Ax ≥ αx for some α ∈ R, then ρ(A) ≥ α. An easy consequence
of this fact is the following

Lemma 3.3 For every digraph D, we have ρ(D) ≥ min{deg+
D(v) | v ∈

V (D)} and ρ(D) ≥ min{deg−D(v) | v ∈ V (D)}.

A matrix A of order n is irreducible if (A + I)n−1 has all components
positive. For the adjacency matrix of a digraph, this is easily seen to be
equivalent to the condition that the digraph is strongly connected. This is
the reason that the spectral radius of digraphs can be studied on its strongly
connected components.

Lemma 3.4 Let D1, . . . ,Dk be the strongly connected components of a di-
graph D. Then ρ(D) = max{ρ(Di) | 1 ≤ i ≤ k}.

If A(D) is is irreducible, then ρ = ρ(D) is an eigenvalue of A(D) whose
algebraic and geometric multiplicity is one, and its right eigenvector x and its
left eigenvector y are both positive, cf. [7, Theorem 8.4.4]. This fact is used
in the Perron-Frobenius theory to derive the following stronger monotonicity
property of the spectral radius.

Lemma 3.5 Let D be a strongly connected digraph and let D′ be a proper
subdigraph of D. Then ρ(D′) < ρ(D).
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4 Chromatic number and eigenvalues

The following theorem is an analogue of the Wilf bound [11] for the usual
chromatic number of the graph. Wilf [11] also characterized when equality
occurs. For undirected graphs, one can use Brooks theorem, but in the case
of digraphs we shall make use of the extension provided by Theorem 2.3.

Theorem 4.1 Let D be a loopless digraph. Then

χ(D) ≤ ρ(A(D)) + 1. (1)

If D is strongly connected, then the equality holds in (1) if and only if D is
one of the digraphs listed in cases (a)–(c) in Theorem 2.3 for k = χ(D).

Proof. By the monotonicity of the spectral radius, we may assume that
D is simple. Let k = χ(D) and let us consider a k-critical subdigraph D′ of
D. Since the spectral radius is monotone, ρ(D′) ≤ ρ(D), and it suffices to
prove that ρ(D′) ≥ k − 1. However, this is an easy consequence of Lemma
2.2 and Lemma 3.3.

To prove the second part of the theorem, let us observe that the above
proof combined with Lemma 3.3 and Lemma 3.5 shows that equality occurs
if and only if D is k-critical and the indegree and the outdegree of every
vertex is equal to k − 1. Now, Theorem 2.3 applies.

Hoffman [6] and Cvetković [4] found lower bounds on the chromatic
number of a graph expressed in terms of the eigenvalues of its adjacency
matrix. It would be interesting to figure out if their bounds also apply to
the setting of the chromatic number of digraphs.
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