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ABSTRACT
A graph is near-planar if it can be obtained from a planar
graph by adding an edge. We show that it is NP-hard to
compute the crossing number of near-planar graphs. The
main idea in the reduction is to consider the problem of si-
multaneously drawing two planar graphs inside a disk, with
some of its vertices fixed at the boundary of the disk. This
approach can be used to prove hardness of some other geo-
metric problems. As an interesting consequence we obtain
a new, geometric proof of NP-completeness of the crossing
number problem, even when restricted to cubic graphs. This
resolves a question of Hliněný.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical algorithms and problems—Geometric
problems and computations; Computations on discrete struc-
tures; G.2.2 [Discrete Mathematics]: Graph theory—
Graph algorithms

General Terms
Algorithms, Theory
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1. INTRODUCTION
A drawing of a graph G in the plane is a representation

of G where vertices are represented by distinct points of
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R
2, edges are represented by simple polygonal arcs in R

2

joining points that correspond to their endvertices, and the
interior of every arc representing an edge contains no points
representing the vertices of G. A crossing of a drawing D
is a pair ({e, e′}, p), where e and e′ are distinct edges and
p ∈ R

2 is a point that belongs to the interiors of both arcs
representing e and e′ in the drawing D. The number of
crossings of a drawing D is denoted by cr(D) and is called
the crossing number of the drawing. The crossing number
cr(G) of a graph G is the minimum cr(D) taken over all
drawings D of G. A drawing D with cr(D) = 0 is called an
embedding of G.

A graph is near-planar if it can be obtained from a planar
graph G by adding an extra edge xy between vertices x and
y of G. We denote such near-planar graph by G + xy. (The
term almost planar has also been used for the same con-
cept [10, 13].) Near-planarity is a very weak relaxation of
planarity, and hence it is natural to study the crossing num-
ber of near-planar graphs. Graphs embeddable in the torus
and apex graphs are a superfamily of near-planar graphs.
We show that it is NP-hard to compute the crossing num-
ber of near-planar graphs. This result is not only surprising
but also fundamental. It provides evidence that computing
crossing numbers is an extremely challenging task, even for
the simplest families of non-planar graphs.

Our reduction is based on considering the following opti-
mization problem: draw two planar graphs inside a disk with
some of its vertices at prescribed positions of the boundary,
so as to minimize the number of crossings in the drawing.
We show that this problem is NP-hard using a reduction
from satisfiability (SAT). The reduction is inspired by the
work of Werner [16], although the details in our proof are
essentially different. We can then use a technique from [13]
to provide NP-hardness of computing the crossing number
of near-planar graphs.

Our approach can be used to prove hardness of some other
geometric problems. As an interesting consequence we ob-
tain a new, geometric proof of NP-completeness of the cross-
ing number problem, even when restricted to cubic graphs.
Hardness of the crossing number problem for cubic graphs
was established by Hliněný [9], who asked if one can prove
this result by a reduction from an NP-complete geomet-
ric problem instead of the Linear Arrangement problem
used in his proof.

Related work. It has been known for quite some time that
it is NP-hard to compute crossing numbers of graphs. Pre-
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vious proofs involved reductions from the problem Linear

Arrangement [6, 9, 14]. The spirit of our reduction is com-
pletely different from previous proofs and hence of interest in
its own right. In particular, we provide an alternative proof
that computing crossing numbers is NP-hard (even when re-
stricted to cubic graphs). Our NP-hardness proof is more
complicated, but it provides the additional bonus of hav-
ing control over the structure of the graph and henceforth
working for near-planar graphs.

The study of crossing numbers for near-planar graphs was
initiated by Riskin [15], who showed that if G is a planar 3-
connected cubic graph, then the crossing number of G + xy
is equal to the length of a shortest path in the geometric
dual graph of the planar subgraph G−x−y. A consequence
of his result it that the crossing number of a 3-connected cu-
bic near-planar graph can be computed in polynomial time.
Riskin asked if a similar result holds in more general situ-
ations. This was disproved by Mohar [13] and Gutwenger,
Mutzel, and Weiskircher [8]. In fact, the result cannot be
extended even assuming 5-connectivity.

For near-planar graphs of maximum degree ∆, Hliněný
and Salazar [10] provided a ∆-approximation algorithm for
the crossing number. Later, we [2] improved the approxima-
tion factor of this algorithm to b∆/2c using combinatorial
bounds that relate the crossing number of G + xy to the
number of vertex-disjoint and edge-disjoint cycles in G that
separate x and y. This separation has to be defined in a
certain strong sense over all planar embeddings of G. Ap-
proximation algorithms for the crossing number have been
provided for some superfamilies of near-planar graphs [3, 4,
11]. However, it should be noted that it was not known
if computing the crossing number in any of those families
is NP-hard. Combinatorial bounds have also been studied
in [1, 5].

Our previous paper [2] contained a closely related result:
namely, we showed that computing the crossing number of
near-planar graphs is NP-hard for weighted graphs. Un-
fortunately, our reduction was from Partition, and hence
required weights that are not polynomially bounded in the
size of the graph. Moreover, the planarizing edge xy needed
large weight, so G + xy could not be transformed into an
unweighted near-planar graph. See the discussion below. In
this paper we use completely different techniques.

Kawarabayashi and Reed [12], improving upon a result
of Grohe [7], have shown that for each constant k0 there is
a linear-time algorithm that decides if the crossing number
of an input graph is at most k0. Hence, it is clear that in
our reduction the crossing number has to be an increasing
function in the number of vertices.

Weighted vs. unweighted edges. Our discussion will be
simplified by using weighted edges. When each edge e of
G has a weight we ∈ N, the crossing number of a drawing
D is defined as

∑

we · we′ , the sum taken over all crossings
({e, e′}, p) in D. The crossing number of G is then defined
again as the minimum cr(D) taken over all drawings D of
G.

Let G be a weighted graph. Consider the unweighted
graph HG with V (HG) = V (G), in which there are wuv

subdivided “parallel” edges between u and v in HG, for each
edge uv ∈ E(G). It is easy to see that cr(HG) = cr(G).
If the weights of G are polynomially bounded in |V (G)|,
then HG can be constructed in polynomial time. Hence, in

our reduction it will be enough to describe a weighted pla-
nar graph G whose weights are polynomially bounded, and
then describe which extra edge xy we add. The resulting
unweighted near-planar graph is HG + xy. The additional
edge xy that we add must have unit weight, as otherwise
the resulting graph HG+xy would not be near-planar.

Anchored graphs. The main idea in our proof is consider-
ing a concept of anchored graphs, and studying the corre-
sponding crossing numbers. We are not aware of any previ-
ous work considering this concept.

An anchored graph is a triple (G, AG, πG), where G is a
graph, AG is a subset of vertices of G, and πG is a circular
ordering of AG. For reasons that will become evident soon,
we call the vertices AG anchors. With a slight abuse of nota-
tion, we will sometimes use G to denote an anchored graph
when the anchor set AG and the ordering πG are implicit.

Let Ω ⊆ R
2 be a topological disk whose boundary is a

closed polygonal line. An anchored drawing of an anchored
graph (G, AG, πG) is a drawing of G in Ω such that the
vertices of AG are represented by points on the boundary
of the disk Ω, and the ordering of the anchors AG along
the boundary of Ω is πG. An anchored drawing without
crossings is an anchored embedding . An anchored planar
graph is an anchored graph that has an anchored embedding.
The anchored crossing number acr(G, AG, πG), or simply
acr(G), of an anchored graph G is the minimum number of
crossings over all anchored drawings of G.

Let (G, AG, πG) be an anchored graph. Any subgraph H
of G naturally defines the anchored subgraph (H,AH , πH),
where AH = AG ∩ V (H) and πH is the restriction of πG

to the vertices in AH . We say that an anchored graph
(G, AG, πG) can be decomposed into two anchored graphs if
there are anchored subgraphs (R, AR, πR) and (B, AB, πB)
such that R ∪ B = G and E(R)∩ E(B) = ∅. The decompo-
sition is vertex-disjoint when V (R)∩V (B) = ∅. For helping
the exposition we will refer to R as “red” graph and to B as
“blue” graph.

2. ANCHORED CROSSING NUMBER
IN A DISK

The problem of minimizing the number of crossings in
drawings of anchored graphs is of independent interest. In
this section we show that computing the crossing number
of anchored graphs is hard even in a very special case when
the anchored graph is decomposed into two vertex-disjoint
planar anchored subgraphs.

Theorem 1. Computing the anchored crossing number of
anchored graphs is NP-hard, even if the input graph is de-
composed into two vertex-disjoint planar anchored subgraphs
(and the decomposition is part of the input).

The rest of this section is devoted the proof of Theorem 1.
We will use the notation [m] = {0, 1, . . . , m}. The reduction
will be from the decision problem of satisfiability:

SAT.
Input: A set of n variables x1, . . . , xn and a set of
m disjunctive clauses C1, . . . , Cm. Output: Can
we assign boolean values T/F to the variables
such that the formula C1 ∧ · · · ∧ Cm is satisfied?
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Consider an instance I to SAT. Henceforth, we will use n
to denote the number of variables and use m to denote the
number of clauses. Let w = 30nm. It is convenient to think
of w as a sufficiently large weight to make the reduction
work. Let k = (6nm + 6n + 2m + 1)w3 − m(w2 + w − 1).
The upper bound k < (6nm+6n+2m+1)w3 ≤ 15nmw3 <
(w2 − 1)2 will be useful in our discussion.

We next provide an overview of our reduction. Our aim at
this point is to provide intuition. An example showing how
the whole reduction works is given in Figure 1. It may help
getting the global picture through the discussion. We will
describe an anchored blue planar graph B = B(I) and an
anchored red planar graph R = R(I). The graphs B and R
will be vertex-disjoint. We will then construct an anchored
graph G = G(I) that has a decomposition into R and B;
the graph G is determined by R,B and by specifying the
circular ordering of the anchors AB ∪ AR. It will turn out
from the construction that the anchored crossing number of
G is at least k, and that it is equal to k if and only if the
instance I can be satisfied.

The blue graph B has a grid-like structure. In an optimal
drawing there are no blue-blue crossings. The weights of the
blue edges are used to encode the clauses of the instance I .
The red graph has the following structure. For each vari-
able xi there is a pair of ‘vertical paths’ in the red graph;
they connect anchor r(xi) to anchor r′(xi) in Figure 1. The
construction will enforce that in an optimal drawing such a
pair will be drawn either to the left or to the right of the
middle line, i.e. either in the gray or in the black region as
shown in the left part of Figure 3. Each such option cor-
respond to an assignment of the variable as T or F . For
each clause Cj there is a ‘horizontal path’; it connects an-
chor r(0,j) to anchor r(2n+1,j) in Figure 1. Such path must
cross a ‘horizontal line’ of the blue grid once. The number
of crossings with such horizontal path depends on where it
crosses the ‘blue line’, and tells if the clause is satisfied with
the assignment of the variables or not.

We next proceed with the formal proof. The blue graph
B = B(I) is constructed as follows; see Figure 2:

(i) Take a grid-like graph with vertices b(α,β), (α, β) ∈
[2n+2]× [2m+3], and an edge between vertices b(α,β)

and b(α′,β′) if and only if |α − α′| + |β − β′| = 1.

(ii) Remove the vertices b(2i,0) and b(2i,2m+3) for each i ∈
[n + 1].

(iii) Define as anchors the vertices b(2i+1,0) and b(2i+1,2m+3)

for each i ∈ [n], and the vertices b(0,β) and b(2n+2,β)

for each β ∈ [2m + 2] \ {0}.

(iv) Remove the edges between any two anchors.

(v) The weights of the edges are defined as follows:

– each edge adjacent to an anchor has weight w4;

– if the literal xi appears in clause Cj , then the edge
b(2i−1,2j)b(2i,2j) has weight w2 − 1;

– if the literal ¬xi appears in clause Cj , then the
edge b(2i,2j)b(2i+1,2j) has weight w2 − 1;

– the edge b(2i−1,2m+2)b(2i,2m+2) has weight w2 +
|{j | literal xi appears in Cj}|;

– the edge b(2i,2m+2)b(2i+1,2m+2) has weight w2 +
|{j | literal ¬xi appears in Cj}|;

– all other edges have weight w2.

Note that each edge in the blue graph B has weight at
least w2 −1. Hence, independently of the red graph R to be
defined below, a drawing of B with crossing number at most
k < (w2 − 1)2 has to be an embedding of B. Henceforth,
we will assume that B is anchored embedded. Note that
the graph B has a unique combinatorial embedding with
anchors because of 3-connectivity. For each variable xi, we
define two columns; see Figure 3. The column CT

i is the
region of the disk enclosed between the curves

b(2i−1,0)b(2i−1,1) . . . b(2i−1,2m+3) and

b(2i+1,0)b(2i+1,1)b(2i,1)b(2i,2) . . .

. . . b(2i,2m+2)b(2i+1,2m+2)b(2i+1,2m+3),

and the column CF
i is the region of the disk enclosed between

the curves

b(2i+1,0)b(2i+1,1) . . . b(2i+1,2m+3) and

b(2i−1,0)b(2i−1,1)b(2i,1)b(2i,2) . . .

. . . b(2i,2m+2)b(2i−1,2m+2)b(2i−1,2m+3).

The blue edges of the form b(α,β)b(α+1,β) are called hori-
zontal . The blue edges of the form b(α,β)b(α,β+1) are called
vertical . The weights of the horizontal edges b(2i−1,2j)b(2i,2j)

and b(2i−1,2m+2)b(2i,2m+2) contained in the column CT
i have

been chosen so that they add up to 2(m + 1)w2: each time
we have a −1 in the weight of b(2i−1,2j)b(2i,2j) we have a +1
in the weight of b(2i−1,2m+2)b(2i,2m+2). The same holds for

the column CF
i .

For each clause Cj , we define two rows; see Figure 3. The
upper row Uj is the region of the disk enclosed between the
curves

b(0,2j)b(1,2j) . . . b(2n+2,2j) and

b(0,2j+1)b(1,2j+1) . . . b(2n+2,2j+1),

and the lower row Lj is the region of the disk enclosed be-
tween the curves

b(0,2j−1)b(1,2j−1) . . . b(2n+2,2j−1) and

b(0,2j)b(1,2j) . . . b(2n+2,2j).

There is an additional row, called enforcing row and de-
noted by Renf , which is the region of the disk enclosed be-
tween the curves

b(0,2m+1)b(1,2m+1) . . . b(2n+2,2m+1) and

b(0,2m+2)b(1,2m+2) . . . b(2n+2,2m+2).

The role of the enforcing row Renf is to reduce the number
of possible drawings to a well-structured subset of drawings.
We will use the columns and the rows as some sort of coordi-
nate system to tell where some red vertices go. For example,
we may refer to the face CT

i ∩ Lj .
The red graph R = R(I) is constructed as follows; see

Figure 4:

(i) Take a grid-like graph with vertices r(α,β), (α, β) ∈
[2n + 1]× [m + 2], and an edge between vertices r(α,β)

and r(α′,β′) if and only if |α − α′| + |β − β′| = 1.

(ii) Remove the four vertices r(0,0), r(0,m+2), r(2n+1,0), and
r(2n+1,m+2).
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r(0,4)

r(0,3)

r(0,2)

r(0,1)

r(0,5)

r(2n+1,4)

r(2n+1,3)

r(2n+1,2)

r(2n+1,1)

r(2n+1,5)

r(x1) r(x2) r(x3) r(x4)

r
′(x1) r

′(x2) r
′(x3) r

′(x4)

Figure 1: Example of the resulting reduction for the formula on 4 variables x1, x2, x3, x4 and clauses ¬x1∨¬x3∨x4,
¬x2∨¬x4, x2∨¬x3, x1∨x2. The optimal drawing in the figure corresponds to the boolean assignment x1 = x2 = T
and x3 = x4 = F .

(iii) For each variable xi, identify the vertices r(2i−1,0) and
r(2i,0) into a new vertex called r(xi), and identify the
vertices r(2i−1,m+2) and r(2i,m+2) into a new vertex
called r′(xi). For each variable xi, the vertices r(xi)
and r′(xi) are anchors for R. The vertices r(0,j) and
r(2n+1,j) are also anchors for R, for every j ∈ [m+1] \
{0}.

(iv) Remove the edges between any two anchors.

(v) The weights of the edges are defined as follows:

– for each variable xi the edge r(2i−1,m+1)r(2i,m+1)

has weight w4;

– for each variable xi and each clause Cj the edge
r(2i−1,j)r(2i,j) has weight w − 1;

– all other edges have weight w.

For each variable xi the following two vertical paths are

important:

r(xi)r(2i−1,1)r(2i−1,2) . . . r(2i−1,m+1)r
′(xi) and

r(xi)r(2i,1)r(2i,2) . . . r(2i,m+1)r
′(xi).

We will use Vi to denote their union. For each clause Cj , we
will consider the horizontal path Hj defined by

r(0,j)r(1,j) . . . r(2n+1,j).

We also define the horizontal enforcing path Henf as

r(0,m+1)r(1,m+1) . . . r(2n+1,m+1).

The role of the horizontal enforcing path Henf will be to
reduce the number of possible drawings to a well-structured
subset of drawings.

It is important to note that the paths

V1, V2, . . . , Vn, H1, H2 . . . , Hm, Henf

form a partition of the edge set of the red graph R. Hence,
we can add the number of crossings that each of them con-
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b(2i,2j)

b(2i,2j−1)

b(2i−1,0) b(2i+1,0)

b(0,2j−1)

b(0,2j)

b(2n+2,2j−1)

b(2n+2,2j)

b(2i−1,1) b(2i,1)

b(1,2j)

b(1,2j−1)

b(2i−1,2m+2) b(2i,2m+2)

b(2i−1,2m+3) b(2i+1,2m+3)

b(2n+2,2j+1)b(0,2j+1)

b(0,2m+2) b(2n+2,2m+2)

b(2i+1,2j)

b(2i,2j+1)

r(0,j)

r(2n+1,j)

r
′(xi)

r(xi)

Figure 2: The graph B = B(I). Anchors of the red graph are included to show the cyclic ordering of AB ∪AR.
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b(2i−1,1) b(2i,1)

b(2i−1,2m+2)

b(2i,2m+2)

b(2i−1,2m+3) b(2i+1,2m+3)r
′(xi)

r(xi) b(2i+3,0)

b(2i+3,2m+3)r
′(xi+1)
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b(2i,2j−1)
b(0,2j−1)

b(0,2j)

b(1,2j−1)

b(0,2j+1)
b(2i,2j+1)

r(0,j)

Figure 3: Left: columns CT
i (lighter shading) and CF

i+1 (darker shading). Right: the upper row Uj (darker
shading) and the lower row Lj (lighter shading).
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. . .

b(2i−1,0) b(2i+1,0)

b(0,2j−1)

b(0,2j)

b(2n+2,2j−1)

b(2n+2,2j)

b(2i−1,2m+3) b(2i+1,2m+3)

b(2n+2,2j+1)b(0,2j+1)

b(0,2m+2) b(2n+2,2m+2)

r(2n+1,j)

r
′(xi)

r(xi)

r(0,j)

r(0,m+1) r(2n+1,m+1)

b(0,2m+1) b(2n+2,2m+1)

.

.

.

.

.
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.

.

.
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.

b(0,1)

b(0,2)

b(2n+2,1)

b(2n+2,2)

b(2n+2,3)b(0,3)

r(2n+1,1)

r(0,1)

...

. . .

b(2i+3,0)

b(2i+3,2m+3)r
′(xi+1)

r(xi+1)

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

r(2i,1)

r(2i−1,1)

r(2i,j)

r(2i−1,j)

r(2i,m+1)r(2i−1,m+1) Henf

Vi

H1

Henf

Vi+1

Figure 4: The graph R = R(I). Anchors of the blue graph are also included to show the cyclic order of AB∪AR.

tributes separately to obtain the crossing number of a draw-
ing. Note also, that the intersection of a vertical pair of
paths Vi and a horizontal path Hj (or Henf) always consists
of two vertices.

Let G = G(I) be the anchored graph obtained by joining
the red graph R and the blue graph B. The (clockwise)
circular ordering of the anchors along the boundary of the
disk as follows:

• For each clause Cj we have the sequence of anchors

b(0,2j−1), r(0,j), b(0,2j), b(0,2j+1),

and the sequence

b(2n+2,2j+2), b(2n+2,2j+1), r(2n+1,j), b(2n+2,2j).

Hence, the anchor r(0,j) is in the lower row Lj and
anchor r(2n+1,j) is in the upper row Uj .

• For each variable xi, the anchor r(xi) is between an-
chors b(2i−1,0) and b(2i+1,0), and the anchor r′(xi) is
between b(2i−1,2m+3) and b(2i+1,2m+3). Hence, r(xi)

and r′(xi) are in both columns CT
i and CF

i .

• Anchor r(0,m+1) is between b(0,2m+1) and b(0,2m+2), an-
chor r(2n+1,m+1) is between anchors b(2n+2,2m+2) and
b(2n+2,2m+1). Hence, anchors r(0,m+1) and r(2n+1,m+1)

are in the enforcing row Renf .

• Anchor b(0,1) comes immediately after b(1,0), anchor
b(1,2m+3) comes immediately after b(0,2m+2), anchor
b(2n+2,2m+2) comes immediately after b(2n+1,2m+3), an-
chor b(2n+1,0) comes immediately after b(2n+2,1).

This finishes the description of the graph G. We first show
the easy direction of the proof, which will also give an idea
of how the reduction works. Recall that we have defined
k = (6nm + 6n + 2m + 1)w3 − m(w2 + w − 1).

Lemma 1. If the instance I is satisfiable, then there is an
anchored drawing of G with k crossings.

Proof. We draw the blue graph B without crossings.
The corresponding embedding is unique. The red graph R
is also going to be drawn without crossings. Hence, it is
enough to describe in which face of B is each red vertex and
(when not obvious) where the red edges cross the blue edges.
See Figure 1 for a particular example. Let bi ∈ {T, F} be an
assignment for each variable xi of I that satisfies all clauses.
We draw the two red vertical paths of Vi inside the column
Cbi

i . For each clause Cj we proceed as follows. Let xt, where
t = t(j), be a variable whose value bt makes the clause Cj

true. We then draw the horizontal path Hj as follows: the
subpath of Hj between r(0,j) and r(2t−1,j) is drawn in the
lower row Lj , the edge r(2t−1,j)r(2t,j) crosses from Lj to Uj

through the blue edge in Lj ∩ Uj ∩ Cbt

t , and the subpath of
Hj between r(2t,j) and r(2n+1,j) is drawn in the upper row
Uj . The path Henf is drawn inside the row Renf . Note that
this description implicitly assigns to each non-anchor vertex
of R a face of B. The drawing can be extended to a planar
embedding of R in such a way that no red edge crosses twice
any blue edge.

Let us now compute the crossing number of the drawing
we have described. There are no monochromatic crossings in
the construction; hence we only need to count the red-blue
crossings. Each of the two paths in Vi contributes 2(m +
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1)w3 to the crossing number of the drawing: edges in Vi

have weight w, and each path in Vi crosses all the horizontal
blue edges contained in Cbi

i , whose weights add to 2(m +
1)w2. Each horizontal path Hj contributes (2n+1)w3+(w−
1)(w2 − 1) to the crossing number of the drawing: the edges
on the horizontal path Hj connecting Vi to Vi+1 have weight
w and cross 2n + 1 blue vertical edges whose weight is w2;
there is only one red edge in Hj , namely r(2t(j)−1,j)r(2t(j),j)

with weight w − 1, that crosses the boundary between rows
Li and Ui, namely at the edge of Lj ∩Uj ∩Cbt

t with weight
w2 −1 because the corresponding literal xi or ¬xi makes Cj

satisfied. The horizontal path Henf contributes (2n + 1)w3

to the crossing number of the drawing: the edges of Hj

connecting Vi to Vi+1 have weight w and cross 2n + 1 blue
edges whose weight is w2.

The crossing number of the drawing is thus

n·2·2(m+1)w3+m·
(

(2n+1)w3+(w−1)(w2−1)
)

+(2n+1)w3

which is

(6nm + 6n + 2m + 1)w3 − m(w2 + w − 1) = k.

We next have to show the reverse implication: if the an-
chored crossing number of G is at most k, then the formula
I is satisfiable. Henceforth, let us assume for the rest of
this section that acr(G) ≤ k, and let us fix an anchored
drawing D of G with at most k crossings. As mentioned
before, D cannot have any blue-blue crossing because other-
wise cr(D) > k. In principle, D could contain red-red cross-
ings; we will show below that in fact this is not possible,
and hence all crossings are red-blue. It will be convenient
to look at the number of red-blue crossings without taking
into account the weights. We refer to such crossings as un-
weighted crossings. Simple arithmetic shows the following
two properties.

Lemma 2. The drawing D has at most 6nm+6n+2m+1
unweighted red-blue crossings.

Lemma 3. (i) For each clause Cj, the horizontal path
Hj is inside the rows Uj ∪ Lj and crosses precisely
2n + 2 blue edges.

(ii) The horizontal path Henf is drawn inside the row Renf .

(iii) For each variable xi, both vertical paths of Vi are inside
the column CT

i or both are inside the column CF
i .

Lemma 4. If cr(D) ≤ k, then the instance I is satisfiable.
Moreover, the restriction of the drawing D to R or to B is
an embedding.

Proof. By Lemma 3, in the drawing D both paths in Vi

are contained either in CT
i or CF

i . Consider the assignment
where variable xi gets value bi = T if the two paths of Vi

are contained in CT
i , and bi = F otherwise. We will show

that this assignment satisfies the formula C1 ∧ · · · ∧ Cm of
the instance I .

We will use in our analysis the properties of D obtained
in Lemma 3. For a red subgraph X, let cr(X) denote the
crossing number of the subdrawing of D induced by X and
the blue graph B.

All the edges in Vi have weight w. The weights of the
horizontal blue edges contained in Cbi

i add to 2(m + 1)w2.

Furthermore, note that each of those blue horizontal edges
is crossed by each of the two paths in Vi. Therefore we have
cr(Vi) = 2·(2m+2)w3, and thus cr(

⋃

i
Vi) = (4nm+4n)w3.

We next look at Henf . All the edges from the path Henf

have weight w or w4, and hence only edges from Henf with
weight w may cross the vertical blue edges contained in the
row Renf . Inside the row Renf there are 2n + 1 vertical
blue edges of weight w2, and thus cr(Henf) = (2n + 1)w3.
Since cr(D) ≤ k and the paths V1, . . . , Vn, H1, . . . Hm, Henf

form an edge-disjoint partition of the edges of R, we have
cr(

⋃

j
Hj) + cr(

⋃

i
Vi) + cr(Henf) ≤ k, and therefore

cr(
⋃

j

Hj) ≤ k − (4nm + 2n)w3 − (2n + 1)w3 (1)

= m
(

(2n + 2)w3 − (w2 + w − 1)
)

. (2)

The edges of Hj have weight w, if they connect a vertex
in Vi ∩ Hj to a vertex in Vi+1 ∩ Hj for some i, or weight
w − 1 if they connect both vertices of Vi ∩ Hj for some
j. Because of Lemma 3, the edges with weight w − 1 are
always within the column Cbi

i for some i. This means that
the boundary any column CT

i or CF
i , which has weight w2,

is always crossed by a red edge of Hj with weight w. Let
∂j denote the boundary between the lower row Lj and the
upper row Uj . This boundary ∂j must also be crossed by
an edge of Hj , and that crossing contributes weight at least
(w − 1)(w2 − 1) to cr(Hj). We conclude that

cr(Hj) ≥ (2n + 1) · w · w2 + (w − 1)(w2 − 1)

= (2n + 2)w3 − (w2 + w − 1),

with equality if and only if the crossing between Hj and ∂j

contributes exactly (w − 1)(w2 − 1) to the crossing number.
Combining with equations (1)–(2), we see that

cr(Hj) = (2n + 2)w3 − (w2 + w − 1) (3)

for each clause Cj . Therefore, the boundary ∂j must be
crossed at a blue edge b(t,j)b(t+1,j) of weight w2 −1 by a red
edge r(2i−1,j)r(2i,j) of weight w−1. It may be that t = 2i−1
or t = 2i. Consider first the case when t = 2i − 1. By the
construction of the blue graph B, the edge b(t,j)b(t+1,j) has

weight w2 −1 because the literal xi appears in the clause Cj

of I . Moreover, the endpoints of r(2i−1,j)r(2i,j) must be in

the column CT
i since they are part of the vertical paths Vi.

Hence, the clause Cj is satisfied by the assignment xi = bi =
T we defined at the beginning of the proof. The case when
t = 2i is alike, but in this case the literal ¬xi appears in the
clause Cj of I , and we took the assignment xi = bi = F .

Finally, note that our analysis shows that in D there are
exactly k red-blue crossings, and therefore there cannot be
any red-red crossings. Hence the restriction of the drawing
D to the red graph is an embedding.

Note that the graph G can be constructed in polynomial
time and that it has weights that are polynomially bounded
in n and m. Thus, in polynomial time we can replace in G
each edge e by we parallel edges that are subdivided once,
and the resulting graph has the same anchored crossing num-
ber as G; see the discussion in the introduction. Then The-
orem 1 follows from Lemmas 1 and 4.
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3. HARDNESS OF CROSSING NUMBER
FOR NEAR-PLANAR GRAPHS

Theorem 2. Computing the crossing number of near–
planar graphs is NP-hard.

Proof. Consider an (unweighted) anchored graph G that
is decomposed into two planar anchored graphs R and B
that are vertex-disjoint. Let m denote the number of edges
of G.

Consider the weighted graph G′, without anchors, ob-
tained from G as follows: we start with G and assign weight
2m to each of its edges. For every two consecutive anchors a
and a′ of G in the cyclic ordering πG, we introduce in G′ an
edge aa′ with weight 5m4. The set of added edges defines a
cycle, which we denote by C. Finally, we choose an arbitrary
vertex r of R that is not an anchor, an arbitrary vertex b of
B that is not an anchor, and add the edge rb to G′ with unit
weight. (If all vertices of R are anchors we just subdivide
an edge and take r as the new vertex. A similar procedure
can be done with B.) This completes the description of G′.

Firstly, we show that G′ is a near-planar graph. The graph
G′−rb consists of the cycle C connecting consecutive anchors
of G, and two planar anchored graphs R and B. We can thus
embed G′ − xy taking an embedding of C in R

2, embedding
R in the disk bounded by C in R

2, and embedding B in the
exterior of the disk. Note that the embeddings of R and B
exist because they are planar anchored graphs. Since the
weight of the edge rb of G′ is one, it follows that G′ is a
near-planar graph, even when replacing each edge distinct
from rb by the corresponding number of subdivided parallel
edges.

We claim that acr(G) = bcr(G′)/(4m2)c. Consider an
optimal anchored drawing D of G in a topological disk Ω
with cr(D) = acr(G). We then extend the drawing D to
obtain a drawing D′ of G′ as follows. Pushing the inte-
rior of the edges inside Ω, we may assume that D touches
the boundary ∂Ω of Ω only at the anchors. We then draw
the edges aa′ of G′ between consecutive anchors along the
boundary of the disk Ω. Finally, we draw the edge rb so as
to minimize the number of crossings it contributes. Each
crossing of D contributes (2m)2 crossings to D′. The edge
rb can cross each edge of G′ at most once in the drawing D′

because of optimality of D′ and the drawing of rb. Therefore
cr(D′) ≤ cr(D) · 4m2 + 2m2, and thus

bcr(G′)/4m2c ≤ bcr(D′)/4m2c

≤ bacr(G) + 1/2m2c

= acr(G).

Let D′ be a drawing of G′ in the plane such that no edge
crosses itself and no two edges cross more than once. If
the cycle C is embedded and no edge of C is involved in
a crossing, then each pair of edges not in C can cross at
most once, and hence cr(D′) is upper bounded by

(

m

2

)

2m ·

2m+1 ·m ·2m < 5m4. If the restriction of D′ to C is not an
embedding or some edge of C participates in a crossing, then
cr(D′) ≥ 5m4. It follows that in every optimal drawing D′

of G′, the cycle C is embedded and no edge crosses C.
Consider now an optimal drawing D′ of G′ with cr(D′) =

cr(G′). Let Ω be the disk bounded by the image of C in
D′. Since no edge of G′ can cross an edge of C, the drawing
D′ is contained in the closure of Ω. If in D′ we remove the
image of C and the image of the edge rb, then we obtain an

anchored drawing of G, which we shall denote by D. Note
that cr(D) is equal to cr(D′) minus the number of crossings
contributed by rb and scaled down by (2m)2 because of the
weights introduced in G′. We thus have

acr(G) ≤ acr(D) ≤ cr(D′)/(4m2) = cr(G′)/(4m2),

and we may take the floor on the right-hand side because
the value is an integer. This finishes the proof of the claim
acr(G) = bcr(G′)/4m2c.

The graph G′ can be constructed from G in polynomial
time. Moreover, since the weights of G′ are polynomially
bounded, we can also replace each edge by parallel subdi-
vided edges to obtain an unweighted graph HG′ , as described
in the introduction, that satisfies cr(G′) = cr(HG′). Since
the graph HG′ is near-planar and acr(G) = bcr(HG′)/4m2c,
the result follows.

Extensions.
Our NP-hardness proof in Section 2 has the following ad-

ditional property: we know the local rotation of the edges
around each vertex in any optimal anchored drawing. This
essentially follows from Lemma 4 because R and B have a
unique anchored embedding. Hence, it is NP-hard to com-
pute the anchored crossing number restricted to drawings
that have a prescribed local rotation system in each ver-
tex. We can also make the anchored crossing number with
rotation systems to be the usual crossing number with rota-
tion systems by taking large enough weight on the edges of
the cycle C connecting the anchors, as we did in the proof
of Theorem 2. Hence, it follows that computing the cross-
ing number for graphs with prescribed rotation systems is
NP-hard. This has been shown recently in [14] using a re-
duction from Linear Arrangement. It is then possible
to replace each vertex by a 3-regular grid where the edges
are attached preserving the local rotation; the techniques is
detailed in [14]. Hence, we provide an alternative, geomet-
ric proof that crossing number of cubic graphs is NP-hard.
This settles a question of Hliněný [9], who asked if one can
prove this result by a reduction from an NP-complete prob-
lem with geometric flavor, instead of reducing from Linear

Arrangement.
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[11] P. Hliněný and G. Salazar. Approximating the
crossing number of toroidal graphs. In T. Tokuyama,
editor, ISAAC 2007, volume 4835 of LNCS, pages
148–159, 2007.

[12] K.-I. Kawarabayashi and B. Reed. Computing crossing
number in linear time. In Proc. STOC 2007, pages
382–390, 2007.

[13] B. Mohar. On the crossing number of almost planar
graphs. Informatica, 30:301–303, 2006.

[14] M. J. Pelsmajer, M. Schaefer, and D. Štefankovic.
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