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Abstract The topographical Wiener index is calculated for two-dimensional graphs
describing porous arrays, including bee honeycomb. For tiling in the plane, we model
hexagonal, triangular, and square arrays and compare with topological formulas for
the Wiener index derived from the distance matrix. The normalized Wiener indices of
C4, T13, and O(4), for hexagonal, triangular, and square arrays are 0.993, 0.995, and
0.985, respectively, indicating that the arrays have smaller bond lengths near the center
of the array, since these contribute more to the Wiener index. The normalized Perron
root (the first eigenvalue, λ1), calculated from distance/distance matrices describes an
order parameter, φ = λ1/n, where φ = 1 for a linear graph and n is the order of the
matrix. This parameter correlates with the convexity of the tessellations. The distri-
butions of the normalized distances for nearest neighbor coordinates are determined
from the porous arrays. The distributions range from normal to skewed to multimodal
depending on the array. These results introduce some new calculations for 2D graphs
of porous arrays.
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1 Introduction

The topological Wiener index has received considerable attention since its introduc-
tion [1] in 1947. In an ideal graph all intersite distances are one unit and the sum
of all path distances between the vertices is known as the Wiener index. If the sites
are represented in a matrix, then the distance matrix is constructed with the shortest
distances from site to site, and the Wiener index is then:

W(G) =
∑

i< j

(DG)i j (1)

where G represents a graph, and DG the distance matrix. Hosoya [2] first developed a
mathematical formulation of the Wiener index in terms of graph theory in 1971. In this
work, we consider the topographical structure of a graph, i.e., the real-space Euclidean
distance between sites. This formulation has received considerably less attention [3–6]
than the topological nature of a graph, primarily due to the difficulty of determining
the 3D length of bonds in real structures.

We consider two-dimensional porous arrays, such as bee honeycomb, and the types
most often constructed by scientists in nanotechnology [7]. It is well known [8] that in
two dimensions, one can tile the plane by constructing square, triangular, or hexagonal
lattices. Porous arrays are examples of all these types of tiling, if one considers the
pores as lattice sites and the interpore distance as connecting the lattice in a graph. The
pore sites and coordinate positions are determined by Image SXM [9], which assigns
coordinate centers based on a best-fitting ellipse. The 2D Wiener index is then:

WE2D (G) =
∑

i< j

(
DE2D

)
i j (2)

where G is the graph in question and E2D refers to the 2D Euclidean index. We note
that algorithms [10,11] for determining the computer calculation of the Wiener index
have previously been published. The 2D distances were calculated using Excel macros.

2 Methods

For tessellations in the plane, a mathematical algorithm for constructing lattice sites
is given by:

⇀
a 1 = ax̂

⇀
a 2 = a cos

(
2π

n

)
x̂ + a sin

(
2π

n

)
ŷ (3)

where a1 and a2 are basis vectors for the sites, a is the distance between lattice points,
and n is the symmetry of the lattice, 3, 4, or 6. In addition, a ‘hexagonal’ tiling is
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Fig. 1 Hexagonal lattice
showing the interconnected
triangular symmetry

actually constructed from two interconnected equilateral triangles with a basis shift
of the second triangle given by:

bx = a1x + a2x + a · 1

2
by = a2y + a ·

√
3

6
(4)

where a is again the distance between sites (see Fig. 1). There is some discrepancy
between what is called a triangular tiling (six-fold symmetry) and a hexagonal til-
ing (three-fold symmetry), since the tiles have a different shape than the symmetry
of the lattice sites. In this formulation then, bee honeycomb has triangular symme-
try (a hexagonal network). We use examples from nanotechnology to represent other
tessellations. An example [12] from Choi et al., made from porous anodized alumi-
num oxide, is also triangular, an example [13] from Krishnan et al., also made from
anodized aluminum oxide, has square symmetry, and an example [14] from Hulteen
et al., fabricated by ‘nanosphere lithography’ has hexagonal symmetry.

In our analysis, we also look at an order parameter φ, which measures [17,18]
the ‘folding’ of a linear array. This parameter is defined by the Perron root (the first
eigenvalue, λ1), calculated from distance/distance (D/D) matrices, φ = λ1/n, where
φ = 1 for a linear graph and n is the order of the matrix. D/D matrices are defined by:

(D/D)i j = (DE )i j(
DE2D + I

)
i j

(5)

where DE is the topographical direct Euclidean distance between lattice sites (not path
dependent) and DE2D is the Euclidean distance matrix in two dimensions. The entries
of the D/D matrices are thus always ≤1. The eigenvalues are determined in the usual
way:
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P(λ) = det(D/D − λI) = 0 (6)

where I is the identity matrix, and λ an eigenvalue. The Perron root is the largest
eigenvalue from these D/D matrices and the order parameter φ gives a measure of the
convexity of the basic unit of tiling in two dimensions.

We use the computer algebra software, Maxima [15], to generate graphs of the
porous arrays, and to determine the topographical Wiener index. A separate Lisp pro-
gram was written [16] by one of the authors using previous algorithms for the Wiener
index and to generate the graphs. Maxima was also used for matrix analysis and to
determine eigenvalues.

3 Results

There has been extensive progress in the study of topological indices in recent years
with the result that formulas for the Wiener index of many types of graphs have been
determined. For tiling in the plane, the relevant equations were published in the last
five to ten years. We have two examples of triangular graphs, one from bee honeycomb,
where parameters establishing the amount of order in the arrays were recently [19,20]
determined, and one example from nanotechnology, Choi et al. For a triangular array,
the equation [21] we use is:

WT(m) = 1

40
m(m + 1)(m + 2)(m + 3)(2m + 3) (7)

where m is the number of ‘bonds’ between lattice points in the graph. We use succes-
sively larger triangles T1, T4, T7, T10, and T13, where the smaller triangles are nested
within the larger ones. A graph of the array T13, as generated by Maxima, is shown in
Fig. 2a, and is the same for both triangular arrays. This creates the sequence of num-
bers, 3, 231, 2142, 9867, and 31668 for m = 1, 4, 7, 10, and 13, as shown in Table 1.
The corresponding topographical Wiener index for bee honeycomb HC1060, and the
nanoarray from Choi et al. is listed along with the normalized values (with respect to
the topological index). Since the Wiener index is a measure of the ‘compactness’ of a
graph, we see that since the normalized values are all less than one, the ‘bonds’ near
the center of the array must have shorter values than the mean value of all the bonds.
The bonds near the center contribute more to the aggregate total in the Wiener index,
so on average they are less than one.

For a square array, the equation for an octagonal square-cell configuration [22] with
n circular levels is:

WS (O(n)) = 211n5

5
− 181n4

3
+ 109n3

3
− 35n2

3
+ 22n

15
(8)

where n ≥ 2. This generates the sequence 632, 6248, 29912, for n = 2, 3, and 4. We
include the value 8 for a unit square cell in Table 1, as well. The octagonal array from
Maxima is shown in Fig. 2b. As before, the normalized topographical Wiener index
is less than one, with the same implications.
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Fig. 2 a Graph of the Maxima figure for the honeycomb (HC) and Choi T13 arrays. b Graph of the Maxima
figure for the square O(4) array from Krishnan et al. c Graph of the Maxima figure for the Hulteen et al.
C4 array

The example for hexagonal arrays, where the sites actually have three-fold symme-
try comes from a nanoarray created with nanosphere lithography. In this procedure,
latex spheres are placed on a substrate and material is deposited in interstitial sites
to form nanoarrays. The spheres then form a hexagonal close packed array and the
material in the interstitial sites form the lattice points of the graph. The equation for
the Wiener index has been determined [23,24] and is:

WH(n) = 1

5
(164n5 − 30n3 + n) (9)

where n is the number of hexagonal cells on a side. This equation gives the sequence
27, 1002, 7809, and 33204, for n = 1, 2, 3, and 4. The normalized index is also less
than one as before. A graph of the array C4 from Maxima is shown in Fig. 2c.
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Table 1 Topographical and topological Wiener indices for various porous arrays

Array Wiener index Topographical index Normalized

HC1060T1 3 3.0 1.0

HC1060T4 231 230.5722 0.998

HC1060T7 2142 2136.5718 0.997

HC1060T10 9867 9832.3762 0.996

HC1060T13 31668 31517.3149 0.995

ChoiT1 3 3.0 1.0

ChoiT4 231 230.3991 0.997

ChoiT7 2142 2134.0342 0.996

ChoiT10 9867 9835.7314 0.997

ChoiT13 31668 31562.9932 0.997

KrishnanO1 8 7.9767 0.997

KrishnanO2 632 626.5753 0.991

KrishnanO3 6248 6170.9084 0.988

KrishnanO4 29912 29465.6564 0.985

HulteenC1 27 26.8863 0.996

HulteenC2 1002 999.9226 0.998

HulteenC3 7809 7772.8189 0.995

HulteenC4 33204 32978.1412 0.993

The distance/distance matrices can be compared for the three types of tiling in the
plane, i.e., a triangle, square, and hexagon. We comment that the closed graph of the
basic unit of tiling has the same order parameter, φ, as a graph with one side missing,
so that φ actually measures the degree of ‘folding’ or convexity of the tile. Since the
D/D matrices are symmetric, they have real eigenvalues with one positive (Perron)
root and the rest negative. We compare the ideal three tiling units with coordinates
from porous arrays, the results of which are summarized in Table 2. For the square
array the experimental D/D matrix is calculated as:

D/Dexp =

⎡

⎢⎢⎣

0 1.0 1.0 0.7286855
1.0 0 0.6929103 1.0
1.0 0.6929103 0 1.0

0.7286855 1.0 1.0 0

⎤

⎥⎥⎦

while for the model square array of the graph it is:

D/Dmodel =

⎡

⎢⎢⎣

0 1 1 0.7071068
1 0 0.7071068 1
1 0.7071068 0 1

0.7071068 1 1 0

⎤

⎥⎥⎦ .
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Table 2 Perron eigenvalues and
order parameters for basic units
of tiling

Array Perron eigenvalue λ1 φ

Triangle (exp) 2 0.6667

Triangle (model) 2 0.6667

Square (exp) 2.71088 0.6777

Square (model) 2.7071 0.6768

Hexagon (exp) 4.407067 0.7345

Hexagon (model) 4.3987 0.7331

Fig. 3 a Normal distribution from the Choi T13 array. b Skewed distribution from the honeycomb (HC)
array. c Distribution from the Hulteen C4 array. d Multimodal distribution from the Krishnan O(4) array
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Table 3 Statistics for the distributions of the porous arrays

Array Min Max Points Median SD Skewness

HC1060T13 0.9528893 1.068543 273 0.995730 0.02280767 0.7090689

ChoiT13 0.9576133 1.047158 273 1.000124 0.01547439 0.113267

KrishnanO4 0.8937172 1.067651 172 0.9972413 0.03816923 −0.322736

HulteenC4 0.8950636 1.087623 132 1.006131 0.03624411 −0.167567

From Table 2, we see that the hexagon is the most linear of the structures, in agreement
with the recent proof [25] of the honeycomb conjecture, which states that any partition
of the plane into regions of equal area has perimeter at least that of the regular hex-
agonal honeycomb tiling. We also note that the experimental square and hexagonal
arrays are more linear than their model counterparts, and that the triangular tiling has
no change.

The histograms of the normalized distances are shown in Fig. 3. The normaliza-
tion is such that, after the intersite distances are summed, each distance is divided
by the mean. Thus the mean of the normalized arrays is 1.0. The statistics of these
distances between lattice points are given in Table 3. The distribution from Choi et al.,
in shown in Fig. 3a. It is a normal-centered distribution, with a median slightly more
than one, standard deviation 0.015 and skewness of 0.11. Skewness is a measure of
the asymmetry of a distribution and can be expressed as:

γ1 = 1

n

∑n
i=1 (xi−x̄)3

s3 (10)

or the third moment about the mean, where s is the standard deviation, and n is the
number of data points.

In Fig. 3b we show the distribution from the honeycomb (HC) array. It is skewed to
the right, with a median slightly less than one, standard deviation 0.023 and skewness
0.709. Figure 3c shows the histogram from Hulteen et al., and is skewed to the left,
with a median greater than one, while Fig. 3d shows the multimodal histogram from
Krishnan et al., and is also skewed to the left, with a median less than one.

4 Conclusion

In summary, we have introduced new results for the topographical Wiener index and
distance matrices for porous arrays. There are now numerous examples of experi-
mental 2D arrays, many of which could be analyzed in the manner described in this
manuscript. Tiling in the plane is accomplished by triangular, hexagonal and square
arrays and the topographical Wiener indices have been determined for several porous
arrays. We have also presented figures of the distributions of these arrays and their
statistics. We have used commonly available software to achieve these goals.
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