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a b s t r a c t

A ‘‘folklore conjecture, probably due to Tutte’’ (as described in [P.D. Seymour, Sums of
circuits, in: Graph Theory and Related Topics (Proc. Conf., Univ. Waterloo, 1977), Academic
Press, 1979, pp. 341–355]) asserts that every bridgeless cubic graph can be embedded on a
surface of its own genus in such a way that the face boundaries are cycles of the graph.
Sporadic counterexamples to this conjecture have been known since the late 1970s. In
this paper we consider closed 2-cell embeddings of graphs and show that certain (cubic)
graphs (of any fixed genus) have closed 2-cell embedding only in surfaces whose genus is
very large (proportional to the order of these graphs), thus providing a plethora of strong
counterexamples to the above conjecture. The main result yielding such counterexamples
may be of independent interest.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In his seminal work Sums of circuits [12], Paul Seymour stated the following conjecture, which he has addressed as a
‘‘folklore conjecture, probably due to Tutte’’.

Conjecture 1. Any bridgeless cubic graph can be embedded on a surface of its own genus in such a way that the perimeters of all
regions are circuits.

As much as this conjecture was folklore in the nineteen seventies, today’s methods of topological graph theory enable
rather easy constructions of counterexamples. There is evidence that several people were aware that Conjecture 1 is false
for toroidal graphs. Apparently, an example of a toroidal cubic graph disproving Conjecture 1 appears in the Ph.D. Thesis of
Xuong [13]. Richter [10] found further examples of 2-connected (but not 3-connected) cubic graphs of genus one for which
the conjecture fails. Zha [14] constructed graphs Gg , for each integer g ≥ 1, whose genus is g , but every embedding in the
orientable surface of genus g has a face that is not bounded by a cycle of the graph. (The examples of Zha are not cubic
graphs, though.) It is also stated by Zha in [14] that Archdeacon and Stahl, and Huneke, Richter, and Younger (respectively)
informed him of having constructed further examples of toroidal cubic graphs disproving Conjecture 1. One purpose of this
paper is to bring a rich new family of counterexamples to the attention of interested graph theorists.
Our real goal is to provide simple examples, yet powerful enough to exhibit some additional extremal properties. In

particular, we shall consider (cubic) graphs of genus one. If a cubic graph G has an embedding in the torus with a face whose
boundary is not a cycle, then G contains an edge e whose removal yields a planar graph. We call such a graph near-planar
and refer to the edge e as a planarizing edge (see [1,2]). Our main result, Theorem 6, gives a simple recipe for constructing
near-planar (cubic) graphs, all of whose embeddings of small genus have facial walks that are not cycles. See Corollary 7 for
more details. Theorem 8 generalizes Theorem 6 to arbitrary surfaces.
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An embedding of a graph in a surface is strong (sometimes also referred to as a closed 2-cell embedding or a circular
embedding [11]) if each face boundary is a cycle in the graph.Wedenote byg(G) the (orientable) genusofG. Byg(G)wedenote
the strong genus of G, which is defined as the smallest genus of an orientable surface in which G has a strong embedding. If
G has no strong orientable embeddings, then g(G) = ∞. In this notation, Conjecture 1 claims that g(G) = g(G) for every
bridgeless cubic graph G.
The well-known Cycle Double Cover Conjecture claims that every 2-edge-connected graph admits a collection of cycles

such that every edge is contained in precisely two of the cycles from the collection. Such a collection is called a cycle double
cover of the graph. If G is cubic, then every cycle double cover of G determines a strong embedding of G in some surface
(possibly non-orientable). There is also an orientable version of the cycle double cover conjecture:

Conjecture 2 (Jaeger [7]). Every 2-connected graph G has a strong embedding in some orientable surface, i.e. g(G) <∞.

We follow standard graph theory terminology (see, e.g. [3]). For the notions of topological graph theory we refer to [9].
All embeddings of graphs in surfaces are assumed to be 2-cell embeddings. If S is a closed surface, whose Euler characteristic
is c = χ(S), then the genus of S is equal to 12 (2− c) if S is orientable, and is equal to 2− c if S is non-orientable.

2. Facial distance and nonseparating cycles

Let G be a graph embedded in a surface S and let x, y ∈ V (G), x 6= y. We define the facial distance d′(x, y) between x and y
as the minimum integer r such that there exist facial walks F1, . . . , Fr where x ∈ V (F1), y ∈ V (Fr), and V (Fi) ∩ V (Fi+1) 6= ∅
for every i, 1 ≤ i < r . The following dual expression for d′(x, y), see [2], can be viewed as a surface version of Menger’s
Theorem.

Proposition 3. Let G be a plane graph and x, y ∈ V (G), where y lies on the boundary of the exterior face. Let r be the maximum
number of vertex-disjoint cycles, Q1, . . . ,Qr , contained in G − x − y, such that for i = 1, . . . , r, x ∈ int(Qi) and y ∈ ext(Qi).
Then d′(x, y) = r + 1.

Let C be a non-empty set of disjoint cycles of a graph G that is embedded in some surface, and let C ⊆ G be the union
of all cycles from C. Then C is surface-separating if there is a set of facial walks whose sum (i.e., the symmetric difference of
their edge-sets) is equal to C . A setC of disjoint cycles in an embedded graph G is homologically independent if no non-empty
subset of C is surface-separating. We say that C is induced and nonseparating in the graph G if C is an induced subgraph of
G and G− V (C) is connected.
Induced and nonseparating cycles play a special role in topological graph theory. In particular, ifG is a 3-connected planar

graph, then the induced and nonseparating cycles of G are precisely those cycles that form face boundaries. The following
property generalizes this fact.

Lemma 4. Let C be a family of disjoint cycles in a graph G such that C =
⋃

C is an induced and nonseparating subgraph of G.
If G is embedded in some surface and no cycle in C is facial, then C is homologically independent.

The next lemma is taken from [8]. For completeness we include its proof.

Lemma 5. Let G be a graph embedded in a surface of genus g (either orientable, or non-orientable). If Q1, . . . ,Qk are pairwise
disjoint cycles in G that are homologically independent, then k ≤ g.

Proof. Since the cycles Qi are homologically independent, it follows that after cutting the surface Σ along these cycles,
we obtain a connected surface with boundary, having 2k boundary components if Σ is orientable and having at least k
boundary components in the non-orientable case. Denote their number by b. If we paste a disc on each of the boundary
components we get a closed surface Σ ′ whose Euler characteristic is equal to χ(Σ ′) = χ(Σ) + b ≤ 2. If Σ is orientable
then 2k = b ≤ 2− χ(Σ) = 2− (2− 2g) = 2g . In the non-orientable case we have k ≤ b ≤ 2− χ(Σ) = g , which proves
the claimed inequality in either case. �

3. Strong embeddings of near-planar graphs

Conjecture 1 holds for planar graphs. Namely, every bridgeless cubic graph is 2-connected, and every embedding of a
2-connected graph in the plane is strong. This is no longer true on the torus. Fig. 1 shows two embeddings of a non-planar
cubic graph in the torus. One is strong, and the other one is not.
As mentioned in the introduction, a cubic toroidal graph admits a non-strong embedding in the torus if and only if it is

near-planar. The following result gives rise to a variety of counterexamples to Conjecture 1.

Theorem 6. Let G be a near-planar graph with xy ∈ E(G) being a planarizing edge. Suppose that G − xy is a subdivision of
a 3-connected graph and let q = d′(x, y) be the facial distance between x and y in the (unique) planar embedding of G− xy. Then
every strong embedding of G (either in an orientable or in a non-orientable surface) has genus at least b 13qc.
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Fig. 1. K3,3 has strong and non-strong embeddings in the torus.

Fig. 2. A near-planar graph G2 .

Proof. Let Q1, . . . ,Qr (r = q− 1) be the cycles guaranteed by Proposition 3, enumerated such that Qi lies in the interior of
Qi+1 for 1 ≤ i < r . Suppose that G has a strong embeddingΠ in a surface of genus g , and consider a facial cycle F containing
the edge xy. Note that F intersects all cycles Q1, . . . ,Qr and hence contains, for each i ∈ {1, . . . , r − 1}, a path Ri joining Qi
andQi+1. Since every edge belongs to two facial cycles only, this implies that there is a facial cycle Fi in the planar embedding
ofG−xy that contains an edge in Ri and is notΠ-facial. SinceG−xy is a subdivided 3-connected graph, the cycle Fi is induced
and nonseparating. By Lemma 4, Fi is surface-non-separating under the embeddingΠ .
Let us now consider the cycles F1, F4, F7, . . . , F3k−2, where k = b(r + 1)/3c. Since each Fi is induced and F1, F4, F7, . . .

are at distance at least two from each other, the union C = F1 ∪ F4 ∪ · · · ∪ F3k−2 of these cycles is an induced subgraph of
G. Next, we argue that C is nonseparating in G. To see that, let u ∈ V (G − C). There is an index i ∈ {0, 1, . . . , r} such that
u ∈ int(Qi+1) ∩ ext(Qi) (where Q0 = {x}, Qr+1 = {y}, and ext(Q0) = int(Qr+1) = G). Since Fi is nonseparating in G, there is
a path from u to Qi in G − C . Similarly, for each j = 0, 1, . . . , r , there is a path in G − C from Qj to Qj+1. This easily implies
that G− C is connected and proves that C is nonseparating.
Since C is an induced and nonseparating subgraph of G and none of the cycles forming C isΠ-facial, Lemma 4 shows that

the cycles forming C are homologically independent. By Lemma 5, we conclude that k ≤ g , which we were to prove. �

Corollary 7. For every integer n, there exists a near-planar cubic graph Gn of order 18n− 6 with g(G) ≥ n.

Proof. Let Gn be the near-planar graph whose toroidal embedding is shown in Fig. 2 (for n = 2). The graph has r = 3n− 1
disjoint cycles that show that d′(x, y) = r + 1 in the planar embedding of Gn − xy. Now, Theorem 6 applies. �

Let us observe that Euler’s formula implies that every orientable (2-cell) embedding of the graphs Gn from Corollary 7
has genus at most 6n− 2. The largest possible genus of a strong embedding of Gn is 6n− 3, and this bound is attained if and
only if Gn has a cycle double cover consisting of three Hamilton cycles of Gn.

4. Examples of higher genus

For embeddings in surfaces of higher genus, we need an additional notion. An embedding of a graph is polyhedral if every
facial walk is an induced and nonseparating cycle of the graph.

Theorem 8. Let G be a graph and xy ∈ E(G). Suppose that G−xy has a polyhedral embedding in some surface, and let q = d′(x, y)
be the facial distance between x and y under this embedding. Then every strong embedding of G has genus at least b 13qc.

Proof. The proof is essentially the same as the proof of Theorem 6. Let us only remark themain differences. First of all, there
are pairwise disjoint subgraphs Q1, . . . ,Qr (r = q − 1), where each Qi is a union of cycles (i.e. an Eulerian subgraph) of

Please cite this article in press as: B. Mohar, Strong embeddings of minimum genus, Discrete Mathematics (2010), doi:10.1016/j.disc.2010.03.019



ARTICLE  IN  PRESS
4 B. Mohar / Discrete Mathematics ( ) –

G − x − y that separates the surface so that one part (called the interior of Qi, int(Qi)) contains x and the previous cycles
Q1, . . . ,Qi−1, and the other part of the surface (the exterior ext(Qi)) contains y and Qi+1, . . . ,Qr . These subgraphs Qi are
obtained as follows. We set Q0 = {x}. For i ≤ r , having constructed Qi−1, we take int(Qi−1) together with all facial cycles
that intersectQi−1 and denote this subgraph ofG by int(Qi). The sumof all facial cycles forming int(Qi) is a surface-separating
subgraph Qi of G. (If G is a cubic graph, then Qi is disjoint union of one or more cycles, but in general, it is just an Eulerian
subgraph of G.)
The rest of the proof is the same as for Theorem 6. �

5. Concluding remarks

In view of the Cycle double cover conjecture and its embedding counterpart (Conjecture 2), it is of interest to show that
(cubic) graphs of small genus admit strong embeddings in some surface. Some existing work in this area is [15,16]. Let us
remark that for cubic graphs this follows from known results about possible counterexamples to the Cycle double cover
conjecture. Goddyn [5] proved that a minimum counterexample has girth at least 10, and Huck [6] extended this further by
proving that its girth is at least 12. The reductions used in those proofs can be made so that embeddability in a fixed surface
is preserved. They can be summarized as follows.

Theorem 9. Let g ≥ 0 be an integer. If there is a 2-edge-connected graph whose genus (or non-orientable genus) is at most g
and that does not have a cycle double cover, then there is such a graph G with the following properties:

(a) G is cubic and 3-connected.
(b) G has girth at least 12.

This yields the following straightforward corollary.

Corollary 10. If a 2-edge-connected graph G has genus at most 16 or has nonorientable genus at most 33, then it has a cycle
double cover. In particular, if it is cubic, then it admits a strong embedding in some surface.

Proof. By Theorem 9, we may assume that G is cubic and has girth at least 12. The girth condition implies that the order
n = |V (G)| of G satisfies

n ≥ 1+ 3+ 6+ 12+ 24+ 48+ 32 = 126.

Since G is cubic, |E(G)| = 3
2n. Since every facial walk has length at least 12, we have that 12f ≤ 2|E(G)| = 3n, where f

denotes the number of facial walks. By Euler’s formula, f = c − n+ |E(G)| ≥ 1
2n+ c , where c is the Euler characteristic of

the surface inwhichG is embedded. This implies that−c ≥ 1
2n− f ≥

1
4n ≥

63
2 . In particular, the genus (or the nonorientable

genus) is at least 17 (respectively, 34). �

The proofs of Goddyn [5] and Huck [6] do not preserve orientability of embeddings, so it remains an open problem if
the last conclusion of Corollary 10 can be strengthened by concluding that a strong embedding in some orientable surface
exists. A recent paper by Ellingham and Zha [4] discusses this problem and provides a solution for projective-planar graphs.
The following computational problems are of interest.

Problem 11. What is the computational complexity of determining if a given (cubic) graph admits a strong embedding in
some (orientable) surface?

If Conjecture 2 is true, then the answer to Problem 11 is trivial—such an embedding exists if and only if the input graph
is 2-edge-connected. On the other hand, if Conjecture 2 fails, it is likely that the problem of existence of strong embeddings
would be NP-hard.
In this note we have made a small step towards the study of the following problems.

Problem 12. For a given input graph G that has at least one strong embedding, find a strong embedding of minimum genus.

Problem 13. For a fixed integer g ≥ 0 decide if a given input graph G, whose genus is at most g , admits a closed 2-cell
embedding of genus at most g .

This problem is trivial for g = 0, and themethods of this papermay provide away to a fast recognition for the case g = 1.
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