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Review of particle filter
Main loop:

● Elapse motion model.
● Estimate “likelihood” that 

particles are in correct positions 
by checking the video frame.

● Reweight particles.
● Resample particles.
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Review of particle filter
Main loop:

● Elapse motion model.
● Estimate “likelihood” that 

particles are in correct positions 
by checking the video frame.

● Reweight particles.
● Resample particles.

Estimated object position (xe, ye)
is “weighted average” of particles.

4

Particles at
frame k - 1

Particles at
frame k



5

Likelihood
For each particle, check how many 
pixels are actually “white” in image.

This gives likelihood that the particle is 
in the center of the white object.
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Architecture

(BEST DESIGN ACHIEVED)
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Big frame Subregion

Extract subregion from host memory.

Subregion copies

Multiple copies are made:

PRELOAD LOAD / COMPUTE / STORE

Subregion memories

Unique 9x9 memory tile for each particle

Distribute into tiles for each particle.

0.8 0.6 0.3 0.1

Computed probabilities for each particle Host memory



Preload
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Big frame Subregion

Extract subregion from host memory.

Subregion copies

Multiple copies are made:



Load: initialize
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Particle positions copied from 
host to ensure parallel access.



Load: tiles
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Subregion

Unique 9x9 memory tile for each particle

Distribute into tiles for each particle.



Load: tiles
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Subregion memories

Unique 9x9 memory tile for each particle

Distribute into tiles for each particle.



Compute
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0.8 0.6 0.3 0.1

Computed probabilities for each particle

Unique 9x9 memory tile for each particle

Unrolled to process 
particles in parallel.

Memory partitioned 
to prevent particle 

interference.



Store
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0.8 0.6 0.3 0.1

Computed probabilities for each particle

Host memory



Optimizations

(STEP-BY-STEP)
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Base
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Loop over “object” region 
around each particle.



Tiling
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Use tile for compute.

Load tile around current particle 
from host.

Big frame

0.8



Tiling
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1D load/store:

2D load/store:

ii is the offset for src[].



Pipelining
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II=1 achieved.



Unrolling
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Load:

Compute:

Load pixel (i, j) into particle’s tile.

Get position of 
pixel (i, j).

0.8 0.6 0.3 0.1

Computed probabilities for each particle

Unique 9x9 memory tile for each particle

Unrolled to process 
particles in parallel.

Memory partitioned 
to prevent particle 

interference.

Subregion memories

Distribute into tiles for each particle.



Double buffering
● Currently load-bound.

● If compute-bound, may want to 
add 3rd buffer to separate 
compute+store bottleneck.
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Double buffering
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Early exit.



Coalescing
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2D load:

1D load:



Coalescing
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FRAME_WIDTH_COAL = WIDTH / WIDTH_FACTOR

Make copies of memory for faster 
tile load stage.

Multiple memories mean we can 
load multiple particle tiles in 

parallel.

Costs only memory.
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Use copies of memories for 
faster tile loading.

Multiple memories mean we can 
load multiple particle tiles in 

parallel.

Loads one tile at a time.
Better idea: load multiple tiles in parallel!

M particles/loop over (P/M) loops.

O(P/M) < O(P)

Subregion memories

Unique 9x9 memory tile for each particle

Distribute into tiles for each particle.



Raster scan loader
load() stage  [ALTERNATIVE]

● ONE subregion memory.

● Loops over each pixel in 
subregion ONCE.

● Good for certain problem sizes 
(e.g. small subregion or highly 
scattered particles).
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P particles over H·W loops.

O(HW) < O(P/M)

...Sometimes.



Array partitions
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Results
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Reports
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Cosim (untuned, unroll=100)

Run on 9 video frames.
⇒  average 67591 cycles/frame



GPU: kernel
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Check if region around 
particle is white.

“Elapse motion”. 
[REMOVED]

Likelihood sum.



GPU: kernel
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Other kernels. 
[REMOVED]

Likelihood 
kernel.
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