
Learned Point Cloud Compression for 
Classification

Mateen Ulhaq and Ivan V. Bajić

MMSP 2023    Poitiers, France

https://github.com/multimedialabsfu/learned-point-cloud-compression-for-classification 1

https://github.com/multimedialabsfu/learned-point-cloud-compression-for-classification


Motivation

limited computational ability

limited by available bitrate
balance of edge-cloud

shared

2



Learned compression

● Ballé et al. proposed a “factorized prior” entropy model where each channel of 
the quantized latent  ŷ  is encoded using a channel-specific distribution.

● Rate is R = -log p(ŷ)          .
● Distortion is  D(x, x̂)    between the input  x  and reconstructed input  x̂.
● Loss is  L = R + λ D(x, x̂)        where λ  is a trade-off hyperparameter.

[Ballé et al.]: “Variational image compression with a scale hyperprior,” ICLR, 2018.
3



Codec architectures

(for cloud-only inference)

(for shared edge-cloud inference)

4



Input data formats

Point list    PointNet, PointNet++

Very light MLP-based architectures.
No worthwhile canonical ordering of points.
Challenges: order-invariance, finding 3d metric structure aware operations.

Voxel grid    VoxNet, 3D ShapeNet, 3D conv-based models

O(n³) memory.  Limits resolution:  1024 × 1024 × 1024  ⇒  4 GB per float32 tensor!
3D convs are computationally heavy.
Empty space  ⇒  wasted computation.

Octree    OctNet, VoxelContextNet, OctAttention, octree context modeling

More “compact” than voxels.
Large region of empty space represented by a single “0” node.

 P × 3 matrix 

[(x₁, y₁, z₁),
 (x₂, y₂, z₂),
     ...
 (xₚ, yₚ, zₚ)]

https://commons.wikimedia.org/wiki/File:Voxels.svg

https://commons.wikimedia.org/wiki/File:Octree2.svg 5



PointNet

shared single-point-input function  h
(shared MLP  ==  1D conv, kernel_size=1)

input permutation-invariant function  π any function  γ

input permutation-invariant function  f

Figure adapted from “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,” CVPR, 2017.
6



Architecture
Multiply by reparameterized gain 

vector for faster convergence, 
where                 .

*Format: “out channels/groups” 7



Experimental setup

● Dataset: sampled point clouds from
ModelNet40 object meshes.

● Loss:  L = R + λ D(t, t̂) 

Trained separate models for various tuples  (λ, P, Architecture):

● Varying R-D tradeoff  λ ∈[10, 16000] 
● Number of input points  P ∈ 𝓟 = {8, 16, 32, 64, 128, 256, 512, 1024} 
● “full”, “lite”, “micro” architecture sizes

ModelNet40 object meshes (before sampling).

[ModelNet40]: “3D ShapeNets: A Deep Representation for Volumetric Shapes,” CVPR, 2015.
8



PointNet missing data ratio

The PointNet paper indicates that a model 
trained on P = 1024 points degrades in 
accuracy as the number of points P' in the 
input point cloud decreases.

To avoid this, we trained models specialized 
for each P' of randomly-sampled input points, 
so that P = P'. We measured a sizeable 
improvement by doing so.

(e.g., inputting a P' = 64 point cloud into a P = 1024 trained 
model results in a 65% reduction in accuracy; whereas, 
inputting a P' = 64 point cloud into a P = 64 trained model 
results in a 3% reduction in accuracy.)

Figure from “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,” CVPR, 2017.
9



Results: rate-accuracy curves

10



Results: rate-accuracy curves

Note: different x axis scales.

11



Results

Encoder:
150 kMAC/pt

Decoder:
670 kMAC

Encoder
0.47 kMAC/pt

Decoder:
160 kMAC

Encoder:
0.048 kMAC/pt

Decoder:
150 kMAC

12



Reconstruction network (for visualization only)

We trained an auxiliary reconstruction network on the loss  L = D(x, x̂)    ,
where D is Chamfer distance. Note that these gradients are not propagated to ŷ.

Reconstruction network

13



Critical point set

For a specific codec, the critical point set is a minimal subset of the input point cloud 
that generates the exact same compressed bitstream as the input point cloud.

Critical points are marked in red.

Original point cloud

Critical point set

compress

compress

01110011 01100101 
01100011 01110010 
01100101 01110100 …

same!

01110011 01100101 
01100011 01110010 
01100101 01110100 …

decompress

decompress

same!

14



Critical point set (formally)

15



Reconstructions
Our codecs achieve 80% accuracy at:

Codec Rate

full 30 bits

lite 40 bits

micro 50 bits

100% accuracy lower bound on rate for
40 balanced classes:
log_2 (40) ≈ 5.3 bits

Recall: h(x) is applied to each point 
independently. No information mixing, 
except for the max pooling operation!

Contrast with traditional MLP classifier that 
mixes information to achieve low rate.

16



Discussion

Thus, on average,  ŷ  must be at least as compressible as  x. 

In fact, since  ŷ  is the same when generated from the critical point set               ,
                                         .

Furthermore,                   = 16 and 32 for the “lite” and “micro” codecs.
Their            is upper bounded by the entropy of the critical points.

This explains why the rate is so low. (But surprisingly, the accuracy is still good!)

17



Conclusion

● New codec for point cloud classification.
● Our "full" codec achieves great rate-accuracy performance vs “traditional” methods.
● Our "lite" and "micro" codecs achieve comparable gains in rate-accuracy 

performance, while consuming minimal edge-side computational resources.
● Helps progress towards achieving more capable end devices.

Future work:

● Other point cloud tasks (e.g. segmentation, object detection).
● Complex tasks involving larger models and point clouds from real-world datasets.
● Scalable and multi-task point cloud compression.

18



Thank you

19



Q&A prediction

Q: How was sampling done?
A: Uniformly sampled point cloud from object meshes 
(surfaces), then randomly subsampled that for smaller 
clouds. (Or was it all uniform sampling? I should 
check…)

Q: Why not farthest point sampling?
A: Uniform sampling almost models a true Gaussian. 
And random subsampling = zero computation.

Q: Why the gain vector?
A: Better training stability, and allows network to zero out 
channels more easily, IIRC. (Even though conv1d is has 
equivalent representational capabilities.)

Q: Why multiply by 10 before the entropy bottleneck?
A: Much faster convergence since it now operates in 
range [-10, 10] instead of [-1, 1], which disappears under 
quantization pretty easily.

Q: Isn’t ModelNet40 too easy a dataset?
A: Perhaps, but this was a first work in point cloud 
compression + classification.

Q: But if N=16… is the theoretical analysis not obvious?! 
N=16 tensor elements would certainly have small rate…
A: Mathematically, nothing inhibits an element from 
being uniformly distributed along a domain of [0, 2100000]. 
Well, hardware floating point does, I guess. But a more 
mathematically rigorous upper bound argument is that 
the number of critical points ≤ N, as presented.

Q: …
A: …

Q: …
A: …

20



21



22



23



24



Overview

● Motivation
● Preliminaries / Related works
● Architecture
● Experimental setup
● Results
● Discussion
● Conclusion

25



26

Discussion

For input point clouds containing $P = 1024$ points, our "full", "lite", and "micro" 
codec configurations achieve an accuracy of 80\% with as few as 30, 40, and 50 
bits.

For comparison, $\log_2(40) \approx 5.3 \text{ bits}$ are required to losslessly 
encode uniformly distributed class labels of the 40 classes from ModelNet40.

Our codec comes surprisingly close to this theoretical lower bound, despite the 
fact that our architecture design omits the traditional MLP "classifier" within the 
encoder.

The same pointwise function is applied to all points, and the only operation that 
"mixes" information between the points is a pooling operation.



27

ModelNet40 object meshes (before sampling).



28



Motivation

Methods:

● Edge-only: limited computational ability
● Cloud-only: limited by available bitrate
● Shared: balance of both

29
Shared



Input data formats

● Raw point lists     [(x1, y1, z1),   (x2, y2, z2),  …,  (xn, yn, zn)]
○ PointNet, PointNet++, etc

● Voxels
○ 3D ShapeNet, various convolutional models, etc

● Octrees
○ VoxelContextNet, OctAttention, octree context modelling approaches, etc

30



31



32

Rate-accuracy curves



PointNet

33



PointNet

34

Note: “Shared-MLP” = 1x1 conv
i.e. every point is independently and identically processed 
by the same function f(p)



PointNet

35



PointNet

36

Gain vector

Entropy model
(Encode/decode)

010110110…



PointNet with split before the fully-connected classifier

37

Gain vector

Entropy model
(Encode/decode)

010110110…

mlp (64, 128) mlp (128, 256, 512, 256)

nx
12

8

nx
12

8

nx256
256



PointNet with split before the fully-connected classifier

38

Gain vector

Entropy model
(Encode/decode)

010110110…

nx
12

8

nx
12

8

nx256
256



Takeaways

39

● Point-based models are often significantly more computationally lighter than 
comparable convolutional models.

● PointNet-style models do very well on sparse inputs, unlike “conv” models.
● The amount of points/bits needed for classification on ModelNet is quite low.
● Unlike image data (?), only a small subsample of the original input data is 

necessary for reasonable classification performance.



40



41



42



43

Hypatia Create

Editable
Fast
Live preview (but no source-only mode :( )
Good UX
Resolution adjustable
High default resolution
Transparent background
Display mode / inline mode
Colors (paid version)

Equation Editor ++

Editable
Medium
Semi-live preview
Medium UX
Resolution adjustable
Poor default resolution
Transparent background
Display mode / inline mode
No colors

Better Math Equations

Non-editable
Medium-fast
Live preview
Medium UX
Resolution adjustable
Good default resolution
Transparent background
Inline mode only
Single color

MathType (paid, 30 day free trial)

Editable
Medium-slow
Live preview (but no source-only mode :( )
Medium UX
Single resolution
High default resolution
Transparent background
N/A — not LaTeX based
No colors
No LaTeX input
Handwriting OCR input

Auto-LaTeX Equations

Semi-editable
Very slow
No live preview
Poor UX
Single resolution
Good default resolution
Transparent background
Display mode / inline mode
Single color



44



Autograd topics

● Review backprop 3B1B visual
● Colah and pytorch viz computational graphs 

https://pytorch.org/blog/overview-of-pytorch-autograd-engine/ ; leaf nodes, 
requires_grad, detach, etc

● derivatives yaml
● Using .detach() tricks [easy, slower perf] and autograd.function [more work] 

comparison between different situations (e.g. STE, and my particular 
situation)

● Jacobian jvp, etc? Ehhh maybe out-of-scope? idk…
● Review: Entropy Bottleneck in-depth, discrete CDFs, etc
● RDOQ, etc

45

https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

