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Abstract—Due to the limited computational capabilities of
edge devices, deep learning inference can be quite expensive.
One remedy is to compress and transmit point cloud data
over the network for server-side processing. Unfortunately, this
approach can be sensitive to network factors, including available
bitrate. Luckily, the bitrate requirements can be reduced without
sacrificing inference accuracy by using a machine task-specialized
codec. In this paper, we present a scalable codec for point-cloud
data that is specialized for the machine task of classification,
while also providing a mechanism for human viewing. In the
proposed scalable codec, the ‘base” bitstream supports the
machine task, and an ‘“‘enhancement” bitstream may be used
for better input reconstruction performance for human viewing.
We base our architecture on PointNet++, and test its efficacy on
the ModelNet4(0 dataset. We show significant improvements over
prior non-specialized codecs.

Index Terms—deep learning, point cloud compression, coding
for machines, scalable coding, classification

I. INTRODUCTION

Point clouds representing 3D visual data are increasingly
being used in many applications, including augmented reality,
robotics, and autonomous driving. Advances in deep learning
have led to the development of deep models for performing
machine vision tasks on point cloud data, including classifica-
tion, object detection, and segmentation. However, most deep
learning models are computationally expensive. This poses a
challenge for computationally-limited edge devices that want
to perform machine vision tasks, and yet are limited in size,
energy consumption, cost, and other factors.

One option for performing a machine task on the edge
device is to limit the complexity of the model. Unfortunately,
this usually comes at the cost of model accuracy. Another
option is to transmit the input data to a server for machine
analysis. In this approach, the edge device compresses the
input data prior to transmission, often using a codec designed
to reconstruct the input for human viewing. However, such
input reconstruction codecs are not optimized for machine
analysis. Thus, they often spend large amounts of bits on
encoding information that is not relevant to the machine task.
This results in a worse rate-accuracy trade-off than is possible
with a more specialized codec. In situations where a low rate is
desired — for instance, in areas of poor network connectivity,
or congested networks — using a non-specialized codec may
result in excessively high machine task latency [1].

In order to improve the rate-accuracy trade-off, we may
instead use a codec that is specialized for the machine task.
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Such codecs often perform part of the machine task on the
edge device itself. In this hybrid approach, the edge device
simultaneously compresses the input and performs part of the
machine task. This allows the model to discard unnecessary
information, thus reducing the rate, resulting in a system that is
more robust to changing network conditions, and may reduce
system latency over a certain range of available bitrates [2].

In [3], a novel codec for point cloud classification was pro-
posed. This learned codec, based on PointNet [4], compresses
the input point cloud into a highly compressed representation
that is intended solely for machine analysis, in this case
classification. This codec was shown to achieve a significantly
better rate-accuracy trade-off in comparison with alternative
methods using standard codecs that are not specialized for
machine analysis. This was achieved by removing not only
statistical redundancy, but also task-irrelevant information,
during the compression process.

While the codec in [3] achieves a good rate-accuracy trade-
off for point cloud classification, it is not suitable for other pur-
poses. Most applications involving automated machine-based
analysis are expected to run the machine task continuously,
but may occasionally require human verification or review.
Hence, it is important to develop codecs that are able to
support both tasks — machine vision and human viewing —
efficiently. In this paper, we present such a scalable codec, the
first in the point cloud literature, which supports point cloud
classification, while also providing a mechanism for human
viewing. Our code is available online.!

II. RELATED WORK

Point cloud classification is among the most researched
point cloud analysis tasks. Related classification models accept
different input formats, including point lists (e.g., PointNet [4]
and PointNet++ [5]), 3D voxel grids (e.g., VoxNet [6]), and
Octrees (e.g., OctNet [7]). Since our work builds on PointNet
and PointNet++, we assume the input format is a point list.

Conventional handcrafted point cloud codecs include
Draco [8] and G-PCC [9] (implemented as TMC13 [10]).
More recently, the research focus has shifted towards learned
codecs, following the seminal work of Ballé er al. [11] who
proposed a variational autoencoder (VAE) based architecture
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Fig. 1. High-level comparison of codec architectures.

for image compression. In their architecture, the input x is
first transformed into a latent representation y, which is then
quantized and entropy-coded using a learned entropy model.
Such an architecture can be trained end-to-end using the loss

L=R+\ D(z,), (1)

where D(x, &) is the distortion measure between the input x
and decoded &, and R is the estimate of the entropy of g. This
mechanism has been successful in various fields of learned
compression, including point cloud compression [12]-[16].

Specialized compression for machine tasks — often referred
to as coding for machines — has been explored for images [17]
and video [18] and, recently, for point clouds [3]. Moreover,
scalable multi-task coding approaches [19], [20] have shown
that one can perform a machine vision task at a fairly low
bitrate, while enabling other tasks, such as input reconstruction
for human viewing, with an additional enhancement bitstream.

While quality-scalable point cloud coding has been studied
before [21], this paper presents the first scalable multi-task
point cloud codec: the base bitstream supports point cloud
classification, while the enhancement bitstream allows point
cloud reconstruction. Unlike our earlier work [3], which pre-
sented a classification-optimized codec based on PointNet [4],
our scalable codec is based on PointNet++ [5], which is a
hierarchical extension of PointNet.

III. PROPOSED CODEC
A. Preliminaries

In Fig. 1a, we show an abstract representation of an input
compression codec. The input point cloud x is encoded and
decoded as & by any desired point cloud codec, including non-
learned codecs such as G-PCC [9]. Then, the reconstructed
point cloud & is fed into a classification model (e.g., PointNet)

in order to obtain the class prediction . This approach
provides a baseline for comparison with our proposed codec.

In Fig. 1b, we show an abstract representation of a machine
task codec, as was explored by [3] for point cloud classifica-
tion. Using the same terminology as in [11], g, refers to the
analysis transform, and g, refers to the synthesis transform.
In this codec, the input point cloud x is first encoded into
a latent representation y = g, (). This is then quantized as
9 = Q(y), and then losslessly compressed using a learned
entropy model. For instance, in [3], a fully-factorized entropy
model was used. The reconstructed latent representation § may
then be used to predict the classes £ = 9s.t(9).

B. Scalable human-machine compression codec

In Fig. lc, we show a high-level representation of a
scalable multi-task codec. Following the principle of latent
space scalability [20], the scalable multi-task codec splits the
latent space into two parts, [§,,9,] = split(g), along the
channel dimension. The first part ¢, is called the “base”
layer and the second part g, is called the “enhancement”
layer. The base layer is used for the machine task (i.e.,
classification) to predict the class ¢ = gs,t(41). Both base
and enhancement layers are used for input reconstruction:
& = g, (concat[detach(y,), §,]). This approach allows
for scalability: the enhancement bitstream only needs to be
computed and transmitted when human viewing is desired.
Note that the detach operation is used to disable gradient prop-
agation of D(x, &) backwards through §,. This improves the
specialization of §j; towards the machine task; otherwise, 4,
may end up with some enhancement-layer information [22].
Two separate bitstreams (base and enhancement) are produced,
whose total rate is Rg = Ry, + Ry, .

C. Proposed architecture

Our complete proposed codec architecture, based on Point-
Net++ [5], is shown in Fig. 2, and the details of each block
are shown in Fig. 3. Our codec is provided in “full” and “lite”
configurations, as detailed in Table I. The input point cloud
of P points is represented as a matrix € R3*? of (z,y, 2)
coordinates. w is an additional set of attribute features (e.g.,
normals, color, etc.) that optionally may also be compressed.
At the beginning of the encoder, £ and u are concatenated
along the channel dimension so that u(®) = concat|z,u).
This ensures that the same encoding capabilities are available
for both. We feed (© = z and u(®) into a sequence of
downsampling blocks. Each ¢-th downsampling block takes in
20~ and w(~Y and outputs and a smaller set of centroids
() and features u(?), along with features ug(i’l) that are
grouped by the centroids. The final u(® is compressed in a
multi-task scalable manner, from which @'®) is derived. Each
ug(i_l) is compressed using a standard transform-encoder-
decoder-transform compression pipeline to obtain ﬁg(ifl). A
sequence of upsampling blocks is then applied, where each
i-th upsampling block takes in @, For i > 0, the output
of the ¢-th upsampling block is concatenated with ﬁg(i_l) to
give a1V, For i = 0, the output is Z.
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Fig. 2. Proposed codec architecture.

1) Downsampling: Each downsampling block is a Point-
Net++ “set abstraction” layer (see [5] for more details), with
minor modifications. We used single-scale grouping (SSG)

of points for our proposed codec, though it may likely be

improved with multi-scale grouping (MSG) or multi-resolution

grouping (MRG) as described in [5]. The “set abstraction”

DownsampleBlock® ha®
Reshape (D; +3,...) = (Di + 3, Pi+15i11)
SetAbstraction S L (DB >
shared mlp = (D;, D;;1, D;11) gl =1 (2 +8) =
Channelwise Gain
UpsampleBlock® hs®)

layer takes as input a (subsampled) point cloud x(~1) of
shape 3 x P—1) and features w(*~1) of shape D(i—1) x pli—1)
containing information about each corresponding point. Using

Convld; k=1; (Ey+ Dy +3) = Ey

Channelwise Gain

farthest point sampling (FPS), a set of P(®) centroids (")

ReLU

Convld; k=1; M — (D; +3- (i < 3))

Convld; k=1;E;, —+ 3

Task Backend (MLP)

of shape 3 x P is selected from a(*~1). Then, the points
in 20~Y are grouped into P(*) groups of S points each.
Then for each centroid, a ball query? [5] is performed to find
the first S() points that are within a radius of R from the

given centroid. The relative positions of each group of points is

then computed with respect to its associated centroid, result-

UpsampleBlock® [i > 0]
Convld;k=1; Ml(a) — 512
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BatchNormld ReLU
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r() is concatenated with its respective feature vector in
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w(~Y) resulting in a grouped feature tensor u,*~1) of shape
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(DD 43)x P() x SO)_ Then, ug (=1 is fed into a miniature

Reshape (E;, P;, S;) — (Ei, P; - Si)

Reshape (40,1) — (40,)
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Fig. 3. Proposed codec architecture (details).

ZNote that due to the ball query, the same point may be assigned to multiple
centroids. Also, centroids are not always present within their own group of
points. Nonetheless, the ball query has the benefit of scale-invariant grouping.



TABLE I
ARCHITECTURE HYPERPARAMETER CONFIGURATIONS

Codec ¢ PO s gO  pd  gO a0
full 0 1024 3 3 0
1 256 4 0.2 128 64 0
2 64 4 0.4 192 32 64

3 1 64 256 16 (48, 16)
lite 0 1024 3 3 0
1 256 4 0.2 32 32 0
2 64 4 0.4 48 16 16

3 1 64 64 8 (48, 16)

multi-layer perceptron (MLP) with a max pooling operation at
the end. That is, the same PointNet encoder is applied to each
group of features independently and identically. This results in
') of shape D x P(9), Three downsampling blocks are used
in our proposed codec. The last downsampling block groups
all the remaining points into a single group, i.e., P®) = 1.

2) Feature compression: At each level ¢ < 3, a latent
representation y = h, ¥ (u, @) of shape M@ x PO is
computed, then quantized as gj(i) = Q(y(")), and then entropy-
coded using a learned entropy model. The resulting bitstream
is transmitted and then decoded as g(“. From this, a set of
grouped features ag“) = hy)(ﬁ(i)) is computed for usage
during upsampling. (Note that ﬁg(i) and ug(i) may inhabit
entirely different feature spaces, and are unrelated.)

The final feature vector w(® is fed into the scalable
multi-task compression pipeline described in Section III-B.
The latent representation y® = h,® (u®) is computed,
then quantized as 1,7(3) = Q(y<3)), and then entropy-coded
to generate a base bitstream for g§ and an enhancement
bitstream for g}ég). The base bitstream is decoded as ,1]53),
and then fed into a decoder-side task backend to obtain the
class prediction £ = gﬁ?(gf’)) The enhancement bitstream
is decoded as 37;3), and then its concatenation with g§3>
(detached) is fed into a decoder-side transform to obtain
ﬁg(?’) =Y (concat[detach(ygs)), yé?’)}).

Note that we split only y®) into ygg’) and yg?’). This is
because ygg) suffices for the classification task, while ygs) and
y) for j < 3 are only needed for input reconstruction. For
brevity, in the experiments we only test input reconstruction
with all enhancement layers, but the proposed architecture also
allows for quality- or density-scalable input reconstruction.

3) Upsampling: An upsampling block takes in FC+1) +
D@ 43 (14, 3) channels and outputs £ channels, where
0;,; is the Kronecker delta (9; ; = 1 if ¢ = j, 0 otherwise).
Each upsampling block consists of a simple two-layer point-
wise MLP. For upsampling blocks at levels deeper than ¢ > 0,
batch normalizations are also present. Furthermore, each such
block is followed by a reshape-transpose-reshape combination
that converts the resulting shape (E(*) - () x P() into the
output shape F() x (S . P(®)). To ensure compatibility of
shapes among various components during reconstruction, we
enforce the constraint P(—1) = P() . (),

IV. EXPERIMENTS

We trained our models on the ModelNet40 [23] dataset,
sampling P = 1024 points per object, and reconstructed the
same number of points. Our implementation uses the PyTorch,
CompressAl [24], and CompressAl Trainer [25] libraries.

The loss function used for training was

3
L= Ryo +XD(x,2) + \D(t, ).
i=0

2

The rate estimate R, for each level is the negative log
likelihood outputted by the respective entropy models. The
distortion D(t,#) is the cross-entropy between the one-hot
encoded labels ¢ and the softmax of the model’s prediction
t. The distortion D(x,#) is the Chamfer distance between
the input and reconstructed point clouds. We trained different
models to operate at different base/enhancement rate points
by varying the hyperparameters \; € {277,276 ... 2} and
Az € [1,8000]. These values are reported for rates in units of
bits per point (bpp), i.e., the rates are divided by P = 1024.
To improve stability during training, we disabled the first two
levels by setting M(® = 0 and M) = 0. We also set
M® = 64 and M® = 64, and used a partitioning ratio of
0.75 for the last layer, i.e., M(®) = 48 (base) and M{” = 16
(enhancement).

The input compression codecs were evaluated using the
same methodology for varying P and input scaling as in [3].
Since codecs like TMCI13 [10] and OctAttention [15] are
tailored to point clouds with a large number of points, the
coding overhead they produce may be significant when applied
to smaller point clouds such as those used in classification. To
improve the fairness when measuring the rate, we ignored such
overhead within the bitstream when possible.

V. RESULTS

Figs. 4a and 4b show the rate-accuracy curves for the base
task of point-cloud classification. Only the rate of the base
bitstream is measured for the base task. Scalable codec curves
are grouped by their worst-case reconstruction ability mea-
sured in terms of Chamfer distance [26]. Our proposed codec
achieves better classification performance than all existing
codecs, including [3] (denoted “Ulhaq2023”), which in turn is
better than input compression codecs (“ICC”) that use a point-
cloud codec (TMC13 [10] and OctAttention [15]) followed
by a PointNet/PointNet++ classifier. Only the best ICC curves
are shown. Note that “P="" indicates the best results attained
when varying P € {8,16,...,1024}.

There is a large gap in base task performance between
task-specialized codecs (the proposed one and [3]) and non-
specialized codecs because, in addition to statistical redun-
dancy, the former codecs remove a significant amount of
task-irrelevant information. Meanwhile, the proposed codec
outperforms [3] due to its reliance on the more powerful
PointNet++, rather than PointNet.

Fig. 4c show the rate-distortion curves for the reconstruction
task in terms of the rate versus the Chamfer distance. For
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Fig. 4. Rate-accuracy (RA) and rate-distortion (RD) curves on the ModelNet40 dataset, with rate units of bits per point (bpp) scaled for 1024 points.

the proposed codec, the rate includes both the base and
enhancement bitstreams. The figures show that our proposed
codec is also capable of achieving better reconstruction quality
than conventional codecs at low rates, below 1.6 bpp. As the
rate increases, the conventional codecs eventually catch up in
terms of reconstruction quality.

VI. CONCLUSION

In this paper, we proposed a scalable multi-task compres-
sion codec for point clouds. Our proposed codec produces a
base bitstream that supports point cloud classification and an
enhancement bitstream that, together with the base bitstream,
supports reconstruction of the point cloud for human viewing.
The proposed codec showed a significant improvement in
rate-accuracy performance for the base task over existing
codecs, while also achieving competitive performance against
conventional codecs on input reconstruction at reasonably low
rates. In the future, we hope that this work will inspire further
research into scalable multi-task compression codecs for point
clouds on more complex real-world datasets, and for other
tasks such as semantic segmentation.
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