
Learned Compression for
Images and Point Clouds

MASc (current)
BASc Eng. Phys. Hon. and Math minor

Mateen Ulhaq

1

Topics

2

Airplane

1. Learned compression of “encoding distributions” for compression.

2. Learned point cloud compression for classification.

3. Analyze motion in the latent space (for p-frames).

3

JPEG (1992)

New deep learning codec (2022)

Comparison of image compression codecs

Goal: max quality

Goal: minimum file size

Goal: minimum
compression time
(not visualized)

4

Learned compression of “encoding
distributions” for compression

Mateen Ulhaq and Ivan V. Bajić

5

Architecture (standard)

6

01101101 10010110 11010100…

Encoding distribution

7

Rate cost of encoding a single element:

p(ŷᵢ) Rate cost
1 0 bits

1/2 1 bits
1/4 2 bits
1/8 3 bits
1/16 4 bits

…
0 ∞ bits

8

Factorized model

Each channel is encoded using a unique
encoding distribution.

Component in SOTA models.

Static: uses same set of encoding
distributions for all inputs.(Each color represents the use of a

different encoding distribution.)

9

Suboptimality of static encoding distributions

The static “average-optimal” distribution tries
to account for all possible data distributions.

Data 2

Data 1

10

Distribution heatmap

channel index
bi

n
in

de
x

Recall: each channel uses a
unique encoding distribution.

Let’s plot them as a 2D heatmap.

ne
ga

tiv
e

lo
g

lik
el

ih
oo

ds
 [

bi
ts

]2D heatmap of encoding distributions.
Each vertical slice is an encoding distribution.

11

[Static]

Mismatch!

Encoding distributions (non-adaptive, static)

(Ideal) (Actually used for encoding)

Left shows ideal.
Right is actual (static).
Mismatch leads to suboptimal rate.

12

[Static]

Mismatch!

Encoding distributions (non-adaptive, static)

(Ideal) (Actually used for encoding)

Left shows ideal.
Right is actual (static).
Mismatch leads to suboptimal rate.

13

Solution: transmit per-image adapted encoding distributions.

How do we address this mismatch?

14

Architecture (with proposed distribution compression model)

15

Architecture (with proposed distribution compression model)

Architecture details (proposed transforms)

16

“ShuffleNet” CNN with 3 downsample strides,
grouped conv, and 16—64 channels.

Increase in parameters:

3.00M → 3.06M (low rate)
7.03M → 7.22M (high rate)

17

Much better!

Encoding distributions (adaptive, dynamic)

[Adapted]

(Ideal) (Actually used for encoding)

18

(Ideal) (Actually used for encoding)

[Adapted]

Much better!

Encoding distributions (adaptive, dynamic)

19

256x256 “trained”
768x512 “target”

Loss function

For a target that is 6x larger than the image patch we trained on, we can afford 6x more rate for
the q bitstream, since the same encoding distribution is reused 6x more in the larger image.

Results

20

Used pretrained gₐ, gₚ.
Froze gₐ, gₚ parameters.
Only trained pdf model.

Results

21

Architecture comparison

22

Section summary

● Proposed a new method for the compression of encoding distributions.
● Our method achieves -7% rate vs -8.3% ideal for the factorized entropy model.

Future work:

● Working fully end-to-end dynamically adaptive entropy bottleneck.
● Adaptive distribution correction for Gaussian conditional.
● Non-parametric distribution modeling.

23

24

Learned Point Cloud Compression for
Classification

Mateen Ulhaq and Ivan V. Bajić

Presented at IEEE MMSP 2023 Poitiers, France

https://github.com/multimedialabsfu/learned-point-cloud-compression-for-classification 25

https://github.com/multimedialabsfu/learned-point-cloud-compression-for-classification

Motivation

limited computational ability

limited by available bitrate
balance of edge-cloud

shared

26

PointNet

(h(x₁), …, h(xₚ)) where h : ℝ³ → ℝᴹ
shared single-point-input function

π : ℝᴹ˟ᴾ → ℝᴹ
input permutation invariant function

γ : ℝᴹ → ℝᵀ
any function

PointNet
input permutation invariant function

Figure adapted from Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,” CVPR, 2017.
27

Equivalent to Conv1d kernel_size=1

M×P3×
P

M

M (512,256,T)

T

Architecture

(for shared edge-cloud inference)

28

M M

Standard compression architecture, except that the output is a
classification label vector.

Architecture
Multiply by reparameterized gain

vector for faster convergence,
where .

*Format: “out channels/groups” 29

M M M M

M
(h(x₁), …, h(xₚ)) where h : ℝ³ → ℝᴹ π : ℝᴹ˟ᴾ → ℝᴹ γ : ℝᴹ → ℝᵀ

Experimental setup

● Dataset: sampled point clouds from
ModelNet40 object meshes.

● Loss: L = R + λ D(t, t̂)

Trained separate models for various tuples (λ, P, ArchitectureSize):

● Varying R-D tradeoff λ ∈[10, 16000]
● Number of input points P ∈ 𝓟 = {8, 16, 32, 64, 128, 256, 512, 1024}
● “full”, “lite”, “micro” architecture sizes

ModelNet40 object meshes (before sampling).

[ModelNet40]: “3D ShapeNets: A Deep Representation for Volumetric Shapes,” CVPR, 2015.
30

Results: rate-accuracy curves

31

Our codec does better than
the non-specialized codec.

Results: rate-accuracy curves

32

Results

Encoder:
150 kMAC/pt

Decoder:
670 kMAC

Encoder
0.47 kMAC/pt

Decoder:
160 kMAC

Encoder:
0.048 kMAC/pt

Decoder:
150 kMAC

33

Reconstruction network (for visualization only)

We trained an auxiliary reconstruction network on the loss L = D(x, x̂) ,
where D is Chamfer distance. Detached so gradients are not propagated to ŷ.

Reconstruction network

34

M M

Critical point set

For a specific codec, the critical point set is a minimal subset of the input point cloud
that generates the exact same compressed bitstream as the input point cloud.

Critical points are marked in red.

Entire point cloud

Critical point set

compress

compress

01110011 01100101
01100011 01110010
01100101 01110100 …

same!

01110011 01100101
01100011 01110010
01100101 01110100 …

decompress

decompress

same!

35

Reconstructions
80% classification accuracy achieved at:

Codec Rate

ideal 3.2 bits

full 30 bits

lite 40 bits

micro 50 bits

100% accuracy lower bound on rate for
40 balanced classes:
log_2 (40) ≈ 5.3 bits

Recall: h(x) is applied to each point
independently. No information mixing,
except for the max pooling operation!

Contrast with traditional MLP classifier that
mixes information to achieve low rate.

36

up to 1024 critical points

up to 32 critical points

up to 16 critical points

computed via Blahut-Arimoto

Section summary

● New codec for point cloud classification.
● Our codec improves in rate-accuracy vs traditional methods.
● Fast "lite" and "micro" encoders.

Future work:

● Real-world datasets.
● Point cloud segmentation and object detection.
● Scalable and multi-task point cloud compression.

37

38

Analysis of Latent Space Motion
Mateen Ulhaq and Ivan V. Bajić

Presented at IEEE ICASSP 2021 Toronto, Canada

39

Problem statement

Motivation:

Video compression in the latent domain.

Question:

Given a reference tensor and the motion
between consecutive input frames,
can we determine:

● …the motion between tensors?
● …the next tensor?

40

Latent domainInput domain

Motion

?

41

Latent domainInput domain

https://docs.google.com/file/d/1ZcpVHTjtdsNpRm8AhSsLaZfcbCfi3kMn/preview

Tensor reconstruction experiments

● Assume: latent motion is rescaled input motion.

● Using latent motion, warp reference tensor to predict next tensor.

● Calculate normalized root mean square error (NRMSE)
between predicted next tensor and actual next tensor.

42

of strides

43

Masked

We computed the
NRMSE using these
masked residuals.

Residuals for predicted
motion compensated
tensors under various input
domain transformations.

44

NRMSE in “p-frame”
residual for primitive
transformations for
different models/layers.

Large rotation angles
cause increase in error.

45

Random transformation
composed of:

● xy translation (± 32 px)
● xy scaling (0.95 – 1.05x)
● xy shearing (± 5°)
● xy rotation (± 10°)

NRMSE of 0.04 roughly
corresponds to 28 dB PSNR in

the image domain.

Prediction error during random motion

46

Section summary

● Validated simple relationship of motion between consecutive tensors.

● Prediction error for small transformations within input is 4% NRMSE.

Applications:

● Learned codecs that motion-warp the latent directly.

In other words: input domain → latent domain → warp → input domain
“Scale-space flow”: input domain → latent domain → input domain → warp

Figure from Agustsson et al. “Scale-space flow for end-to-end optimized video compression,” CVPR, 2020.

47

Concluding remarks

● Proposed learned compression of the “encoding distribution” itself.
● Introduced shared client-server inference for point clouds using a

classification-specialized codec.
● Investigated error in motion models of the latent space.

Useful for designing learned video compression codecs.

Learned compression shows promise, though we must reduce its complexity for it
to become practical. Some of the work presented takes steps in this direction.

48

Publications and other work

1. M. Ulhaq and I. V. Bajić, “Learned point cloud compression for classification,” in Proc. IEEE MMSP, 2023. Available:
https://arxiv.org/abs/2308.05959

2. E. Özyılkan, M. Ulhaq, H. Choi, and F. Racapé, “Learned disentangled latent representations for scalable image coding
for humans and machines,” in Proc. IEEE DCC, 2023, pp. 42–51. Available: https://arxiv.org/abs/2301.04183

3. H. Choi, F. Racapé, S. Hamidi-Rad, M. Ulhaq, and S. Feltman, “Frequency-aware learned image compression for
quality scalability,” in Proc. IEEE VCIP, 2022, pp. 1–5. doi: 10.1109/VCIP56404.2022.10008818.

4. S. R. Alvar, M. Ulhaq, H. Choi, and I. V. Bajić, “Joint image compression and denoising via latent-space scalability,”
Frontiers in Signal Processing, vol. 2, 2022, doi: 10.3389/frsip.2022.932873.

5. M. Ulhaq and I. V. Bajić, “Latent space motion analysis for collaborative intelligence,” in Proc. IEEE ICASSP, 2021, pp.
8498–8502. doi: 10.1109/ICASSP39728.2021.9413603.

6. M. Ulhaq and I. V. Bajić, “ColliFlow: A library for executing collaborative intelligence graphs,” demoed at NeurIPS,
2020. Available: https://yodaembedding.github.io/neurips-2020-demo/

7. M. Ulhaq and F. Racapé, “CompressAI Trainer.” GitHub, 2022. Available:
https://github.com/InterDigitalInc/CompressAI-Trainer

49

https://arxiv.org/abs/2308.05959
https://arxiv.org/abs/2301.04183
https://yodaembedding.github.io/neurips-2020-demo/
https://github.com/InterDigitalInc/CompressAI-Trainer

Thank you

50

