
IMPROVING THE TACTICAL AWARENESS OF
DEEP NEURAL NETWORK CHESS ENGINES

Mateen Ulhaq

April 19, 2021

Abstract—Deep neural network chess engines demon-
strate a unique capacity for a positional understanding
and long-term judgements not often seen in classical chess
engines. Unfortunately, their tactical awareness is compar-
atively lacking: deep reinforcement learning-based chess
engines miss relatively simple two-move and three-move
tactical combinations and forced checkmates that classical
chess engines often find quite quickly. This paper proposes
methods to remedy this problem by introducing tactical
data samples into the datasets that deep reinforcement
learning-based chess engines are trained on. In particular,
this paper demonstrates that a simplified and significantly
smaller network architecture is capable of identifying the
correct piece to move in tactical positions with a top-1
accuracy of 67% and a top-3 accuracy of 96%. Inclusion
of tactically-aware sub-networks and training techniques
can likely lead to stronger chess engines overall.

I. INTRODUCTION

The recent advances in deep learning based chess
engines have excited many enthusiasts within the chess
engine community. These have brought to light interest-
ing ideas and offered fresh perspectives in engine design.
Indeed, even the dominant classical engine Stockfish [1]
has adopted small neural network architectures to replace
its evaluation head. Stockfish 13 was released with Effi-
ciently Updatable Neural Networks (NNUE) [2], effec-
tively demonstrating a surprisingly significant increase
in engine strength over the purely classical predecessors.
As human expert capacity reaches its limits for classical
engine programmers, the need for learned architectures
increases. Neural networks for chess are here to stay in
one way or another.

A. Related works

One of the early works which sparked interest in deep
learning for chess engines was the AlphaZero [3] engine.
In December 2017, DeepMind demonstrated that with

40000 TPU-hours of training, a neural network-based
chess engine could compete on-par with the state-of-the-
art classical engine at the time, Stockfish 8. AlphaZero
used a search algorithm based on PUCT (Polynomial
Upper Confidence Trees) [4], which was a domain-
specific improvement over Monte Carlo Tree Search
(MCTS) that was used in AlphaGo [5]. In PUCT search,
chess position nodes are expanded depending on the
UCB (upper confidence bound) metric,

UCB =
Wins
Trials

+ λ

√
ln (Trialsparent)

Trials
,

which is a summation of the predicted win ratio for
a given node’s descendants and an upper confidence
term that shrinks as more decendants are expanded in
relation to the parent node, where λ is some exploration
parameter. The network is used to provide policy and
value assessments at each node, which determine which
nodes to expand next and provide a score for the
likelihood of the node representing a winnable chess
position. The network was trained via a well-known
technique from deep reinforcement learning: supervised
updates were applied to the network using training data
generated through engine self-play with that network.
At each iteration, the updated network was used to
generate further training data through self-play. The
network architecture itself will be further discussed in
Section II.

The success of AlphaZero sparked considerable in-
terest in the chess engine community. In January 2018,
Leela Chess Zero [6] (often abbreviated LCZero or
Lc0), a new community-run project, was announced to
replicate the results of AlphaZero. Since the computing
resources required for this project are enormous, all
training and self-play data generation is done by a dis-
tributed community effort. Over the last two years, Leela
Chess Zero has made novel changes to its architecture,
namely the introduction of Squeeze-and-Excitation (SE)

1

2

blocks [7], which allow feature maps to control the
strength of their responses via trainable embeddings.
Further changes include exploration of output formats
for the policy and value heads.

B. Towards better tactical awareness

One well-known problem in Leela Chess Zero is
that “shallow tactics” consisting of as few as simple
two-move combinations are sometimes missed [8], [9].
Though the policy network performs exceedingly well
at positional play and long-term judgements, this lack
of short-term tactical awareness puts the network at a
severe disadvantage against classical engines, which are
nearly always very quick at finding forced tactical lines
and mates, even several moves deep.

This work proposes one way to remedy this: by
training specifically on classes of problems that the
model finds difficulty in, it will be less likely to miss
such tactics. For comparison, human grandmasters often
also train on a healthy balance of tactical problems,
in addition to learning from real games. Since training
on the Leela Chess Zero architecture is a somewhat
costly process, this paper is satisfied with presenting a
smaller proof-of-concept. A simplified architecture based
on the Leela Chess Zero architecture is used to assess
a network’s capacity to identify the most likely piece to
move in a tactical position.

II. METHODS

Tactics puzzles were taken from the lichess puzzles
database [10], containing 1 million unique puzzles. Data
was cleaned to put it into a usable format. In particular,
the data comes with FEN positions of the move before
the opponent’s “blunder” that prompts the tactic. This
was fixed by applying the first blunder to the position
and updating the FEN position. The initial best moves
for each of the tactical lines were also extracted.

A representation for boards consists of one-hot en-
coded 8x8 boards (similar to “bitboards” in chess pro-
gramming literature). A separate 8x8 board is used for
each piece type (pawn, knight, bishop, rook, queen, king)
and each color (black, white), producing a total of 12
separate 8x8 boards. This is visualized in Figure 1. In
Leela Chess Zero, a game history prior of the 8 latest
moves is also taken as input. However, tactics are much
more short-term and rapidly fluctuate across positions,

Figure 1. All 12 8x8 boards visualized for the standard starting po-
sition, rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR
w KQkq - 0 1 (FEN). Entries labelled “1” represent the presence
of that particular piece type on that square.

so a history prior is unlikely to help, except for perhaps
the previous move’s “blunder”. In addition, game details
such as castling rights and the 50-move-rule have been
omitted since all input tactical positions assume full
castling rights (if valid) and absence of the 50-move-rule.
Thus, to simplify and reduce the size of the architecture,
this paper only uses a 12× 8× 8 tensor as input to the
network. It may later be adopted into a full 112×8×8-
input network by simply initializing the weights that are
related to the other input channels to 0.

Much of the network architecture this work uses is
similar to the Leela Chess Zero architecture [11] —
which, in turn, is similar to the AlphaGo Zero network
architecture shown in Figure 2. Indeed, all architectures
take a game state as an input. This is then processed
through a “residual tower” of duplicated residual blocks.
Each residual block outputs a C × 8× 8 tensor, and its
non-identity branch is comprised of conv + BatchNorm
+ ReLU + conv + BatchNorm layers. Following the
addition of the identity and non-identity branches, a
ReLU activation is applied. All convolutional layers are
padded 3x3, in an effort to maintain a 8x8 board shape
within the features.

The output of the residual tower is a common feature
set. This C×8×8 tensor is then passed to various output
“heads”, in a manner akin to multi-task learning. Both
Leela Chess Zero and AlphaZero use a policy head and
a value head, though this work differs in this respect.
In this work, the policy and value heads have been
removed. Substituted in their place is a “piece head”,
which outputs an 8x8 board probability map identifying
the most likely piece to move.

This work proposes a “piece head” that takes a
C × 8 × 8 feature tensor and transforms it to a 8 × 8
probability map by way of a convolutional layer and

3

Figure 2. AlphaGo Zero network architecture. There are many similar-
ities between the AlphaGo Zero and Leela Chess Zero architectures.
Both architectures input a game state into the convolutional neural
network. This game state is processed through a “residual tower”,
which acts as a feature extractor consisting of a number of residual
blocks. The C × 8× 8 (in C ×H ×W format) output tensor of the
residual tower is then passed into the output “heads”, namely a “policy
head” to determine the best move and a “value head” to assign a score
to the input state. Picture adapted from [12].

dense layer. Training this head (along with the rest of the
deep network) is equivalent to a traditional multi-class
classification problem, so cross-entropy with softmax is
used for the loss function.

III. EXPERIMENTS AND RESULTS

The cleaned dataset of 1 million tactics positions
was shuffled and split into a 70%-20%-10% train-test-
validation split. The data was trained in batches of size
1024 with an AdamW optimizer with a weight decay
parameter of 10−2 acting as a L2 regularizer integrated
within the optimizer itself. A learning rate of 10−5 was
used since larger learning rates saturated very quickly
in very few epochs at a top-1 accuracy of roughly 50%.
To improve generalization, Stochastic Weight Averaging

Figure 3. Loss curves for validation and training sets.

Figure 4. Top-1 accuracy curves for validation and training sets.

(SWA) [13] was also applied to enforce a weighted
moving average of the weights.

After 190 epochs, the network reached a top-1 accu-
racy of 69% on the training set; for validation, it reached
a top-1 accuracy of 67% and a top-3 accuracy of 96%.
The loss curves are shown shown in Figure 3 and top-1
accuracy curves in Figure 4. These are discussed below.

IV. DISCUSSION

The training and validation losses both continue to
fall. Indeed, because the validation loss continues to
decrease, it is unlikely that the network has been overfit.
Though the training was stopped here, the validation top-

4

1 accuracy still appears to be growing linearly at a rate
of 2% every 100 epochs. (This was measured over the
last 50 epochs.) However, the growth rate is decaying, so
it is unlikely that top-1 accuracy will experience much
further growth.

Though the results look promising, one might ask:
is the network simply naively learning to select pieces
which are often involved in tactical situations? In de-
scending order, the attacking pieces are most often
queens and knights, with rooks and bishops to follow.
Pawn attackers are largely absent from the dataset: likely,
this is because pawns often function in a positional
way, and only play supporting roles in tactics. Kings,
of course, are much more often the subject of attacks!
Likely, this is one of the reasons why classical chess
engines have been parameter-tuned so that their weight-
ing functions heavily depend on factors influencing king
safety, particularly in the presence of an enemy queen.

Perhaps this is a large part of what the presented
network is doing: merely learning to identify the most
problematic pieces, given the presence of other pieces.
This is of course done without human expert guidance,
so there are perhaps novel relationships the network may
also have discovered. Perhaps additional research and
investigation are required. Indeed, one could investigate
if a simple dense network architecture is capable of
learning to solve the same tactical problems by way of
an input representation that only provides information
on whether a piece is on the board or not.

However, the fact that key insights such as this
have not been addressed architecturally by the current
dominant chess engine architectures suggests that there
is significant room for improvement. Classical engines
benefit greatly from decades of human expert program-
mers improving engine technology by discovering highly
domain-specific methods, representations, and encod-
ings. The lack of application of such domain-specific
knowledge and data-driven design shows that there are
great advances waiting to be made within this field.

V. CONCLUSION

This work investigated a “piece head” approach to-
wards improving tactical awareness of deep reinforce-
ment learning-based chess engines. It found that even
a greatly simplified network architecture is capable of
learning from a relatively small dataset (1 million sam-
ples). The simplified model managed to identify the

correct piece with a top-1 accuracy of 67% and a top-
3 accuracy of 96%. This proof-of-concept demonstrates
that the larger, deeper network architectures used by real-
world neural network chess engines — which this work
was based on — should be capable of learning, at the
very least, from similar techniques.

A. Future work

There are many ideas which have not yet been tried
within deep reinforcement learning-based chess engines
— or at any rate, they remain unpublished. Some promis-
ing ideas that the author proposes in regards to improving
tactical awareness are outlined below.

1) Integrating proposed sub-network into primary ar-
chitecture: It still needs to be shown that integrating
the tactically-aware sub-network into the primary Leela
Chess Zero architecture can lead to real-world improve-
ments. The output of a “piece head” trained on tactics
samples (as proposed by this work) may be added or
multiplied to the policy head in an appropriate manner so
as to improve the policy network’s suggestions for node
expansion. The piece head may be trained separately
from the network, using the pre-trained network as a
feature extractor. A technique along these lines could
significantly improve “shallow tactics” performance at
very little additional cost. Alternatively, a “zero-cost”
solution would involve merging tactical problems into
the dataset. However, this presents a class imbalance
problem, since the tactics problems dataset is much
smaller than the self-play generated dataset. The next
point proposes a similar type of solution without this
problem.

2) Verifying training data using classical engines for
analysis: Classical engines are significantly better at tac-
tical awareness, and often require very little computation
to determine a good policy in most kinds of tactical
situations. Thus, training data could be verified by a
“quick” one-second analysis. This would help identify
tactics that were missed by the network, so that the
win/draw/loss (WDL) labelling of the training data could
be appropriately corrected. This would likely lead to bet-
ter tactical awareness since the training data itself would
not contain obvious tactical errors! Self-play data with
corrected errors could be further trained upon frequently
to present the network with more challenging samples to
learn from. Furthermore, this is far less computationally
expensive than the process of generating the training

5

games themselves via self-play, so it is a comparatively
small resource drain.

3) Input over-parameterization via attack maps: A
history prior consisting of moves other than the one
immediately preceding the present position is fairly
unhelpful in the majority of tactical problems. However,
one technique often used by classical chess engine
developers are “attack maps” [14]. These are bitboard-
based encodings that highlight squares (or enemy pieces)
that a given piece attacks. Introducing predetermined
encodings of this nature could have multiple benefits,
including: reducing the required depth of the network
(so that it no longer needs to dedicate layers towards
determining these internally), improving tactical vision,
and reducing runtime computational costs (since these
encodings can be determined within nanoseconds via
well-known bit-masking techniques). These would in-
crease the input size of the architecture, though as
Stockfish with NNUE (cited above) has shown, over-
parameterized inputs allow for much smaller networks.

REFERENCES

[1] M. Costalba, J. Kiiski, G. Linscott, T. Romstad,
S. Nicolet, S. Geschwentner, and J. VandeVondele,
Stockfish, version 13, Feb. 19, 2021. [Online].
Available: https://stockfishchess.org/.

[2] Y. Nasu, NNUE efficiently updatable neural-
network based evaluation functions for computer
shogi, Ziosoft Computer Shogi Club, 2018.

[3] D. Silver, T. Hubert, J. Schrittwieser,
I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap,
K. Simonyan, and D. Hassabis, Mastering
chess and shogi by self-play with a general
reinforcement learning algorithm, 2017. arXiv:
1712.01815 [cs.AI].

[4] L. Kocsis and C. Szepesvári, “Bandit based
monte-carlo planning,” in Proceedings of the
17th European Conference on Machine Learning,
ser. ECML’06, Berlin, Germany: Springer-Verlag,
2006, pp. 282–293, ISBN: 354045375X. DOI: 10.
1007 / 11871842 _ 29. [Online]. Available: https :
//doi.org/10.1007/11871842_29.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K.

Kavukcuoglu, T. Graepel, and D. Hassabis, “Mas-
tering the game of go with deep neural networks
and tree search,” Nature, vol. 529, pp. 484–503,
2016. [Online]. Available: http://www.nature.com/
nature/journal/v529/n7587/full/nature16961.html.

[6] G.-C. Pascutto and G. Linscott, Leela Chess Zero,
Mar. 8, 2019. [Online]. Available: http:// lczero.
org/.

[7] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu,
Squeeze-and-excitation networks, 2019. arXiv:
1709.01507 [cs.CV].

[8] (). “Missing shallow tactics,” [Online]. Available:
https : / / lczero . org / dev / wiki / missing - shallow -
tactics/ (visited on 04/04/2021).

[9] (). “Missing mates,” [Online]. Available: https://
groups . google . com / g / lczero / c / NDv4xtE3W7k
(visited on 04/04/2021).

[10] (). “Lichess puzzles open database,” [Online].
Available: https : / / database . lichess . org/ (visited
on 03/01/2021).

[11] (). “Neural network topology,” [Online]. Avail-
able: https://lczero.org/dev/backend/nn/ (visited
on 04/08/2021).

[12] D. Foster. (). “AlphaGo Zero explained in one
diagram,” [Online]. Available: https : / / medium .
com / applied - data - science / alphago - zero -
explained-in-one-diagram-365f5abf67e0/ (visited
on 04/10/2021).

[13] P. Izmailov, D. Podoprikhin, T. Garipov, D.
Vetrov, and A. G. Wilson, Averaging weights
leads to wider optima and better generalization,
2019. arXiv: 1803.05407 [cs.LG].

[14] (). “Attack and defend maps,” [Online]. Available:
https://www.chessprogramming.org/Attack_and_
Defend_Maps (visited on 04/16/2021).

https://stockfishchess.org/
https://arxiv.org/abs/1712.01815
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://lczero.org/
http://lczero.org/
https://arxiv.org/abs/1709.01507
https://lczero.org/dev/wiki/missing-shallow-tactics/
https://lczero.org/dev/wiki/missing-shallow-tactics/
https://groups.google.com/g/lczero/c/NDv4xtE3W7k
https://groups.google.com/g/lczero/c/NDv4xtE3W7k
https://database.lichess.org/
https://lczero.org/dev/backend/nn/
https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0/
https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0/
https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0/
https://arxiv.org/abs/1803.05407
https://www.chessprogramming.org/Attack_and_Defend_Maps
https://www.chessprogramming.org/Attack_and_Defend_Maps

6

APPENDIX

A. Installation

The code was tested on Python 3.9, but it should work with Python 3.6+. Please install the following packages:

pip install pytorch
pip install pytorch-lightning

Put both project.zip and model.zip into the same folder. Then open a Linux or bash terminal and run:

unzip project.zip
unzip model.zip
mv model/model.ckpt project/
mv model/data.csv project/
cd project/

B. Running the pre-trained model

If you want to manually run the model on a sample test batch:

example.py

from common import setup
import torch.nn.functional as F

args, model, data_module = setup()
test_data_loader = data_module.test_dataloader()

for batch in iter(test_data_loader):
inputs, targets = batch
logits = model(inputs).view(-1, 8 * 8)
y = F.softmax(logits, dim=1)

preds = y.argmax(dim=1)
top3 = logits.topk(k=3, dim=1).indices.t()
top1_acc = (preds == targets).sum().item() / len(targets)
top3_acc = (top3 == targets).sum().item() / len(targets)

print("labels: {}".format(targets))
print("predictions: {}".format(preds))
print("top-1 acc: {:.3f}".format(top1_acc))
print("top-3 acc: {:.3f}".format(top3_acc))

break

If you save this to a file called example.py, then you can run it with the correct model checkpoint by doing:

python example.py --resume_from_checkpoint=model.ckpt

7

C. Training

Run the following. The output model is in lightning_logs/version_0/checkpoints.

python train.py

D. Testing

Run the following:

python test.py --resume_from_checkpoint=model.ckpt --stochastic_weight_avg=False

	Introduction
	Related works
	Towards better tactical awareness

	Methods
	Experiments and results
	Discussion
	Conclusion
	Future work
	Integrating proposed sub-network into primary architecture
	Verifying training data using classical engines for analysis
	Input over-parameterization via attack maps

	Appendix
	Installation
	Running the pre-trained model
	Training
	Testing

