
Particle Filter:
Likelihood Kernel

Mateen Ulhaq

Overview

2

1. Review

2. Architecture 4. Results

3. Optimizations

Review of particle filter
Main loop:

● Elapse motion model.
● Estimate “likelihood” that

particles are in correct positions
by checking the video frame.

● Reweight particles.
● Resample particles.

3

Particles at
frame k - 1

Particles at
frame k

Review of particle filter
Main loop:

● Elapse motion model.
● Estimate “likelihood” that

particles are in correct positions
by checking the video frame.

● Reweight particles.
● Resample particles.

Estimated object position (xe, ye)
is “weighted average” of particles.

4

Particles at
frame k - 1

Particles at
frame k

5

Likelihood
For each particle, check how many
pixels are actually “white” in image.

This gives likelihood that the particle is
in the center of the white object.

6

Architecture

(BEST DESIGN ACHIEVED)

7

Big frame Subregion

Extract subregion from host memory.

Subregion copies

Multiple copies are made:

PRELOAD LOAD / COMPUTE / STORE

Subregion memories

Unique 9x9 memory tile for each particle

Distribute into tiles for each particle.

0.8 0.6 0.3 0.1

Computed probabilities for each particle Host memory

Preload

8

Big frame Subregion

Extract subregion from host memory.

Subregion copies

Multiple copies are made:

Load: initialize

9

Particle positions copied from
host to ensure parallel access.

Load: tiles

10

Subregion

Unique 9x9 memory tile for each particle

Distribute into tiles for each particle.

Load: tiles

11

Subregion memories

Unique 9x9 memory tile for each particle

Distribute into tiles for each particle.

Compute

12

0.8 0.6 0.3 0.1

Computed probabilities for each particle

Unique 9x9 memory tile for each particle

Unrolled to process
particles in parallel.

Memory partitioned
to prevent particle

interference.

Store

13

0.8 0.6 0.3 0.1

Computed probabilities for each particle

Host memory

Optimizations

(STEP-BY-STEP)

14

15

Base

16

Loop over “object” region
around each particle.

Tiling

17

Use tile for compute.

Load tile around current particle
from host.

Big frame

0.8

Tiling

18

1D load/store:

2D load/store:

ii is the offset for src[].

Pipelining

19

II=1 achieved.

Unrolling

20

Load:

Compute:

Load pixel (i, j) into particle’s tile.

Get position of
pixel (i, j).

0.8 0.6 0.3 0.1

Computed probabilities for each particle

Unique 9x9 memory tile for each particle

Unrolled to process
particles in parallel.

Memory partitioned
to prevent particle

interference.

Subregion memories

Distribute into tiles for each particle.

Double buffering
● Currently load-bound.

● If compute-bound, may want to
add 3rd buffer to separate
compute+store bottleneck.

21

Double buffering

22

Early exit.

Coalescing

23

2D load:

1D load:

Coalescing

24

FRAME_WIDTH_COAL = WIDTH / WIDTH_FACTOR

Make copies of memory for faster
tile load stage.

Multiple memories mean we can
load multiple particle tiles in

parallel.

Costs only memory.

25

Use copies of memories for
faster tile loading.

Multiple memories mean we can
load multiple particle tiles in

parallel.

Loads one tile at a time.
Better idea: load multiple tiles in parallel!

M particles/loop over (P/M) loops.

O(P/M) < O(P)

Subregion memories

Unique 9x9 memory tile for each particle

Distribute into tiles for each particle.

Raster scan loader
load() stage [ALTERNATIVE]

● ONE subregion memory.

● Loops over each pixel in
subregion ONCE.

● Good for certain problem sizes
(e.g. small subregion or highly
scattered particles).

26

P particles over H·W loops.

O(HW) < O(P/M)

...Sometimes.

Array partitions

27

Results

28

29

30

31

Reports

32

33

Cosim (untuned, unroll=100)

Run on 9 video frames.
⇒ average 67591 cycles/frame

GPU: kernel

34

Check if region around
particle is white.

“Elapse motion”.
[REMOVED]

Likelihood sum.

GPU: kernel

35

Other kernels.
[REMOVED]

Likelihood
kernel.

References
[1] Rodinia Benchmark Suite

[2] Berkeley AI CS188: Lecture Slides (IMAGE)

[3] https://www.codeproject.com/Articles/865934/Object-Tracking-Particle-Filter-with-Ease (IMAGE)

36

https://www.codeproject.com/Articles/865934/Object-Tracking-Particle-Filter-with-Ease

