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Abstract

We consider embeddings of graphs in the 3-space R
3 (all embeddings in

this paper are assumed to be piecewise linear). An embbeding of a graph in
R

3 is linkless if every pair of disjoint cycles forms a trivial link (in the sense
of knot theory), i.e., each of the two cycles (in R

3) can be embedded in a
closed topological 2-disk disjoint from the other cycle. Robertson, Seymour and
Thomas [38] showed that a graph has a linkless embedding in R

3 if and only if
it does not contain as a minor any of seven graphs in Petersen’s family (graphs
obtained from K6 by a series of YΔ and ΔY operations). They also showed that
a graph is linklessly embeddable in R

3 if and only if it admits a flat embedding
into R

3, i.e. an embedding such that for every cycle C of G, there exists a closed
disk D ⊆ R

3 with D ∩ G = ∂D = C. Clearly, every flat embeddings is linkless,
but the converse is not true.

We consider the following algorithmic problem associated with embeddings
of graphs in R

3:
Flat and Linkless Embedding

Input: A graph G.
Output: Either detect one of Petersen’s family graphs as a minor in G or return
a flat (and linkless) embedding in the 3-space.

The first conclusion is a certificate that the given graph has no linkless and
no flat embeddings. In this paper we give an O(n2) algorithm for this problem.
Our algorithm does not depend on minor testing algorithms.
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1 Introduction

1.1 Embedding graphs in the 3-space

A seminal result of Hopcroft and Tarjan [13] from 1974 is that there is a linear
time algorithm for testing planarity of graphs. This is just one of a host of results
on embedding graphs in surfaces. These problems are of both practical and the-
oretical interest. The practical issues arise, for instance, in problems concerning
VLSI, and also in several other applications of “nearly” planar networks, as
planar graphs and graphs embedded in low genus surfaces can be handled more
easily. Theoretical interest comes from the importance of the genus parameter
of graphs and from the fact that graphs of bounded genus naturally generalize
the family of planar graphs and share many important properties with them.

In [32] Robertson and Seymour proved that for any fixed graph H there is a
cubic-time algorithm for testing whether H is a minor of a given graph G. This
implies that there is an O(n3) algorithm for deciding membership in any minor-
closed family of graphs, because by their seminal result in [33], such a family can
be characterized by a finite collection of excluded minors. However, this theorem
is not explicit. More precisely, the graph minor theorem is not constructive; in
general, we do not know how to obtain an excluded minor characterization of
a given minor-closed family of graphs. In addition, Robertson and Seymour’s
algorithm solves the decision problem but it is not apparent how to construct,
e.g., an embedding from their algorithm.

Recently, some apparently new and nontrivial linear time algorithms con-
cerning graph embeddings have appeared: one is concerned with drawing a given
graph into the plane with at most k crossings (for fixed k) [15], and another one
is concerned with embedding a given graph into a surface with face-width at
least k with an application to the graph isomorphism problem [16]. In addition,
Mohar [24, 25] gave a linear time algorithm for testing embeddability of graphs
in an arbitrary surface and constructing an embedding, if one exists. This is one
of the deepest results in this area, and it generalizes linear time algorithms for
testing planarity and constructing a planar embedding if one exists [4, 13, 43].
This algorithm is further simplified in [17].

In this paper, we are interested in embedding a graph in the 3-space, where
all embeddings are piecewise linear. There are many minor-closed families of
graphs that arise in the study of topological problems. An illustrative example is
the class of likelessly embeddable graphs. We call a pair of vertex disjoint cycles
drawn in the 3-space R

3 un-linked if there is a 2-dimensional disc in R
3 that

contains the first cycle and is disjoint from the other one. Otherwise, the two
cycles are linked . Intuitively, if two cycles in R

3 are linked, we can not contract
one into a single point without cutting the other. By a linkless embedding of a
graph we mean an embedding of a graph in R

3 in such a way that no two vertex-
disjoint cycles are linked. Linkless embeddings are first studied by Conway and
Gordon [8]. An algorithmic problem concerning linkless embeddings is studied
by Motwani, Raghunathan and Saran [27], who gave a partial result for linkless
embeddings and its algorithmic applications.
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Robertson, Seymour and Thomas [38] proved that G is linklessly embeddable
in the 3-space if and only if G does not have any graph in the Petersen family
as a minor. By the Petersen family we mean the graphs that can be obtained
from K6 by a series of YΔ and ΔY operations. See Figure 1 (in the appendix)
for drawings of these graphs on the projective plane; note that the third one,
K4,4 − e, cannot be embedded in the projective plane. In the same paper [38]
it is shown that a graph is linklessly embeddable in R

3 if and only if it admits
a flat embedding into R

3, i.e. an embedding such that for every cycle C of G,
there exists a closed disk D ⊆ R

3 with D ∩ G = ∂D = C. Clearly, every
flat embeddings is linkless, but the converse is not true. In many ways flat
embeddings are nicer to work with and in this paper we will work with flat
rather than linkless embeddings.

Linkless embeddings have drawn attention by many researchers. Besides
researchers working on knot theory, many researchers working in discrete math-
ematics are also interested in this topic. For example, Lovász and Schrijver
[22, 23] proved that two well-known invariants given by Colin de Verdière [5, 6, 7]
are closely related to linklessly embeddable graphs. The invariants are based on
spectral properties of matrices associated with a graph G.

Flat embeddings in the 3-space are a generalization of embeddings in the
plane. These two embedding problems share an interesting property. The fa-
mous theorem by Whitney which says that every 3-connected planar graph has
a unique planar embedding, can be generalized to the flat embedding case, i.e.,
every flatly embeddable 4-connected graph G has an “essentially unique” flat
embedding in R

3, see [38]. Here, “essentially unique” means embeddings up to
ambient isotopy, which we define later.

We will study the following algorithmic problem associated with linklessly
embeddable graphs. As far as we are aware, this problem was open until our
work, and even a solution to the simpler problem of findiung linkless embeddings
has only been treated very recently.

Flat and Linkless Embedding
Input: A graph G.
Output: Either (1) detect one of Petersen’s family graphs as a minor in G, or
(2) return a flat (and hence linkless) embedding of G in R

3.

Let us observe that if the output is (1), then it is one of the excluded minors
for linklessly embeddable graphs and hence it is a certificate that the given graph
has no linkless (and no flat) embeddings. As mentioned above, by Robertson
and Seymour’s results [32], we can test whether or not an input graph has one
of Petersen’s family graphs as a minor, but if it does not contain any of them,
Robertson and Seymour’s algorithm does not give the second conclusion. As
pointed out in [38], the algorithm in [40] together with the result in [38] gives rise
to a polynomial time algorithm to test whether or not an embedding in the 3-
space is flat, but no polynomial-time algorithm for constructing flat embeddings
was known prior to our work. Quite recently (see a more detailed discussion
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below), an algorithm for finding linkless embeddings was proposed by van der
Holst [14].

1.2 Our result

Our contribution in this paper is to give a polynomial-time algorithm for the
above mentioned problem.

Theorem 1.1. There is an O(n2)-time algorithm for the flat and linkless em-
bedding problem.

Clearly, every flat embedding is linkless (but the converse is false, as a graph
that consists of one vertex with two loops shows). However, Robertson, Seymour
and Thomas proved that a graph admits a linkless embedding in R

3 if and only
if it admits a flat embedding. Let us also remark that our algorithm does not
use Robertson and Seymour’s algorithm [32] (although we need some lemmas
from [32]).

We have learned that van der Holst [14] has a polynomial-time algorithm to
construct a linkless embedding if one exists. Our algorithm is an advancement
over van der Holst’s in several respects:

1. Our algorithm finds flat embeddings in R
3, while the algorithm from [14]

only finds linkless embeddings that are not necessarily flat.
2. The time complexity of van der Holst’s algorithm is considerably more

expensive than ours (it is at least Ω(n5)).
3. In order to give a polynomial time algorithm for the linkless embedding

problem, his algorithm uses deep results of Robertson and Seymour [32],
while ours does not.

4. The algorithm and the proof method in [14] are very algebraic and are
completely different from our paper, which is more combinatorial and
geometric.

There are many generally hard problems which can be solved in polyno-
mial time (often, even linear time) when considering planar graphs or “nearly”
planar graphs, e.g., MAXIMUM CLIQUE, SUBGRAPH ISOMORPHISM [11].
Even for problems that remain NP-hard on planar graphs, we often have ef-
ficient approximation algorithms, e.g, INDEPENDENT SET, TSP, Weighted
TSP, VERTEX COVER, DOMINATION SET etc [2, 12, 19, 21]. We expect
that all of these fast algorithms for planar graphs can be generalized to link-
lessly embeddable graphs as well, using our algorithm in Theorem 1.1 and a flat
embeddding.

1.3 Overview of our algorithm

At a high level of description, our algorithm for Theorem 1.1 proceeds as follows:
the algorithm first iteratively reduces the size of the input graph until it is 4-
connected and reaches a graph of bounded tree-width. Then the algorithm
solves the problem on this graph of bounded tree-width.
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Bounded tree-width case. This second step needs two deep results in [38]. The
first ingredient is that any Kuratowski graph, i.e, a subdivision of K5 or K3,3,
has a unique flat embedding in the 3-space R

3. The second ingredient is that
if G is 4-connected and has a flat embedding in the 3-space R

3, then G has a
unique flat embedding. Thus by combining these two ingredients, we get the
following strong fact:

Fix a flat embedding of a Kuratowski subgraph K of a 4-connected
graph G in the 3-space R

3. Then the rest of the graph is uniquely
attached to K, if G has a flat embedding.

In general, this fact is not enough to give a polynomial time algorithm to con-
struct a flat embedding, if one exists. However, if the tree-width of a 4-connected
graph is bounded, we can construct a flat embedding in polynomial time (even
in linear time) using dynamic programming, if one exists.
Reduction step. For the reduction step, the algorithm uses the excluded grid
minor theorem [10, 28, 30, 37]: if the tree-with of G is big enough, G contains
a huge grid minor. By combining the results in [32] and [18], if an input graph
does not contain a K6-minor, then, after deleting at most one vertex, we can find
a subgrid minor which is planarly drawn, i.e, up to 3-separations, the subgrid
minor induces a planar embedding. In fact, if there is a separation (A, B) of
order at most three in this planarly drawn subgrid, then this gives us a reduction
(for details, we refer the reader to Section 3). Otherwise, this subgrid minor
induces a 2-cell embedding in a plane (and hence it is a planar subgraph).

A deep theorem in [32] tells us that a vertex “deep inside” this subgrid minor
is irrelevant with respect to all excluded minors in the Petersen family. In addi-
tion we will prove that such a vertex does not affect our flat embedding in the
3-space. Hence, we can remove this vertex without affecting flat embeddability
of G. Note that the difficulty here is only in the proof of the existence of this
vertex. Once we know that there is an irrelevant vertex, such a vertex can easily
be found in linear time.

1.4 Basic definitions

Before proceeding, we review basic definitions. For basic graph theory notions,
we refer the reader to the book by Diestel [9], for topological graph theory we
refer to the monograph by Mohar and Thomassen [26].

A separation of a graph G is a pair (A, B) of subgraphs of G with A∪B = G
and E(A ∩ B) = ∅. The order of the separation is |V (A) ∩ V (B)|. If (A, B)
is a separation of G of order k, we write A+ for the graph obtained from A by
adding edges joining every pair of nonadjacent vertices in V (A) ∩ V (B). We
define B+ analogously.

A tree-decomposition of a graph G is a pair (T, B), where T is a tree and B
is a family {Bt | t ∈ V (T )} of vertex sets Bt ⊆ V (G), such that the following
two properties hold:

(W1)
⋃

t∈V (T ) Bt = V (G), and every edge of G has both ends in some Bt.
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(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then
Bt ∩ Bt′′ ⊆ Bt′ .

The width of a tree-decomposition (T, B) is defined as max{|Bt| | t ∈ V (T )}.
The tree-width of G is defined as the minimum width taken over all tree-
decompositions of G. Let (T, B) be a tree-decomposition of a graph G. By
fixing a root r of T we give T an orientation. For t ∈ V (T ) we define Tt to
be the subtree of T rooted at t, i.e., the subtree of T induced by the set of
nodes s ∈ V (T ) such that the unique path from s to r contains t. We define
B(Tt) :=

⋃
s∈V (Tt)

Bs.
One of the most important results about graphs, whose tree-width is large, is

the existence of a large grid minor or, equivalently, a large wall. Let us recall that
an r-wall or a wall of height r is a graph which is isomorphic to a subdivision
of the graph Wr with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r}
in which two vertices (i, j) and (i′, j′) are adjacent if and only if one of the
following possibilities holds: (1) i′ = i and j′ ∈ {j − 1, j + 1} or (2) j′ = j and
i′ = i + (−1)i+j .

We can also define an (a × b)-wall in a natural way, so that the r-wall is
the same as the (r × r)-wall. It is easy to see that if a graph G contains an
(a× b)-wall as a subgraph, then it has an (� 1

2a	× b)-grid minor, and conversely,
if G has an (a × b)-grid minor, then it contains an (a × b)-wall. Let us recall
that the (a× b)-grid is the Cartesian product of paths, Pa � Pb. An (8× 5)-wall
is shown in Figure 2 (in the appendix).

Theorem 1.2. For any r, there exists a constant f(r) such that if a graph G
has tree-width at least f(r), then G contains an r-wall.

The best known upper bound for f(r) is given in [10, 28, 37]. It is 202r5
.

The best known lower bound is Θ(r2logr), see [37].

2 Flatly and Linklessly Embeddable Graphs

In this section we recall some results about linklessly embeddable graphs used
later on. Due to space restrictions, we can only state the most relevant results
and almost no background. For the referees convenience, the appendix contains
a more coherent exposition.

2.1 Constructions of Flat Embeddings

Recall that a piecewise-linear embedding of a graph in the 3-space R
3 is flat if

every cycle of the graph bounds a 2-dimensional disk disjoint from the rest of the
graph. If C, C′ are disjoint simple closed curves in R

3, then their linking number
is the number of times (modulo 2) that C crosses C′ in a regular projection of
C ∪C′ onto some hyperplane. It is easy to see that the linking number (modulo
2) is the same for every such projection. Hereafter, all linking numbers discussed
in this paper will be mod 2. The proof of the following result is easy and the
details are left to the reader.
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Lemma 2.1. Let G be a graph, and σ be an embedding of G in R
3. Let C1, C2 be

disjoint cycles in G, and let P be a path in G that is disjoint from C1∪C2, except
that its endvertices are in V (C1). Let C′

1, C
′′
1 be the two cycles in V (C1 ∪ P )

with V (C′
1) ∩ V (C′′

1 ) = V (P ). If the linking number of C1, C2 is nonzero, then
also one of the linking numbers of C′

1, C2 or C′′
1 , C2 is nonzero.

Let v be a vertex of degree 3 in a graph G, with its three neighbors v1, v2, v3.
Let H be a graph obtained from G−v by adding three new edges v1v2, v2v3, v3v1.
We say that H is obtained from G by a YΔ change (at v), and G is obtained
from H by a ΔY change (at v1, v2, v3). If G′ can be obtained from G by a series
of YΔ or ΔY changes, we say that G and G′ are YΔ-equivalent . The Petersen
family is the set of the seven graphs (up to isomorphism) that are YΔ-equivalent
to K6. One of these is the Petersen graph. The following result was proved in
[38].

Theorem 2.2. Let G be a graph obtained from H by a ΔY operation. Then G
has a flat embedding in R

3 if and only if H has.

It is easy to see that degree 1 vertices can be deleted and degree 2 vertices
can be suppressed without affecting linkless embeddability. Thus it follows from
Theorem 2.2 that we may assume that each vertex has degree at least four.
Furthermore, concerning vertices of degree four, one can say the following.

Lemma 2.3. Suppose that a graph G contains an edge uv, where degG(u) = 4
and degG(v) = 5. Suppose, moreover, that N(u) = (N(v) ∪ {v}) − {u, a} for
some vertex a in N(v). Then there is a separation (A, B) of order four such
that B − A consists of u and v only, and G has a flat embedding in R

3 if and
only if for every vertex b ∈ N(v) − {u, a}, the graph G′ obtained from G by
contracting the edge ub has a flat embedding.

We sketch the proof of Lemma 2.3, which is essentially given in (6.6) in [38].
If G′ has a flat embedding in 3-space R

3, then A ∩ B is contained in a disk.
In fact, as in the proof of (6.6) in [38], if A is planar with A ∩ B appearing
on the outer face boundary of A, then the flat embedding of G′ extends to A.
Thus A∩B is contained in a single disk, and we can easily put the vertices u, v
back to this disk so that the resulting embedding of G (that extends the flat
embedding of G′) is still flat.

The following is (6.5) in [38]. For completeness, we give a sketch of the proof
in the appendix. Recall from above the definition of the graphs A+, B+ for a
separation (A, B) of a graph G.

Theorem 2.4. Suppose G has a separation (G1, G2) with |V (G1)∩V (G2)| ≤ 4.
Suppose furthermore, G contains both G+

1 and G+
2 as a minor. Then G has a

flat embedding in 3-space R
3 if and only if both G+

1 and G+
2 have one.

2.2 Spatial Embeddings of 4-connected graphs

The aim of this section is to show that 4-connected linklessly embeddable graphs
essentially have a unique flat embedding in 3-space R

3. The following results
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are proved in [38] along with its companion papers [34, 35]. Readers not familiar
with these results may wish to consider the survey [39] which contains many of
the results needed below.

We refer to the graphs K5 and K3,3 as the Kuratowski graphs. A Kuratowski
subgraph of a graph G is a subgraph of G isomorphic to a subdivision of a
Kuratowski graph. For embeddings φ1, φ2 of a graph G we write φ1

∼=a.i. φ2 to
denote that they are ambient isotopic. Let us recall that φ1 and φ2 are ambient
isotopic, if there exists an orientation preserving homeomorphism R

3 → R
3

mapping φ1 onto φ2.

Lemma 2.5. 1. Any two flat embedings of a planar graph in R
3 are ambient

isotopic.

2. The graphs K5 and K3,3 have exactly two non-ambient isotopic flat em-
beddings.

3. Let φ1, φ2 be two flat embeddings of a graph G which are not ambient
isotopic. Then there is a subgraph H of G isomorphic to a subdivision
of a Kuratowski graph for which φ1|H and φ2|H are not ambient isotopic.
Here φi|H denotes the restriction of φi to H.

We now define a neighbourhood relation between Kuratowski subgraphs of
a graph G. Let H1, H2 ⊆ G be Kuratowski subgraphs of G such that H1 �= H2.
H1 and H2 are 1-adjacent if there exists a path P ⊆ G and an i ∈ {1, 2} such
that P has only its endpoint in common with Hi and such that H3−i ⊆ Hi ∪P .

H1 and H2 are 2-adjacent if there are distinct vertices v1, . . . , v7 ∈ V (G) and
pairwise internally vertex disjoint paths Li,j , for (i, j) ∈ {1, . . . , 4} × {5, 6, 7} ∪
{(3, 4)} linking vi and vj such that H1 =

⋃ {
Li,j | (i, j) ∈ {2, 3, 4} × {5, 6, 7}

}

and H2 =
⋃ {

Li,j | (i, j) ∈ {1, 3, 4}× {5, 6, 7}
}
. The path L3,4 is not used here

but is required to exist. Note that if H1, H2 are 2-adjacent then they are both
isomorphic to subdivisions of K3,3. H1 and H2 are adjacent if they are 1- or
2-adjacent. Let H, H ′ be Kuratowski subgraphs of G. We say that H and H ′

communicate if there are Kuratowski subgraphs H = H1, . . . , Hk = H ′ of G
such that Hi and Hi+1 are adjacent for all 1 ≤ i < k.

Lemma 2.6. 1. Let φ1, φ2 be flat embeddings of G and let H, H ′ be adjacent
Kuratowski subgraphs of G. If φ1|H ∼=a.i. φ2|H then φ1|H′ ∼=a.i. φ2|H′ .

2. If G is 4-connected, then all pairs H, H ′ of Kuratowski subgraphs of G
communicate.

3. If φ, φ′ are flat embeddings of a 4-connected graph G, then φ ∼=a.i. φ′ or
φ ∼=a.i. −φ′.

Note that (iii) follows easily from (i) and (ii) and the previous lemma. For
the purpose of this paper this means that once we have fixed an embedding for
a Kuratowski subgraph H ⊆ G, there is only one way to extend this embedding
to an adjacent Kuratowski subgraph H ′ (up to ambient isotopy). Furthermore,
if G is 4-connected, then by starting from one Kuratowski subgraph whose
embedding we fix and iteratively proceeding to adjacent Kuratowski subgraphs,
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we can embed all Kuratowski subgraphs of G. This embedding then has a
unique extension to the complete graph.

3 Bounding the tree-width

In this section we will present the reduction step of the general algorithm for
solving the Linkless Embedding problem presented in Section 5 below. Let us
observe that by Theorem 2.2 and Lemma 2.3 (and remarks just after Lemma
2.3), we may assume that every vertex in a given graph G has minimum degree
at least four, and any vertex of degree four does not satisfy the assumption of
Lemma 2.3.

Let us define that the nails of a wall are the vertices of degree three within it.
The perimeter of a wall W , denoted per(W ) is the unique face in this embedding
which contains more than 6 nails. As walls are 3-connected, Whitney’s theorem
implies that any wall has a unique planar embedding. For any wall W in H , there
is a unique component U of H−per(W ) containing W−per(W ). The compass of
W , denoted comp(W ), consists of the graph with vertex set V (U)∪V (per(W ))
and edge set E(U) ∪ E(per(W )) ∪ {xy|x ∈ V (U), y ∈ V (per(W ))}. A subwall
of a wall W is a wall which is a subgraph of W . A h-subwall of W is proper if
it consists of h consecutive bricks from each of h consecutive rows of W . The
pegs of a proper subwall W ′ of a wall W are the nails of W on the perimeter of
W ′ which are not nails of W ′. The exterior of W ′ is W −W ′. A proper subwall
is dividing if its compass is disjoint from its exterior. We say a proper subwall
W ′ is dividing in a subgraph H of F if W ′ ⊆ H and the compass of W ′ in H is
disjoint from (W − W ′) ∩ H .

A wall is planarly drawn if its compass does not contain two vertex disjoint
paths connecting the diagonally opposite corners. Note that if the compass of
W has a planar embedding whose infinite face is bounded by the perimeter of
W then W is clearly planarly drawn.

Seymour [41], Thomassen [42], and others have characterized that if the wall
W is planarly drawn, then its compass comp(W ) can be embedded into a plane,
up to 3-separations, such that its perimeter per(W ) is the outer face boundary.
For the definition of “up to 3-separations”, we refer the reader to the appendix
(Subsection B.4).

It is easy to see that any subwall of a planarly drawn wall must be both
planarly drawn and dividing. Furthermore, if x and y are two vertices of a
planarly drawn wall W and there is a path between them which is internally
disjoint from W then either x and y are both on per(W ) or some brick contains
both of them. Robertson and Seymour [32] proved:

Theorem 3.1. For every pair of integers l and t there exist integers w(l, t) >
w′(l, t) > max(l, t) such that the following holds. Let K be a graph of order
t. If the tree-width of a graph H is at least w(l, t), and H has no K-minor,
then there is a wall W of height w′(l, t), and for some subset X of less than

(
t
2

)

vertices of H there are t10 disjoint proper subwalls W ′ (of the wall W ) of height
l, which are disjoint from X and are planarly drawn and dividing in H −X. In
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addition, any of these disjoint proper subwalls of height l has face-distance at
least t10 from any other in the wall W .

In fact, we can give the explicit bound for w(l, t). Combining the best known
bound for the grid theorem in [37], the proof of Theorem 3.1 in [32] implies that
w(l, t) ≤ 101010q

, where q = lt.
A vertex v in G is called irrelevant with respect to a given minor M in G if

G has an M -minor if and only if G− v has. The following result was proved in
[32].

Theorem 3.2. There is a computable constant f(t) satisfying the following:
Let H, W, X, K, w(l, t), w′(l, t) be as in Theorem 3.1 and l ≥ f(t). Let W ′ be
one of the proper subwalls (of the wall W ) of height l which is disjoint from
X, and is planarly drawn and dividing in H − X. Suppose furthermore that
the comp(W ′) has a 2-cell embedding in a plane with per(W ′) in the outer face
boundary. Then the unique vertex v which has distance exactly l/2 from the
per(W ′) in the wall W ′ is irrelevant with respect to a K-minor.

We now give an algorithmic result of Theorems 3.1 and 3.2 in [32].

Theorem 3.3. Let H, W, K, f(t), w′(l, t) be as in Theorem 3.1. Suppose the
wall W of height w′(t, l) is given. Then there is an O(m) time algorithm, where
m is the number of edges, to construct one of the following:

1. a K-minor in H, or

2. for some subset X of less than
(

t
2

)
vertices of H there are t10 disjoint

proper subwalls W ′ (of the wall W ) of height l, which are disjoint from
X, and are dividing in H − X. In addition, any of these disjoint proper
subwalls of height l has face-distance at least t10 from any other in the
wall W .

It is easy to see that if G has at least 2t|V (G)| edges, then one can easily
find a Kt-minor in linear time (see [29]). If we can find a K6-minor in a given
graph G in linear time, we are done. So a graph G has at most 26|V (G)| edges,
which, hereafter, we assume. Thus the time complexity of Theorem 3.3 can be
improved to O(n), where n is the number of vertices of an input graph.

If K = K6 in Theorem 3.1, then the following stronger version of Theorem
3.2 is proved in [18].

Theorem 3.4. Let f(t) be as in Theorem 3.1 with t = 6. For any l ≥ f(6),
there are integers w(l) > w′(l) satisfying the following: If the tree-width of a
graph H is at least w(l), then there is a wall W of height w′(l), and one of the
following holds:

1. a K6-minor in H, or

2. for some subset X of at most one vertex of H, there are at least 10 disjoint
proper subwalls W ′ (of the wall W ) of height l, which are disjoint from X

10



and dividing in H −X. In addition, any of these disjoint proper subwalls
of height l has face-distance at least 2 from any other in the wall W .
Moreover,

(a) if |X | = 0 and three of the disjoint proper subwalls of height l are not
planarly drawn, then H has a K6-minor, and

(b) if |X | = 1 and there is a proper subwall of height l that is not planarly
drawn, then H has a K6-minor.

Furthermore, given the wall W , there is a linear time algorithm to compute one
of 1 and 2 above.

We now prove the following result for the linkless embedding case. Hereafter,
we may assume that a graph G has minimum degree at least 4 by Theorem 2.2
and the remarks just after Theorem 2.2.

Theorem 3.5. There is a computable constant f satisfying the following: Let
G be a given input graph with minimum degree 4, and W, w(l), w′(l) be as in
Theorem 3.4 with l ≥ f . Then one of the following holds:

1. G has a K6-minor, or

2. for some subset X of at most one vertex of G, there is a proper subwall
W ′ (of the wall W ) of height l, which is disjoint from X and dividing in
G−X, and has a 2-cell embedding with per(W ′) in the outer face boundary
in G − X. Moreover, the unique vertex v which has distance exactly l/2
from the per(W ′) in the wall W ′ is irrelevant with respect to a K-minor,
where K is any graph in the Petersen family. Furthermore, no matter how
we give a flat embedding of the graph G − v in 3-space R

3, the embedding
of G − v can be changed so that, after putting the vertex v back to the
resulting embedding, the resulting embedding of G is flat, or

3. either there is a reduction as in Lemma 2.3, or there is a separation (A, B)
of order at most three in G− X such that V (A) ∩ V (B) only involves the
vertices in the comp(W ) in G − X, and B contains all the vertices of the
per(W ′). Moreover, G contains both (A ∪ X)+ and (B ∪ X)+ as minors,
and hence this separation (A ∪ X, B ∪ X) is a reduction as in Theorem
2.4. Note that it is a separation of order at most 4 in G.

A proof of Theorem 3.5 will be given in Section C. We now state our main
algorithmic result.

Theorem 3.6. Let G, W, f, l, w(l), w′(l) be as in Theorem 3.5. Suppose the wall
W is given. Then there is an O(n) time algorithm, where n is the number of
vertices of G, to construct one of the following:

1. one of the graphs in the Petersen family in G as a minor, or
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2. for some subset X of at most one vertex of G there is a proper subwall W ′

(of the wall W ) of height l, which is disjoint from X, dividing in G−X, and
has a 2-cell embedding with per(W ′) in the outer face boundary in G−X.
Moreover, we can find an irrelevant vertex as in the second conclusion of
Theorem 3.5, or

3. either there is a reduction as in Lemma 2.3, or there is a separation (A, B)
of order at most three in G− X such that V (A) ∩ V (B) only involves the
vertices in the comp(W ) in G − X, and B contains all the vertices of the
per(W ′). Moreover, G contains both (A ∪ X)+ and (B ∪ X)+ as minors,
and hence this separation (A ∪ X, B ∪ X) is a reduction as in Theorem
2.4. Note that it is a separation of order at most 4 in G.

Again, a proof of Theorem 3.6 will be given in Section C.

4 Linkless Embeddings on Graph Classes of Bounded
Tree-Width

In this section we present a linear time algorithm for the linkless embedding
problem on graph classes of bounded tree-width. The algorithm is based on
various results about flat embeddings presented in Section 2.2. We first consider
the case of 4-connected graphs.

Lemma 4.1. There is an algorithm which for a given 4-connected graph G ∈ C
either returns a flat embedding of G or produces a minor H � G of the Petersen
family, in time f(tw(G)) · |G|, for some computable function f : N → N.

Proof. Due to space restrictions we only prove the existence of an f(tw(G))·|G|2-
algorithm here (which is enough for the application in Section 5). With some
further effort this can be improved to linear time. Details of the linear time
algorithm can be found in Section D in the appendix.

Given G, we first test in linear time if any graph in the Petersen family is
a minor of G. If no such minor is found, we compute a flat embeding of G.
The lemmas outlined in Section 2.2 suggest the following simple algorithm for
constructing a flat embedding of a 4-connected graph in R

3.

1. If G is planar, compute the unique embedding of G into R
3. Otherwise,

choose a Kuratowski subgraph of G and embed it flat into R
3.

2. While there is a Kuratowski subgraph K of G that is not yet embedded,
compute two adjacent Kuratowski subgraphs H, H ′ so that H is already
embedded but at least one edge of H ′ is not yet embedded. By Lemma 2.6,
there is a unique way of extending the embedding of H to an embedding
of H ∪ H ′ which can easily be computed.

3. Once all Kuratowski subgraphs are embedded, the rest of the graph is
planar and, by Lemma 3, there is essentially unique extension to an em-
bedding of G.

12



We claim that this algorithm can be implemented to run in time f(tw(G)) · |G|2,
where f is a computable function f : N → N. Given a 4-connected graph G,
first use Bodlaender’s algorithm [3] to compute an optimal tree-decomposition
of G in time g(tw(G)) · |G|, where g : N → N is some computable function.
Using a planarity algorithm [4, 13, 43], we can find the Kuratowski subgraph
K of G required in step 1 in linear time or conclude that G is planar, in which
case we can easily compute the unique embedding into R

3. Towards the second
step, note that the while loop can take at most ||G|| iterations as each iteration
embeds at least one new vertex or edge. In each iteration we have to find the
two Kuratowski subgraphs H and H ′. This can easily be done in linear time,
either by dynamic programming or by realizing that the condition “H, H ′ are
Kuratowski subgraphs of which H is already embedded and H ′ is not” has a
straightforward definition in monadic second-order logic (MSO). It follows from
a result by Arnborg, Lagergren and Seese [1] that given the MSO-definition,
the graphs H, H ′ can be computed in time h(tw(G)) · ||G||. As for all graphs
||G|| ≤ tw(G) · |G|, the result follows. �

We are now ready to present the complete linear time algorithm for com-
puting flat embeddings of linklessly embeddable graphs of bounded tree-width.

Lemma 4.2. There is an algorithm which, on input G, solves the Flat and
Linkless Embedding problem for G in time f(tw(G)) · |G|, for some computable
function f : N → N.

Due to space restrictions, we only sketch the proof here. A complete proof
appears in the appendix. Let G be given. Using Bodlaender’s algorithm [3], we
first compute a tree-decomposition of G of width tw(G) in time g(tw(G)) · |G|.
The next step is to test if any graph of the Petersen family is a minor of G. This
can be done in time g′(tw(G))·|G|. If G contains a Petersen family minor, we can
conclude that G has no linkless embeddings and return the minor. Otherwise,
we split the graph into its 4-connected components using dynamic programming
over the tree-decomposition. After some preprocessing in which we use Y Δ-
transformations to ensure that 3-separations are joined at triangles, we then use
Lemma 4.1 to find flat embeddings of 4-connected components. The individual
embeddings can then be glued together along the disks bounding 3-separations.

5 Algorithm

Finally, we are ready to present the complete algorithm.

Flat and Linkless Embedding
Input: A graph G.
Output: Either detect one of Petersen’s family graphs as a minor in G or return
a flat (and hence also linkless) embedding of G in R

3.

Running time: O(n2).
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Description: Initially, we delete all vertices of degree at most 1. Also, if there
is a vertex v of degree 2, then we just contract vu, where u is one of the two
neighbors of v. Thus we may assume that minimum degree is at least 3.

Step 1. If there is a vertex v of degree 3, then we perform YΔ operation at
v. We repeat doing this as long as there are some vertices of degree 3. Hereafter,
we may assume that the minimum degree of the resulting graph G is at least 4.

Step 2. Test if the tree-width of the current graph G is small or not, say
smaller than some value f , where f comes from Theorem 3.5. This can be done
in linear time by the algorithm of Bodlaender [3]. If the tree-width is at least
f , then go to Step 3. Otherwise we use the algorithm described in Lemma 4.2
to compute a flat embedding in linear time or certify that no such embedding
exist by computing a minor of G in the Petersen family.

Step 3. It is easy to see that if the current graph G has at least 26|V (G)|
edges, then one can easily find a K6-minor in linear time (see [29]). So we may
assume that the current graph G has at most 26|V (G)| edges.

At this moment, the tree-width of the current graph G is at least f . Use the
algorithm of Bodlaender [3] (or the algorithm of Robertson and Seymour [32])
to construct a wall W of height at least w′(l), where w′(l) is as in Theorem 3.4.
Perform the algorithm of Theorem 3.6 to find a separation or reduction as in
the third conclusion of Theorem 3.6, or an irrelevant vertex v, or a minor of
a graph in the Petersen family. If the third outcome occurs, then output the
minor. If the second one happens, then we recurse this algorithm to G − v. If
the first one happens, then we reduce the size of the the current graph G as in
the proof of Theorem 3.6. This completes the description of the algorithm. �

The correctness of Steps 2 and 3 follow from Sections 3 and 4. It is easy to
see that degree 1 vertices can be deleted and degree 2 vertices can be contracted.
Thus the correctness of Step 1 follows.

Now we shall estimate time complexity of the algorithm. All steps except in
the above algorithm can be done in linear time. Another factor of n pops up
because of applying the recursion. Thus the time complexity is O(n2).
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Appendix

A Figures explaining introduced concepts

Figure 1: Petersen’s family

Figure 2: The (8 × 5)-wall and its outer cycle

B Flatly and Linklessly Embeddable Graphs

In this section we recall some results about linklessly embeddable graphs used
in the paper. To provide a coherent exposition, we repeat some lemmas and
definitins already contained in Section 2.

B.1 Constructions for Flat Embeddings

Recall that a piecewise-linear embedding of a graph in 3-space R
3 is flat if every

cycle of the graph bounds a disk disjoint from the rest of the graph.
If C, C′ are disjoint simple closed curves in 3-space R

3, then their linking
number is the number of times that C crosses C′ in a regular projection of
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C ∪ C′. Hereafter, all linking numbers discussed in this paper will be mod 2.
The proof of the following result is easy and the details are left to the reader.

Lemma B.1. Let G be a graph, and σ be an embedding of G in 3-space R
3.

Suppose the linking number of two disjoint cycles C1, C2 in G is nonzero. Let
P be a path with both endvertices in V (C1) such that C2 and P are disjoint,
and |V (C1) ∩ V (P )| = 2. Then there are two cycles C′

1, C
′′
1 in V (C1 ∪ P ) with

V (C′
1) ∩ V (C′′

1 ) = V (P ) such that one of the linking numbers of C′
1, C2 and

C′′
1 , C2 is nonzero.

Let v a vertex of degree 3 in a graph G, with its three neighbors v1, v2, v3.
Let H be a graph obtained from G− v by adding three new edges with ends in
v1v2, v2v3, v3v1. We say that H is obtained from G by a YΔ change (at v), and
G is obtained from H by a ΔY change (at v1, v2, v3). If G′ can be obtained from
G by a series of YΔ or ΔY changes, we say that G and G′ are YΔ-equivalent .
The Petersen family is the set of the seven graphs (up to isomorphism) that are
YΔ equivalent to K6. One of these is the Petersen graph. The following result
was proved in [38].

Theorem B.2. Let G be a graph obtained from H by a ΔY operation. Then
G has a flat embedding in R

3 if and only if H has.

It is easy to see that degree 1 vertices can be deleted and degree 2 vertices
can be suppressed without affecting linkless embeddability. Thus it follows from
Theorem B.2 that we may assume that each vertex has degree at least four.
Furthermore, concerning vertices of degree four, one can say the following.

Lemma B.3. Suppose that a graph G contains an edge uv, where degG(u) = 4
and degG(v) = 5. Suppose, moreover, that N(u) = (N(v) ∪ {v}) − {u, a} for
some vertex a in N(v). Then there is a separation (A, B) of order four such
that B − A consists of u and v only, and G has a flat embedding in R

3 if and
only if for every vertex b ∈ N(v) − {u, a}, the graph G′ obtained from G by
contracting the edge ub has a flat embedding.

We sketch the proof of Lemma B.3, which is essentially given in (6.6) in [38].
If G′ has a flat embedding in 3-space R

3, then A ∩ B is contained in a disk.
In fact, as in the proof of (6.6) in [38], if A is planar with A ∩ B appearing
on the outer face boundary of A, then the flat embedding of G′ extends to A.
Thus A∩B is contained in a single disk, and we can easily put the vertices u, v
back to this disk so that the resulting embedding of G (that extends the flat
embedding of G′) is still flat.

We now prove the following result, which is important for our application. A
proof is given in (6.5) in [38], but for the completeness, we shall give a sketch of
the proof. Recall from above the definition of the graphs A+, B+ for separations
(A, B) of a graph G.

Theorem B.4. Suppose G has a separation (G1, G2) with |V (G1)∩V (G2)| ≤ 4.
Suppose furthermore, G contains both G+

1 and G+
2 as a minor. Then G has a

flat embedding in 3-space R
3 if and only if both G+

1 and G+
2 have one.
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Sketch of the proof. Clearly if one of G+
1 and G+

2 does not have a flat
embedding in 3-space R

3, then the original graph G does not, because both
G+

1 and G+
2 are minors of G. Suppose both G+

1 and G+
2 have flat embeddings

σ1, σ2 in 3-space R
3, respectively. Let Wi be the graph of G+

i in V (G1)∩V (G2)
for i = 1, 2. Since any cycle in the complete graphs Wi bounds a disk in the
embedding σi for i = 1, 2, we can glue the embeddings of σ1, σ2 together at the
disks bounded by the cycles of the complete graph Wi, for i = 1, 2, so that any
cycle in A and any cycle in B are not linked. We claim that every cycle bounds
a disk in the resulting embedding of the whole graph G. Suppose there are two
cycles C1, C2 in G such that the linking number of C1, C2 is nonzero. By our
construction of G+

1 , G+
2 , V (Ci) ∩ V (A − B) �= ∅ and V (Ci) ∩ V (B − A) �= ∅ for

i = 1, 2. Thus both the cycle C1 and C2 have chords e1, e2 in W1 (or W2). In
particular, this implies k = 4. Let the cycles C′

i in C1 ∪ e be such that C′
1 is

contained in A and C′
2 is contained in B for i = 1, 2. Similarly, let the cycles C′′

i

in C2∪e be such that C′′
1 is contained in A and C′′

2 is contained in B for i = 1, 2.
By our construction, the linking number of C′

i and C′′
i is zero for i = 1, 2. By

Lemma B.1, this implies that one of the linking number of C′
1, C

′′
2 and C′′

1 , C′
2 is

nonzero, which is a contradiction. Thus the linking number of any two disjoint
cycles in the resulting embedding is zero. Since any cycle in A and any cycle in
B are not linked, thus every cycle bounds a closed disk that is disjoint from the
rest of the embedding of G. This completes the proof of Theorem B.4. �

B.2 Embeddings of 4-connected graphs

We first need a classic result by Kuratowski.

Lemma B.5 (Kuratowski, [20]). A graph is planar if and only if it has no
subgraph isomorphic to a subdivision of K5 or K3,3.

Here, K5 is the complete graph on 5 vertices and K3,3 is the complete bi-
partite graph with 3 vertices per partition. We refer to the graphs K5 and K3,3

as the Kuratowski graphs. A Kuratowski subgraph of a graph G is a subgraph
of G isomorphic to a subdivision of a Kuratowski graph.

An embedding φ of a graph in R
3 is spherical , if there exists a surface S ⊆ R

3

homeomorphic to the plane such that φ(G) ⊆ S.

Lemma B.6 (Wu, [44]). Let σ be an embedding of a planar graph in 3-space
R

3. Then σ is flat if and only if it is spherical.

The following lemmas were proved in [38] along with its companion papers
[34, 35]. Readers not familiar with these results may wish to consider the survey
[39] which contains many of the results needed below. Let φ1, φ2 be embeddings
of a graph in R

3. φ1 and φ2 are ambient isotopic, written as φ1
∼=a.i. φ2, if

there exists an orientation preserving homeomorphism from R
3 to R

3 mapping
φ1 onto φ2. We will generaly not distinguish between two ambient isotopic
embeddings and consider them to be equivalent.
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An important fact we will be using below is that 4-connected linklessly em-
beddable graphs have (essentially) a unique flat embedding into 3-space (up to
ambient isotopy). Precisely, if φ1, φ2 are flat embeddings of a 4-connected graph
in R

3, then either φ1
∼=a.i. φ2 or φ1

∼=a.i. −φ2, where −φ2 is the composition of
φ2 and the antipodal map. This is a consequence of the following lemmas.

Lemma B.7. Any two flat embedings of a planar graph are ambient isotopic.

In fact, a graph has a unique flat embedding if and only if it is planar. The
following is (7.7) from [38] (see also (3.4) in [39]).

Lemma B.8. The graphs K5 and K3,3 have exactly two non-ambient isotopic
flat embeddings.

Sketch of proof. Let G be a Kuratowski graph and let e ∈ E(G). Then G − e
is planar and, by Lemma B.7, has a unique flat embedding φ into R

3. In fact,
by Lemma B.6, φ(G) ⊆ S for a surface S ⊆ R

3 homeomorphic to the plane.
Essentially, we have two choices where to draw the edge e, namely the two
components of R

3 − S, as any two flat embeddings of the edge in the same
component yield ambient isotopic embeddings. �

The next lemma is (3.5) in [39]. If φ is an embedding of a graph G and
H ⊆ G, we write φ|H for the restriction of φ to H .

Lemma B.9. Let φ1, φ2 be two flat embeddings of a graph G which are not
ambient isotopic. Then there is a subgraph H of G isomorphic to a subdivision
of a Kuratowski graph for which φ1|H and φ2|H are not ambient isotopic.

We now define a neighbourhood relation between Kuratowski subgraphs of
a graph G. Let H1, H2 ⊆ G be Kuratowski subgraphs of G such that H1 �= H2.
H1 and H2 are 1-adjacent if there exists a path P ⊆ G and an i ∈ {1, 2} such
that P has only its endpoint in common with Hi and such that H3−i ⊆ Hi ∪P .

H1 and H2 are 2-adjacent if there are distinct vertices v1, . . . , v7 ∈ V (G) an
pairwise internally vertex disjoint paths Li,j , for (i, j) ∈ {1, . . . , 4} × {5, 6, 7} ∪
{(3, 4)} linking vi and vj such that H1 =

⋃ {
Li,j | (i, j) ∈ {2, 3, 4} × {5, 6, 7}

}

and H2 =
⋃ {

Li,j | (i, j) ∈ {1, 3, 4}× {5, 6, 7}
}
. The path L3,4 is not used here

but is required to exist. Note that if H1, H2 are 2-adjacent then they are both
isomorphic to subdivisions of K3,3. H1 and H2 are adjacent if they are 1- or
2-adjacent.

Lemma B.10. Let φ1, φ2 be flat embeddings of G and let H, H ′ be adjacent
Kuratowski subgraphs of G. If φ1|H ∼=a.i. φ2|H then φ1|H′ ∼=a.i. φ2|H′ .

For the purpose of our paper this means that once we have fixed an embed-
ding for the Kuratowski subgraph H ⊆ G, there is only one way to extend this
embedding to the adjacent subgraph H ′ (up to ambient isotopy). The following
lemma, which is key to our algorithm, says that if G is 4-connected, then by
starting from one Kuratowski subgraph whose embedding we fix and iteratively
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proceeding to adjacent Kuratowski subgraphs, we can embed all Kuratowski
subgraphs of G.

Let H, H ′ be Kuratowski subgraphs of G. We say that H and H ′ commu-
nicate if there are Kuratowski subgraphs H = H1, . . . , Hk = H ′ of G such that
for all 1 ≤ i < k, Hi and Hi+1 are adjacent. The following is proved in [34].

Lemma B.11. If G is 4-connected, then all pairs H, H ′ of Kuratowski subgraphs
of G communicate.

In fact, the stronger statement holds that Kuratowski subgraphs communi-
cate for all graphs which are Kuratowski 4-connected, which essentially says that
no two Kuratowski subgraphs can be separated by a separation of order 3. For
our purposes it suffices to note that any 4-connected graph is also Kuratowski
4-connected. The previous lemmas imply the following result about uniqueness
of embeddings for 4-connected graphs.

Lemma B.12. If φ, φ′ are flat embeddings of a 4-connected graph G, then
φ ∼=a.i. φ′ or φ ∼=a.i. −φ′.

Proof. If G is planar then by Lemma B.7 there is only one flat embedding (up
to ambient isotopy). Otherwise, G contains a Kuratowski subgraph K. By
Lemma B.8 either φ|K ∼=a.i. φ′

|K or φ|K ∼=a.i. −φ′
|K . By going from φ′ to −φ′

if necessary, we can assume that φ|K ∼=a.i. φ′
|K . By Lemma B.10 and B.11

φ|H ∼=a.i. φ′
|H for all Kuratowski suubgraphs H ⊆ G. Hence, by Lemma B.9,

φ ∼=a.i. φ′. �

B.3 Some useful graph theoretical lemmas

Finally, we give purely graph theoretic results in [36], which are necessary for
our proof.

Theorem B.13. Let G be a connected graph and v1, v2, v3 be three vertices
in G. Suppose G has no separation (A, B) of order at most two such that B
contains all the vertices of v1, v2, v3 and A − B is not empty. Then either

1. G has three disjoint trees Ti such that Ti contains vi for i = 1, 2, 3, and
for any two i < j, there is an edge between Ti and Tj, or

2. A − B consists of a single vertex v, and N(v) = {v1, v2, v3}. Moreover,
v1.v2, v3 are independent.

Theorem B.14. Let G be a connected graph and v1, v2, v3, v4 be four vertices
in G. Suppose G has no separation (A, B) of order at most three such that B
contains all the vertices of v1, v2, v3, v4 and A − B is not empty. Then either

1. G has four disjoint trees Ti such that Ti contains vi for i = 1, 2, 3, 4, and
for any two i < j, there is an edge between Ti and Tj, or
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2. A − B consists of a single vertex v, and N(v) = {v1, v2, v3, v4}, or

3. A − B consists of two vertices v, v′ with vv′ ∈ E(G) such that both v and
v′ have degree at least four.

4. G can be drawn in a plane such that all of v1, v2, v3, v4 are in the outer
face boundary.

Theorem B.13, together with Theorem B.4, implies the following:

Theorem B.15. Suppose G has minimum degree 4. If G does not have a
separation (G1, G2) with |V (G1) ∩ V (G2)| ≤ 3 such that G contains both G+

1

and G+
2 as a minor, then G is 4-connected.

Proof. Suppose G has a separation (G1, G2) with |V (G1) ∩ V (G2)| ≤ 3. We
take such a separation with minimum order. If |V (G1) ∩ V (G2)| ≤ 2, then we
can easily find both G+

1 and G+
2 as a minor. Suppose |V (G1)∩ V (G2)| = 3. By

Theorem B.13, if G does not contain G+
1 as a minor, then G2 − G1 consists of

a single vertex, which is impossible, because minimum degree of G is at least 4.
Similarly, G contains G+

2 as a minor. Thus G is 4-connected. �

We use the idea of a “society” introduced by Robertson and Seymour in
[31]. Let Ω be a cyclic permutation of the elements of some set; we denote this
set by V (Ω). A society is a pair (G, Ω), where G is a graph and Ω is a cyclic
permutation with V (Ω) ⊆ V (G). A society (G, Ω) is rural if G can be drawn
in a disk with V (Ω) drawn on the boundary of the disk in the order given by
Ω. A cross in a society (G, Ω) is a pair of disjoint paths P1 and P2 such that
each Pi has its endpoints in V (Ω) and no other vertex in V (Ω), and further if
we let si and ti be the ends of Pi for i = 1, 2 then s1 ≤ s2 ≤ t1 ≤ t2 in the order
Ω. Clearly, a rural society has no cross; a theorem of Robertson and Seymour
says that this is essentially the only obstruction. First we give a definition. A
society (G, Ω) is rurally 4-connected if for every separation (A, B) of order at
most three with V (Ω) ⊆ A, the graph B can be drawn in a disk with the vertices
of A ∩ B drawn on the border of the disk. The following follows from [31].

Theorem B.16. Every cross-free rurally 4-connected society is rural.

B.4 Definition of planarly drawn: up to 3-separations

We now mention the characterization of planarly drawn. We need to define
an embedding up to 3-separations. We say that G can be embedded into a
plane, up to 3-separations, if, for some k ≥ 0, there are pairwise disjoint sets
A1, . . . , Ak ⊆ V (G) such that

(1) for 1 ≤ i, j ≤ k with i �= j, N(Ai) ∩ Aj = ∅,

(2) for 1 ≤ i ≤ k, |N(Ai)| ≤ 3, and
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(3) if G′ is the graph obtained from G by (for each i) deleting Ai and adding
new edges joining every pair of distinct vertices in N(Ai), then G′ may be
drawn in a plane.

Let us observe the following. Let A = {A1, . . . , Ak}. Then we can choose A
so that, subject to (1), (2) and (3), the following property holds:

If N(Ai) = 3, then N(Ai) induces a facial triangle.

To see this, we may choose A such that, subject to (1), (2) and (3), the
number of non-facial triangles in G′ induced by members of A is minimum.
Suppose, without loss of generality, that |N(A1)| = 3 and N(A1) induces a
triangle T1 in G′, which is not facial. Let D1 ⊆ V (G′) be such that, for each
x ∈ V (G), x ∈ D1 if and only if x is contained in the closed disk bounded
by T1. Define A′

1 ⊆ V (G) such that, for each x ∈ V (G), x ∈ A′
1 if and only

if x ∈ D1 − N(A1) or x ∈ Aj for some Aj with N(Aj) ⊆ D1. Let A′ = (A
−{Aj : N(Aj) ⊆ D1}) ∪ {A′

1}. Then (1), (2) and (3) hold for A′, but the
number of non-facial triangles in G′ is smaller, a contradiction.

Let C be the outer face boundary of the planar graph G′. We may also
assume that

(4) If |N(Ai)| = j, then there is no separation (A, B) of order at most j − 1
in G′ such that A contains N(Ai) and B contains all the vertices of C.

For otherwise, we can replace Ai by A ∪ Ai.

C Proofs omitted from Section 3

Theorem 3.5. There is a computable constant f satisfying the following: Let
G be a given input graph with minimum degree 4, and W, w(l), w′(l) be as in
Theorem 3.4 with l ≥ f . Then one of the following holds:

1. G has a K6-minor, or

2. for some subset X of at most one vertex of G, there is a proper subwall
W ′ (of the wall W ) of height l, which is disjoint from X and dividing in
G−X, and has a 2-cell embedding with per(W ′) in the outer face boundary
in G − X. Moreover, the unique vertex v which has distance exactly l/2
from the per(W ′) in the wall W ′ is irrelevant with respect to a K-minor,
where K is any graph in the Petersen family. Furthermore, no matter how
we give a flat embedding of the graph G − v in 3-space R

3, the embedding
of G − v can be changed so that, after putting the vertex v back to the
resulting embedding, the resulting embedding of G is flat, or

3. either there is a reduction as in Lemma 2.3, or there is a separation (A, B)
of order at most three in G− X such that V (A) ∩ V (B) only involves the
vertices in the comp(W ) in G − X, and B contains all the vertices of the
per(W ′). Moreover, G contains both (A ∪ X)+ and (B ∪ X)+ as minors,
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and hence this separation (A ∪ X, B ∪ X) is a reduction as in Theorem
2.4. Note that it is a separation of order at most 4 in G.

Proof. By Theorem 3.4, if a given graph G does not contain a K6-minor,
then there is a wall W of height w′(l), and for some subset X of at most one
vertex of G, there is a proper subwall W ′ of height l, which is disjoint from X
and is planarly drawn and dividing in G − X .

Suppose first that the comp(W ′) does not have a 2-cell embedding in a
plane with per(W ′) in the outer face boundary. Let us observe that the pair
(comp(W ′), per(W ′)) is a society in G−X , because we can impose a cyclic per-
mutation of the per(W ′). Since the comp(W ′) is planarly drawn and dividing in
G−X , thus the society (comp(W ′), per(W ′)) is rurally 4-connected by Theorem
B.16. We may assume that there is a separation (A, B) of order at most three
in the society (comp(W ′), per(W ′)) such that B contains all the vertices of the
per(W ′), and in addition, A does not have a 2-cell embedding in a plane with
V (A∩B) in the outer face boundary. For otherwise, the comp(W ′) has a 2-cell
embedding in a plane in G − X . B has all but at most one nail of the subwall
W ′. By Theorem B.15 and since minimum degree of G is at least 4, this im-
plies that G is 4-connected, for otherwise, we could get the third conclusion. If
|A∩B| ≤ 2, then (A∪X, B∪X) would be a separation of order at most three in
the original graph G. Furthermore, if X �⊂ N(A) or X = ∅, again, (A, B) would
be a separation of order at most three in the original graph G. Thus we may
assume that |A ∩ B| = 3, and X ⊂ N(A) and |X | = 1. By the 4-connectivity
of G and the rurally 4-connectivity of the society (comp(W ′), per(W ′)), we can
clearly find the graph (A ∪ X)+ as a minor in G. If A ∪ X can be drawn in
a plane in such a way that V (A ∩ B) ∪ X appears in the outer face boundary,
clearly A has a 2-cell embedding in a plane with V (A ∩ B) in the outer face
boundary, and hence we can embed A − B in the plane without creating any
edge crossings. So this would not happen by our assumption.

Thus since G is 4-connected, if we cannot find the graph B+, then by The-
orem B.14, A − B consists of exactly two vertices v, v′. If degree of v is 5 and
degree of v′ is 4 in the original graph G, then we can reduce to Lemma 2.3. Thus
vv′ ∈ E(G) and (V (A) ∩ V (B)) ∪ X ⊆ N(v), (V (A) ∩ V (B)) ∪ X ⊆ N(v′). On
the other hand, then (A ∪ X)+ gives rise to a K6-minor. Thus we may assume
that the comp(W ′) in G−X has a 2-cell embedding in a plane with per(W ′) in
the outer face boundary. The vertex v in the second conclusion of Theorem 3.5
is irrelevant with respect to any minor of the graphs in the Petersen family, as
proved in [32].

We need to prove that no matter how we give a flat embedding of the graph
G − v in 3-space R

3, the embedding of G − v can be changed so that, after
putting the vertex v back to the resulting embedding, the resulting embedding
of G is flat. If X = ∅, then it follows from Lemma B.6 that the planar graph
comp(W ) − v has a unique spherical embedding. Thus the unique face F that
has all the neighbors of v bounds a disk D in the flat embedding of G− v. Thus
we can put the vertex v back to the disk D so that the resulting embedding of
G is still flat. It is easy to see that each cycle in the resulting embedding of G
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bounds a disk.
Finally suppose |X | = 1. Again, it follows from Lemma B.6 that the planar

graph comp(W )−X − v has a unique spherical embedding in a flat embedding
of G − v. The unique face F in comp(W )−X − v that has all the neighbors of
v bounds a disk D in the flat embedding of G − v. Thus we can put the vertex
v back to the disk D so that the resulting embedding of G is still flat. It is easy
to see that each cycle in the resulting embedding of G bounds a disk. �

Theorem 3.6. Let G, W, f, l, w(l), w′(l) be as in Theorem 3.5. Suppose the
wall W is given. Then there is an O(n) time algorithm, where n is the number
of vertices of G, to construct one of the following:

1. one of the graphs in the Petersen family in G as a minor, or

2. for some subset X of at most one vertex of G there is a proper subwall W ′

(of the wall W ) of height l, which is disjoint from X, dividing in G−X, and
has a 2-cell embedding with per(W ′) in the outer face boundary. Moreover,
we can find an irrelevant vertex as in the second conclusion of Theorem
3.5, or

3. either there is a reduction as in Lemma 2.3, or there is a separation (A, B)
of order at most three in G− X such that V (A) ∩ V (B) only involves the
vertices in the comp(W ) in G − X, and B contains all the vertices of the
per(W ′). Moreover, G contains both (A ∪ X)+ and (B ∪ X)+ as minors,
and hence this separation (A ∪ X, B ∪ X) is a reduction as in Theorem
2.4. Note that it is a separation of order at most 4 in G.

Proof. We can get one of the conclusions in Theorem 3.4 in linear time. If the
first outcome happens, then we are done. Suppose the second happens. At the
moment, the compass comp(W ′) in G − X is dividing for any proper subwall
W ′ (of the wall W ) as in the second conclusion of Theorem 3.4, but it may not
be planarly drawn.

By applying the planarity algorithm [4, 13, 43], for any proper subwall W ′

in the second conclusion of Theorem 3.4, we can test whether or not the com-
pass comp(W ′) is planar in G − X with per(W ′) in the outer face boundary.
Suppose there is a Kuratowski subgraph, i.e, either a K5-subdivision or a K3,3-
subdivision. Let us observe that the pair (comp(W ′), per(W ′)) is a society in
G− X , because we can impose a cyclic permutation of the per(W ′). If there is
a separation (A, B) of order at most three in the society (comp(W ′), per(W ′))
in G − X such that B contains all the vertices of the per(W ′) and at least two
nodes of the Kuratowski subgraph K are contained in A − B, then, as in the
proof of Theorem 3.5, we can easily get the third conclusion of Theorem 3.6,
since (A∪X, B ∪X) is the separation as discussed in the proof of Theorem 3.5.
Let us observe that A does not have a 2-cell embedding in a plane with V (A∩B)
in the outer face boundary. Suppose such a separation does not exist. This im-
plies that the society (comp(W ′), per(W ′)) in G−X is not rurally 4-connected.
So by Theorem B.16, the compass comp(W ′) is not planarly drawn, because we
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can find two vertex disjoint paths connecting the diagonally opposite corners in
the wall W ′.

Let us observe that, for each proper subwall W ′ in the second conclusion of
Theorem 3.4, once we are given a Kuratowski graph K, we can test whether or
not such a separation (A, B) exist in the comp(W ′) in G − X , in linear time.
If such a separation does not exist, by using the standard technique in [32], we
can find two vertex disjoint paths connecting the diagonally opposite corners in
the wall W ′ in linear time, using the Kuratowski graph K.

By Theorem 3.4, if |X | = 1 and there is a proper subwall W ′ that is not
planarly drawn, then it has a K6-minor (and such a K6-minor can be found in
linear time using this Kuratowski graph). While if |X | = 0 and there are three
disjoint proper subwalls that are not planarly drawn, then there is a K6-minor
by Theorem 3.4 (and such a K6-minor can be found in linear time using the
three Kuratowski graphs in these three proper subwalls).

Thus we may assume that there is a proper subwall W ′ in the second conclu-
sion of Theorem 3.4 such that the comp(W ′) in G − X has a 2-cell embedding
with per(W ′) in the outer face boundary (and such a 2-cell embedding can be
found in linear time by the planarity algorithm [4, 13, 43]). In this case, by
Theorem 3.6, we can find the vertex in the second conclusion of Theorem 3.5 in
linear time. �

D Proofs omitted from Section 4

D.1 A linear-time algorithm

The aim of this section is to prove Lemma 4.1.

Lemma 4.1. There is an algorithm which, given a 4-connected graph G ∈ C,
either returns a flat embedding of G or produces a minor H � G in the Petersen
family, in time f(tw(G)) · |G|, for certain computable function f : N → N.

The key observation is that, on graph classes of bounded tree-width, we can
list in linear time a sequence K1, . . . , Kl, where l ≤ c · |G| and c is a constant
depending only on the bound on the tree-width, of Kuratowski subgraphs of G
such that K ⊆

⋃l
i=1 Ki for every Kuratowski subgraph K ⊆ G. We can then

inductively compute the (unique) flat embedding of K1 ∪ · · · ∪ Kl which has a
unique extension to a flat embedding of G, if such an embedding exists.

Let T := (T, B) be a tree-decomposition of a graph G of tree-width k :=
tw(G). W.l.o.g. we assume that the tree T is sub-cubic, i.e. of maximum degree
at most 3. By fixing a root of T we impose an orientation on T and use usual
terminology, such as children of nodes, etc. To distinguish between vertices of
T and vertices of G we will refer to the former as nodes and to the latter as
vertices.

Let P be a path in G with endvertices u, v, oriented from u to v. The trace
of P on a node t ∈ V (T ) is defined as the sequence (w; u1, . . . ur; w′) defined as
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follows. Let (u1, . . . , ul) be the vertices in V (P )∩Bt, listed in the order as they
appear on P .

• If u, v �∈ B(Tt) we let w = w′ :=↑ and define the trace of P as (↑
; u1, . . . , ul; ↑).

• If u ∈ B(Tt) but v �∈ B(Tt) we define the trace as (u1; u2, . . . , ul; ↑) and,
conversely, if u �∈ B(Tt) but v ∈ B(Tt) we define the trace of P as (↑
; u1, . . . , ul−1; ul).

• Finally, if u, v ∈ B(Tt) we define the trace of P as (u1; u2, . . . , ul−1; ul).

We write trace(P, t) for the trace of P on t.
Let t ∈ V (T ) be a node and K ⊆ G be a Kuratowski subgraph of G isomor-

phic to a subdivision of K5. Let v1, . . . , v5 be the vertices of degree 4 in K and
Pi,j be the paths connecting vi, vj , for 1 ≤ i < j ≤ 5. The impact of K on t,
written as impact(K, t), is defined as

•
(
w1, . . . , w5;

(
trace(Pi,j , t) | 1 ≤ i < j ≤ 5

))
if V (K) ∩ Bt �= ∅, where

wi := vi if vi ∈ Bt, wi :=↓ if vi ∈ B(Tt) \ Bt and wi :=↑ otherwise, and

• ∅, if V (K) ∩ Bt = ∅.

The impact of K on t captures all relevant information about the subgraph
K with respect to the node t of the tree-decomposition. Similarly, if K ⊆ G is
isomorphic to a subdivision of K3,3, with V (K) := {v1, . . . , v6} and Pi,j being
the paths between vi, vj (1 ≤ i ≤ 3, 4 ≤ j ≤ 6), we define impact(K, t) as

•
(
w1, . . . , w6;

(
trace(Pi,j , t) | 1 ≤ i ≤ 3, 4 ≤ j ≤ 6

))
if V (K) ∩ Bt �= ∅,

where wi := vi if vi ∈ Bt, wi :=↓ if vi ∈ B(Tt) \ Bt and wi :=↑ otherwise,
and

• ∅, if V (K) ∩ Bt = ∅.

By construction, the size of a trace is at most k + 2 and hence the size of
an impact is at most 20 · k + 46 = O(k). Furthermore, there are at most O(k!)
distinct impacts and hence for each node there are at most 2O(k!) possible sets
of impacts. We denote by I the set of possible impacts.

If K is a Kuratowski subgraph of G we write impact(K, T ) for the set
{impact(K, t) | t ∈ V (T )}. Clearly, given impact(K, T ), we can reconstruct
the graph K in time in |G|.

Let I := impact(K, T ) be the impact of a Kuratowski subgraph on G and
T . Obviously, the set I satisfies certain consistency criteria. For instance, if t is
a node with children s1, s2 and impact(K, t) := (↓, w2, . . . , w5; (trace(Pi,j , t):1 ≤
i < j ≤ 5)} is the impact of K on t, then exactly one of s1, s2 must have ↓ or
v ∈ Bs1 in its first component of impact(K, s1) and the other child must have
↑. Similarly, if the trace of a path contains the pair ui, ui+1 saying that there
must be a path between ui and ui+1 in B(Tt), then this fact must be reflected in
the corresponding traces of the children. We refrain from listing all consistency
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criteria here and only note that, given potential impacts for t, s1, s2, it can be
decided in constant time if they are consistent with each other, i.e. can together
belong to the impact of a Kuratowski subgraph K on G.

Given a graph G and a tree-decomposition T := (T, (Bt)) of G we define
the Kuratowski impact of G (with respect to T ) as the set

{
impact(K, T ) | K a

Kuratowski subgraph of G
}
.

Lemma D.1. There is an algorithm which, given a graph G computes a Kura-
towski impact of G in time f(k) · |G|, for some computable function f : N → N.

Proof. Using Bodlaender’s algorithm [3], we first compute a tree-decomposition
T := (T, B) of G in time g(k) · |G|. W.l.o.g. we assume that T is a rooted tree
of degree at most 3.

The Kuratowski impact of G and T can be computed by dynamic program-
ming as follows.

• If t ∈ V (T ) is a leaf, we can compute all potential impacts consistent with
the leaf in the obvious way.

• Now suppose t is an internal node with children t1, t2. We first compute
all potential impacts for t. For each potential impact I for t we check
whether s1 and s2 contain impacts consistent with I. If not, then I is
eliminated from the set of impacts for t.

After this has been done for all nodes, we need a second sweep through the
tree-decomposition, this time from the root to the leaves, to remove “dangling”
impacts, i.e. potential impacts for a node that can not consistently be extended
to its parent.

After the second step we are left with the Kuratowski impact for G and T .
It is easily seen that both steps can be performed in linear time. �

Lemma D.2. There is an algorithm which, given a graph G computes a linear
order I1 < · · · < Il, where l < c · tw(G) · |G| for some fixed constant c, in time
f(k) · |G|, for some computable function f : N → N, so that

• each Ii is the impact of a Kuratowski subgraph Ki ⊆ G and

• K ⊆
⋃l

i=1 Ki for each Kuratowski subgraph K ⊆ G.

Proof. We first use Lemma D.1 to compute the Kuratowski impact of G and a
tree-decomposition T . We can then use dynamic programming again to compute
a small set of representative impacts satisfying the conditions of the lemma.
Once this set is computed, we can impose an arbitrary order on it, for instance
an ordering induced by the tree-ordering of the tree-decomposition.

We refrain from giving the technical details of this step. A linear size set
of representative impacts can also be computed by formalising the property in
monadic second-order logic and using the result proved in [1] that satisfying
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assignments for MSO formulas can be computed in linear time on graph classes
of bounded tree-width. �

We now have all the ingredients needed for a linear time algorith for com-
puting flat embeddings of 4-connected graphs of small tree-width.

Lemma D.3. Let C be a class of graphs of bounded tree-width. There is an algo-
rithm which, given a 4-connected graph G ∈ C, either computes a flat embedding
of G or produces a minor H � G of the Petersen family, in time f(tw(G)) · |G|,
for some computable function f : N → N.

Proof. Let G ∈ C be 4-connected. Using Bodlaender’s algorithm [3] we first
compute a tree-decomposition of G of width tw(G) in time g(tw(G)) · |G|. The
next step is to test, again in linear time, if G contains any member of the
Petersen family as a minor. If it does, we return the minor and thereby certify
that G has no linkless embedding.

Otherwise, we use Lemma D.2 to compute a linear order I1 < · · · < Il

representing the Kuratowski impact on G. Starting with I1 and proceeding
along the ordering, we embed all Kuratowski subgraphs of G. As explained
in Section B.2, there is essentially only one way of embedding the Kuratowski
subgraphs of G. Hence there is no backtracking involved and the procedure
runs in linear time.

Once an embedding φ′ of all Kuratowski subgraphs of G has been con-
structed, there is a unique extension φ of φ′ to an embedding of the whole
graph G. �

Note that the test for a Petersen family minor is not exactly necessary.
Instead we could modify the algorithm above to stop when embeddings for
different Kuratowski subgraphs do not match and then compute a Petersen
family minor. For simplicitly, we perform the test explicitly.

D.2 Flat embeddings in linear time on graph classes of
bounded tree-width

In this section we prove Lemma 4.2.

Lemma 4.2. There is an algorithm which, on input G, solves the Flat and
Linkless Embedding problem for G in time f(tw(G)) · |G|, where f : N → N is
certain computable function.

Proof. Let G be given. Using Bodlaender’s algorithm [3], we first compute a
tree-decomposition of G of width tw(G) in time g(tw(G)) · |G|. The next step is
to test if any graph of the Petersen family is a minor of G. Again, this can be
done in time g′(tw(G)) · |G|. If G contains a Petersen minor, we can conclude
that G has no linkless embeddings and return the minor. Otherwise, we perform
a preprocessing step to break the graph into 4-connected components.
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Step 1. We first compute the 2-connected components of G and perform
the algorithm recursively on each component. Once flat embeddings of all 2-
connected components have been computed, we can combine them to a flat
embedding of G in an obvious way.

Step 2. Now suppose there are no 1-separations of G. The next step is to
eliminate 2-separations. Using dynamic programming, we can easily find the
3-connected components of G in linear time. Let S := {u, v} be a 2-separator in
G. As there are no 1-separations in G, u and v are connected in every component
C of G − S. Hence, if G is linklessly embeddable then so is G[C ∪ S] + uv. For
every component C of G−S, we define GC := G[C ∪S]+uv, if uv �∈ E(G), and
GC := G[C ∪ S] otherwise and call the algorithm recursively on GC to obtain
a flat embedding of GC . We can then combine the embeddings as follows. Pick
a component C and the flat embedding of GC . As uv is contained in a cycle
C′ of GC there is a 2-cell whose boundary is C′. We can therefore merge the
embeddings of the graphs GC′ along the edge uv.

Step 3. Now suppose there are no 1- or 2-separations left in G. The final
step is to decompose the graph into 4-connected components. Again, using
dynamic programming we can find 4-connected components of G easily. Now
let S := {u, v, w} be a 3-separation of G. As there are no 2-separations in G we
can assume that {u, v, w} are connected in each component of G − S. Hence,
if C is a component of G − S, then the graph G′

C obtained from G[C ∪ S] by
adding a new vertex z adjacent to each vertex in S is a minor of G and therefore
has a flat embedding. Employing a Y − Δ transformation if necessary, we can
conclude that the graph GC := G[C ∪ S] ∪ {uv, uw, vw}, obtained from G′

C by
turning S into a triangle, can be obtained as a Y − Δ transform of a minor of
G and hence has a flat embedding. We can now use Lemma 4.1 to obtain a flat
embedding of each GC . Analogous to the proof of Lemma 2.4, these can then
be glued together along the triangles. �
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