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We introduce fractal geometry to the common bowtie antenna and investigate the influence of a key

fractal parameter, Hausdorff dimension, on the broadband spectral response of the antenna. Length

scaling trends are presented for antennas having various Hausdorff dimensions. We show that

antennas with Pascal’s triangle geometry accommodate resonances that are red-shifted when

compared to a standard bowtie antenna having the same size. Furthermore, increasing the Hausdorff

dimension of the antenna blue shifts its resonance. By designing nanoplasmonic antennas with

Pascal’s triangle geometry, the resonance conditions may be varied while the antenna dimensions are

kept constant. VC 2011 American Institute of Physics. [doi:10.1063/1.3605570]

Plasmonic antennas can be used to confine electromag-

netic energy to a sub-wavelength scale in all three spatial

dimensions.1–5 In general, these antennas are composed of

one or more noble metal nanostructures that support a

geometry-dependent plasmon resonance. Driving the antenna

at this resonance enhances incident electric fields by two

orders of magnitude in the antenna gap and allows access to

weak physical effects that would be unobservable with a

standard light source.6,7 Typical antenna geometries consist

of rods, spheres or triangles. Interestingly, the broadband

spectral response of radio-frequency, microwave, and tera-

hertz antennas has been shown to depend strongly on the

antenna geometry.8,9 As such, the operating frequency of the

antenna and other important antenna properties may be con-

trolled by carefully designing its shape. Unlike their micro-

wave antenna counterparts, developments in plasmonic

antennas have produced relatively little geometric diversity.

When considering antennas for optical and infrared wave-

lengths, the antenna length shrinks to nanometers or micro-

meters, making it difficult to investigate anything but the

simplest designs, such as a bowtie or dipole antenna. Only

recently have fabrication techniques such as electron beam

lithography and focused ion beam lithography made it possi-

ble to define complex shapes with features on the order of

tens of nanometers. An interesting class of antenna geometry

that has been investigated in the microwave frequency range

is fractal antennas.10,11

Recently, the influence of fractal iteration on the opera-

tion of Sierpiński triangle antennas resonant in the near- to

mid-infrared was investigated, and it was found that increas-

ing the iteration yields red-shifted resonance conditions.12

These investigations were performed for a fixed Hausdorff

dimension (i.e., D ¼ 1.585). However, it is more fundamen-

tal to examine the influence of the Hausdorff dimension on

the antenna performance. In this paper, we demonstrate that

fractal antennas of varying Hausdorff dimensions consis-

tently exhibit red-shifted resonance conditions when com-

pared to a bowtie antenna of the same size and we

investigate the relationship between the Hausdorff dimension

and the antenna resonance.

Fractals are different from standard geometric shapes

such as polygons and arcs because they contain infinite detail

and as one magnifies a fractal structure further and further,

the new details that appear have the same form as those in

the parent structure. In this respect, fractals are said to be

self-similar on multiple length scales. A fractal may be rep-

resented by a basis shape and an operator that acts iteratively

on that shape. One well-known fractal is Sierpiński’s trian-

gle, shown in Figs. 1(a)–1(d), whose basis shape is a triangle.

Going from the basis shape in Fig. 1(a) to the first iteration

shape in Fig. 1(b), three triangles, each one-quarter of the

area of the original triangle, are arranged to fill the outline of

FIG. 1. (Color online) (a) Sierpiński triangle basis shape and (b)-(d) first

three iterations of Sierpiński triangle. (e)-(h) Modulus M ¼ 2, 3, 4, and 5

Pascal’s triangles, respectively. (i) The relationship between modulus and

Hausdorff dimension for a Pascal triangle.

a)Author to whom correspondence should be addressed. Electronic mail:

hiroaki@ee.t.u-tokyo.ac.jp.
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the original triangle. In subsequent iterations, this same oper-

ation is applied to each triangle that composes the fractal.

The common bowtie antenna is shown in Fig. 2(a). Placing

two Sierpiński triangles next to one another produces a struc-

ture that is similar to the bowtie antenna, but contains fractal

features, as shown in Fig. 2(b).

A fundamental parameter of a fractal is the Hausdorff

dimension, which describes how the length scale decreases

as the iteration increases and how the number of features

composing the fractal multiplies as the iteration

increases.13,14 In performing an investigation into the rela-

tionship between Hausdorff dimension and antenna perform-

ance, it would be ideal to keep the antenna outline constant

while modifying only the internal structure of the antenna to

vary the Hausdorff dimension. A geometric abstraction of

Sierpiński’s triangle that satisfies this requirement is a class

of triangles known as Pascal’s triangles. The first four mod-

uli of Pascal’s triangles are shown in Figs. 1(e)–1(h). As the

modulus, M, increases, the size of the triangle that makes up

the structure decreases and the number of triangles compos-

ing the structure increases. The Hausdorff dimension can be

related to the modulus by the following formula:

D ¼
log

XM

m¼1

m

 !

logðMÞ :

This relationship is plotted in Fig. 1(i). Notably, Sierpiń-

ski’s triangle is a modulus two (M ¼ 2) Pascal’s triangle.

Schematic depictions of antenna geometries for the second

(M ¼ 2), third (M ¼ 3), and fourth (M ¼ 4) moduli of Pas-

cal’s triangle are shown in Figs. 2(b)–2(d).

Although an antenna may support more than one reso-

nance, we only consider the resonance with the greatest am-

plitude. This occurs at a longer wavelength (typically 1.0 lm

� k � 3.0 lm) than the weaker resonances (typically k �
1.0 lm), and therefore, makes the most efficient use of the

antenna footprint. For example, the primary resonance of an

M ¼ 3 antenna with length, L ¼ 475 nm, is at k¼ 2.01 lm,

as shown in Fig. 3. Increasing the modulus to M ¼ 4, 5, and

6 produces resonances at k¼ 1.98 lm, k¼ 1.93 lm, and

k¼ 1.91 lm, respectively, also shown in Fig. 3. A simple

bowtie antenna with L ¼ 475 nm is found to resonate at

k¼ 1.41 lm. Therefore, bowtie antennas with Pascal’s trian-

gle geometry produce resonances that are substantially red-

shifted relative to a standard bowtie antenna. Notably, the

observed 50% change in the resonance frequency allows

these antennas to operate at longer wavelengths without

increasing the size of the antenna. This unique feature allows

the antenna to confine light of a longer wavelength to the

same nanoscale dimensions as a bowtie antenna.

Logarithmic plots of the near-field intensity distribution

of modulus M ¼ 3, 4, and 5 antennas at their resonances are

shown in Figs. 4(a) 4(c), and 4(e) respectively. These

FIG. 2. (Color online) Schematic representation of (a) bowtie antenna and

bowtie antennas with Pascal’s triangle modulus (b) M ¼ 2, (c) M ¼ 3, and

(d) M ¼ 4 geometry.

FIG. 3. (Color online) Broadband enhancement factor for a bowtie antenna

with L ¼ 475 nm, along with M ¼ {3,4,5,6} antennas with L ¼ 475 nm.

FIG. 4. (Color online) Logarithmic scale intensity distributions for (a)

M ¼ 3, (c) M ¼ 4, and (e) M ¼ 5 antennas. Intensity distributions are nor-

malized to the input excitation. Directivity plots for (b) M ¼ 3, (d) M ¼ 4,

and (f) M ¼ 5 antennas. Directivity plots of a bowtie antenna are included

for reference.
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distributions are normalized to the amplitude of the input ex-

citation. Regardless of the value of M, the incident electro-

magnetic energy is largely confined to the antenna gap and

not to other regions of the antenna. Directivity plots of mod-

ulus M ¼ 3, 4, and 5 antennas at their resonances are shown

in Figs. 4(b) 4(d), and 4(f), respectively, along with the di-

rectivity plot of a bowtie antenna for reference. Introducing

fractal geometry to the antenna tends to widen the main lobe,

increase the amplitude of the back lobe, and increase the am-

plitude of the side lobes when compared to a bowtie antenna.

For example, modulus {3, 4, 5} antennas have half-power

beam widths of {69.8�, 50.5�, 65.2�}, whereas a bowtie

antenna has a half-power beam width of 43.4�. Although the

directivity of the fractal antennas is inferior to the bowtie

antenna, it is evident from the plots that strong directivity is

present and that they are functional antennas.

A total of fifty-five antenna structures with moduli in the

range 2 � M � 10 and lengths in the range 175 � L � 725

nm are used to investigate the influence of Hausdorff dimen-

sion on the antenna behavior. As a typical example, the reso-

nant wavelength is plotted versus the Hausdorff dimension

for a constant antenna length, L ¼ 475 nm, and it is observed

that as the Hausdorff dimension increases, the resonant

wavelength decreases in a manner that is approximately par-

abolic, as shown in Fig. 5(a). Considering the converse, we

plot the resonant wavelength versus the antenna length for a

constant modulus, M ¼ 4, as shown in Fig. 5(b). In the same

manner as a standard bowtie antenna (also shown in

Fig. 5(b)), the resonant wavelength scales linearly with the

antenna length. A paraboloid of the form k¼ c1L2 þ c2L þ
c3D2 þ c4D þ c5LD þ c6 is fit to data from the 55 antennas

with {c1,c2,c3,c4,c5,c6} ¼ {�1.43 � 10�5, 7.92, �3.53 � 103,

1.22 � 105, �3.03, �1.00 � 105} and R2 ¼ 0.994, where D is

the Hausdorff dimension. This surface is shown in Fig. 5(c).

Examining this plot, it can be observed that the antenna length

is a sensitive parameter for adjusting the resonant wavelength,

regardless of the Hausdorff dimension. Interestingly, the

Hausdorff dimension can equally be used to achieve fine tun-

ing of the antenna resonance.

Changing the Hausdorff dimension of the Pascal’s trian-

gles composing an antenna modifies the internal structure of

the antenna while keeping its outline shape constant. A Pas-

cal’s triangle can be viewed as a periodic lattice of smaller

triangles. Increasing the Hausdorff dimension decreases the

lattice period and increases the overall number of smaller tri-

angles in the structure. When excited at resonance, the entire

lattice of triangles must become polarized. The smaller trian-

gles require a shorter wavelength for resonant polarization,

so the resonance shifts to the blue.

In conclusion, we have investigated the operation of

plasmonic bowtie antennas that have been modified to

include Pascal’s triangle geometry. Length-scaling trends for

antennas with various Hausdorff dimensions have been pre-

sented, as has the influence of Hausdorff dimension on the

antenna resonance conditions. We anticipate that the results

from this investigation will contribute to both theoretical and

experimental investigations into plasmonic antennas with

fractal and other complex geometries.
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FIG. 5. (Color online) (a) Resonant wavelength versus modulus for L ¼ 475

nm (constant). A parabolic trend line is included. (b) Resonant wavelength

versus antenna length for M ¼ 4 (constant). The trend for a bowtie antenna

is shown for comparison. (c) Paraboloid surface-fit to resonant wavelengths

of 55 antennas that were simulated.
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