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Single-shot carrier-envelope-phase measurement
in ambient air
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The ability to measure and control the carrier—envelope phase (CEP) of few-cycle laser pulses is of paramount impor-
tance for both frequency metrology and attosecond science. Here, we present a phase meter relying on CEP-dependent
photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new
device facilitates compact, single-shot CEP measurements under ambient conditions and promises CEP tagging at
repetition rates orders of magnitude higher than most conventional CEP detection schemes, as well as straightforward

implementation at longer wavelengths.
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1. INTRODUCTION

Laser sources for near single-cycle pulses in the near-infrared [1]
and infrared [2] developed in the past two decades allow the study
of light—matter interactions with a temporal resolution reaching
a few tens of attoseconds, well below the period of an optical cycle
[3]. One of the keys for achieving such high temporal resolution is
the ability to control the carrier—envelope phase (CEP) of the laser
pulses. Mathematically, the electric field of a Fourier-limited laser
pulse, propagating in the z direction, can be described as
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where Ej is the electric field amplitude, ¢ the ellipticity, @ the
carrier frequency, T the pulse duration, and ¢ the CEP. While
the pulse envelope remains rather stable from shot to shot, the
CEP is prone to vary due to fluctuations of dispersion, caused by
changes in path length, and pump energy experienced by consecu-
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tive pulses in a pulse train. Fluctuations in the CEP translate into
variations in the electric field that hamper shot-to-shot reproduc-
ibility of the experimental conditions and deteriorate the temporal
resolution.

Therefore, it is of importance to measure and stabilize the CEP
accordingly. Several schemes have been devised to measure the
CEP. The f-2f technique, for example, relies on the spectral inter-
ference of the fundamental and second harmonic of sufficiently
broadband fields [4-7]. Recent developments of the technique
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towards 100 kHz acquisition rate and beyond include the use of a
fast CCD [8], spatial sampling with a grating and a fast photomul-
tiplier [9,10], or temporal dispersion with a telecom fiber and fast
photodiode detection (TOUCAN) [11]. Still, transposing these
techniques to different spectral regions is challenging.

Another well-established and widely used technique in the
last decade relies on above-threshold ionizatin (ATI) of rare gas
atoms (typically xenon). While the use of ATI was initially pro-
posed for both circularly [12] and linearly [13] polarized pulses,
its implementation known as the stereo-ATT phase meter [14]
relies on time-of-flight (TOF) measurements of rescattered ATI
electrons ionized by linearly polarized pulses. This technique has
facilitated single-shot CEP measurement [15] at repetition rates up
to 100 kHz [16], and has allowed major breakthroughs in the study
of field-driven dynamics in atoms [17-20], molecules [21-23],
nanostructures [24,25], and solids [26,27]. Despite its great suc-
cess, the stereo-ATT phase meter is a rather sophisticated apparatus
relying on high-vacuum components and microchannel-plate
detectors needed for electron TOF measurements. Additionally,
the fast decrease in the rescattering plateau signal with increasing
wavelength [28] makes the extension of the stereo-ATT phase meter
to longer wavelengths very challenging [29].

Therefore, the development of a more compact, single-shot
CEP measurement technique that can be reduced in terms of
complexity and extended in its wavelength range (and potentially
operate at higher repetition rates than the stereo-ATT phase meter)
is highly desirable. It has been demonstrated that strong field exci-
tation and ballistic light field acceleration of the conduction band
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Fig.1. (a) Experimental setup. Few-cycle laser pulses are sent through a
quarter-wave plate to convert their linear polarization to near circular, and
focused into ambient air in the gap between three metal electrodes: two
tip-shaped electrodes and a ground electrode. A movable pair of wedges
is used to change the dispersion in the beam path. (b) Detailed view
of the focus position in the gap between the electrodes. (c) Single-shot
current signal flowing between the tips and ground (GND). The signal is
integrated over the yellow region.

population in a wide bandgap solid can produce an electric current,
whose direction and amplitude relate to the CEP of the laser pulse
[30]. These currents can be detected using electronic amplifiers
enabling the measurement of the CEP [31]. Single-shot sensitivity
has, however, so far not been achieved with this technique.

The use of circularly polarized input pulses offers several
advantages over a linearly polarized input [12,32,33]. During
strong-field ionization of a single atom in a circularly polarized laser
pulse, electrons are preferentially emitted in the polarization plane.
When the Coulomb interaction with the ionic core is neglected,
their drift momentum is perpendicular to the direction of the
maximum electric field. Thus, the CEP can be directly retrieved
from the preferred electron emission direction, since in this case it
coincides with the angle of the maximum electric field. In general,
the emission direction will coincide with the CEP up to a constant
offset value [32]. ATI-based CEP measurements using circularly
polarized pulses have been simulated [32] and tested experimen-
tally [34]. However, the elimination of the TOF measurement with
a circular-polarization phase meter (CP phase meter) allows the
implementation of much simpler CEP measurement devices, as
proposed in the present work. Alternatively, it has been shown that
CEP measurements can also be done by sampling the THz pulses
emitted from laser-generated ambient air plasma [35-37]. Here,
we demonstrate a compact single-shot CP phase meter relying on
the measurement of transient electrical currents in ambient air
plasma. This new device is potentially the simplest conceivable
implementation of the CP phase meter [32]. Combining the
advantages of circular polarization and electric detection, it enables
a straightforward, single-shot CEP measurement under ambient
conditions. The acquisition rate is limited only by the bandwidth
of the high-gain electric amplifiers (currently MHz rates). The
fact that the concept relies on direct ionization makes it easily
extendable to pulses with longer wavelengths with comparable
peak intensities.

2. EXPERIMENTAL SETUP

The experimental setup for the single-shot CEP characterization in
airis shown in Fig. 1(a).

Circularly polarized few-cycle laser pulses are focused to a spot
size of 32 wm full width at half maximum (FWHM) between three
metal electrodes: two tip-shaped electrodes separated by 60 pm
and a third larger, planar electrode positioned 90 pm below the two
tips [see Fig. 1(b)]. In the focus, the laser pulses reach peak inten-
sities of about 2 x 10" W cm™ and ionize ambient air, inducing
a transient current. For each laser pulse, the CEP-dependent
direction of the transient current vector is probed by measuring
the currents /; and I, flowing between each of the two tips and
the ground electrode. The currents are amplified by a factor of
10’ V/A with a transimpedance amplifier. The two amplified
single-shot signals [cf. Fig. 1(c)], one for each tip [blue and red cir-
cuitsin Fig. 1(a)], are then integrated using a boxcar integrator. The
boxcar DC voltage outputs Q; and Q,, which are proportional to
the charges flowing in the two circuits, are recorded for each laser
shot using a data acquisition (DAQ) card.

The laser system used in the present study is a 10 kHz
titanium:sapphire chirped-pulse amplification (CPA) system
(Spectra Physics, Femtopower HR CEP4) that delivers CEP
stable (down to ca. 100 mrad rms [8]) pulses with 700 pJ pulse
energy, sub-25 fs pulse duration, and a central wavelength of about
780 nm. The output pulses are spectrally broadened in a gas-filled
hollow-core fiber and compressed with a combination of chirped
mirrors and fused silica wedges to sub-two-cycle duration, typi-
cally 4 fs (FWHM intensity envelope). The central wavelength is
750 nm. Pulses with an energy of about 100 ] are sent through a
broadband quarter-wave plate to convert their polarization from
linear to near circular (¢ = 0.84) and are focused in between the
electrodes with a spherical silver mirror (/= 350 mm). The CEP
is controlled by changing the dispersion in the stretcher of the CPA
multi-pass amplifier.

3. RESULT

The measured signals Q; and Q; are plotted in Fig. 2(a) for a series
of 1650 consecutive laser shots, recorded while linearly changing
the CEP from 0 to 2.

Both signals were centered by subtraction of the CEP averaged
value and normalized in amplitude. Note that both the offset sub-
traction and the normalization do not require a stable CEP and can
be performed in the same way for a pulse sequence with a randomly
fluctuating CEP. The CEP-dependent signals Q; and Q; oscillate
out of phase with a phase shift of 92°, close to what is expected for
perfect positioning of the laser focus, where the angle between the
lines connecting the injection point with the two electrodes spans
90° [32].

As for stereo-ATI phase meter measurements, Q; and Q;
can be plotted parametrically as a function of their polar angles
0 =arctan 2(Qy, Qy) and » =/ Q} + Q3 [see Fig. 2(b)]. The
quantity 47 /r = 0.107 rad provides a lower limit for the uncer-
tainty of the measurement in Fig. 2(b) [38]. While the CEP is a
monotonic function ¢ (0) of the polar angle 6 in the parametric
plot in Fig. 2(b), this function is not necessarily linear. Deviation
from a linear relation may have different causes, including a slight
ellipticity of the input pulse polarization, and a focus that is not
perfectly centered in the gap. This is analogous to the stereo-ATT
phase meter, where the shape of the parametric plot depends on
the exact experimental conditions such as the position of the TOF
integration gates [38]. Fortunately, in either case, the exact shape
of the parametric plot is not important for the measurement, as
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Fig. 2. (a) Single-shot signal Q; (blue) and Q, (red) recorded while
linearly scanning the CEP from 0 to 27. (b) Single-shot parametric plot
recorded while scanning the CEP from 0 to 27 and back. The standard
deviation dr of the radius is indicated by the two red arrows.

the CEP can be retrieved from the polar angle via a rebinning pro-
cedure [15]. The latter relies on the assumption that all CEP values
are equally probable within the CEP scan, which is well fulfilled
in the present experiment. The dependence of the CEP on the
polar angle is then simply obtained by sorting the polar angles in
ascending order over the range of the scan and mapping them onto
alinear CEP interval from — to 7. Note that the retrieved CEP is
determined up to a constant offset, which, for the sake of clarity, is
ignored in the following discussions.

In order to determine the precision of the measurement, we
compare in Fig. 3(a) the retrieved CEP to its nominal value, which
(for a perfectly stable CEP) is inferred from the known dispersion
introduced in the stretcher. The latter is varied as a triangular
function of time to generate a uniform CEP distribution between
— and 7. The calibration function ¢ () was determined for each
oscillation period of the triangular waveform with the method
described above. An upper limit for the uncertainty of the mea-
surement is calculated as the standard deviation of the difference
between the measured and the nominal CEP curves [shown in
Fig. 3(b)]. For the data in Fig. 2(b), we obtain an upper limit
of 206 mrad. On longer time scales, the accuracy evolves from
211 mrad on the time scale of a few seconds [data of Fig. 3(a)] to
356 mrad for an acquisition time of one minute. The limited mea-
surement accuracy on long time scales arises mainly from the beam
pointing fluctuations, which are critical considering the small
(~ 90 um) gap size between the electrodes. Operation over longer
time scales would require a better beam stabilization scheme.

Even though the stability of the measurement and the signal-to-
noise ratio can still be improved, the performance of the new CP
phase meter is already comparable to that of the stereo-ATT phase
meter. Importantly, the sensitivity of the measurement increases
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Fig.3. (a) Measured CEP while sweeping it with a triangular function
from — to 7. The dashed red line was obtained by fitting the constant
phase of the 3 Hz triangle function to the data points. (b) Difference
between the fitted and measured triangular wave. The blue line represents
the averaged value over 100 ms.
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Fig. 4. Lower panels: raw single-shot signals (gray scatter plots) and
averaged signal (solid lines) recorded while linearly changing the amount
of dispersive material in the beam path. The signals exhibit a phase shift
close to 90°, indicated by the dashed lines. Upper panel: Fourier-limited
pulse (3.5 fs intensity FWHM) calculated from the measured laser spec-
trum (center) and simulated pulses after propagation through 200 pm less
(left) or 200 wm more (right) fused silica (9.3 fs intensity FWHM).

towards shorter pulse duration, while still supporting measure-
ments with chirped six-cycle (10 fs) pulses. This is illustrated in
Fig. 4, where the signals Q; and Q; are plotted as a function of the
pulse propagation distance through glass (see also Supplement 1).
The most important asset of the new technique, besides its
striking simplicity, is its potential for single-shot CEP measure-
ments at much higher repetition rates than achievable with today’s
techniques. Unlike the stereo-ATI phase meter, which is intrin-
sically limited to a few hundred kHz by TOF measurement, the
new technique, is limited only by the gain-bandwidth product
of the amplifier. Given the 2 ps duration of the amplified current
signal [cf. Fig. 1(c)], the technique can be readily implemented
at more than 100 kHz with commercially available integrators.
For an implementation at multi-MHz repetition rates, possible
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limitations due to the finite plasma relaxation time [39] may have
to be considered.

4. SUMMARY AND CONCLUSION

We have demonstrated a simple implementation of the CP phase
meter, which enables single-shot CEP measurement with a preci-
sion of about 200 mrad. While the performance of our prototype
is comparable to that of the widespread stereo-ATT phase meter,
its complexity is dramatically reduced since it consists only of a
centimeter-sized setup that works in ambient air. Since the mea-
surement rate is limited only by the bandwidth of the current
amplifier, the technique can easily be applied at a repetition rate of
100 kHz and beyond. In addition, since the CP phase meter does
not rely on the rescattering process, it is also applicable at longer
wavelengths. The new technique thus represents an appealing
alternative to the rather complex high-vacuum apparatus used
nowadays for single-shot CEP detection.
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