NUMBER
THEORY

GEORGE E. ANDREWS

Evan Pugh Professor of Mathematics
Pennsylvania State University

DOoOVER PUBLICATIONS, INC.
NEW YORK



56 FUNDAMENTALS OF CONGRUENCES

4. Let w(n) denote the number of primes not exceeding n
that do not divide n. Is w(n) < ¢(n)? Can you find values
of n for which w(n) = ¢(n) — 1?7

4-3 RIFFLING

In this section we shall demonstrate the usefulness of congru-
ences in solving a problem of frequent interest to college students.

Take an ordinary deck of cards arranged in any order. How many
shuffles are required before the deck returns to its original order? Of
course, to idealize the real life situation, we must stipulate that only
the modified perfect faro shuffle is permitted, as follows: Cut the deck
into two equal 26-card packs; then proceed by alternating cards from
each pack. The cards formerly in positions 1,2,...,26 are moved to
positions 2,4, . ..,52; and the cards formerly in positions 27,28, ...,52
are moved to positions 1,3, ...,51. Thus, if a card starts in position «,
it will end in position y, where 1 = y =52 and 2x =y (mod 53).
After n shuffles, the card will be in position w, where 1 = w = 52
and 2"x = w (mod 53).

To determine the number of necessary shuffles, we must find n
such that 2”x = x (mod 53) for every x such that 1 < x =< 52. Since
53 is a prime, we may cancel x from both sides of the congruence;
thus we must solve the congruence

2" = 1 (mod 53). (4-3-1)
By Fermat’s little theorem, we know that
2% = 2 (mod 53). (4-3-2)
Cancelling 2 from both sides of congruence (4-3-2), we find that
252 = 1 (mod 53). (4-3-3)
Hence, the cards will return to their original order after 52 shuffles.
Actually, 52 is the least number of shuffles required, but we shall not
prove this here.
In general, if we have a deck of m cards, then n shuffles will return
the cards to the original order provided that

2" = 1 (mod m + 1). (4-3-4)

Thus, if m =62, we need only 6 shuffles, since 26 — 1 = 63.
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EXERCISES

il

How many modified perfect faro shuffles are needed to
return the cards to their original position in a deck of 6
cards? of 8 cards? of 12 cards?

Suppose that instead of performing a modified perfect faro
shuffle as described in this section, we shuffle as follows:
Take the bottom and top cards of the deck and place them
on the table to start a new deck. Then take the remaining
bottom and top cards and place them on the newly started
pile. Continue this process until all cards are gone from
the original pack. For example, if the deck has six cards,
then we shuffle as shown in Figure 4-1.
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Figure 4-1 Shuffle of a deck of six cards described in Exercise 2 (side view).

Prove that the cards in a deck of 2" cards will return to their
original positions after n+1 such shuffles. (Note that the
shuffle described in this problem is mechanically some-
what easier to perform than the modified perfect faro
shuffle described earlier.)
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10.

11.

12.

13.

SOLVING CONGRUENCES

. What is the remainder when 417 is divided by 3?
. What is the remainder when 473% is divided by 5?

. Prove thatif A = ;10" + a,10*~'+ . . . + g,and S = a, +

a;+...+a, then A = § (mod9). (This result is the basis
for the computational check called “casting out nines”.)

. Suppose that p is a prime, and that pta; use Euler’s

theorem to prove that x = a?~2b is a solution of

ax = b (mod p).

. Prove that if p is a prime congruent to 1 modulo 4, then

Aﬁlmwnv 1* = —1 (mod p).

[Hint: Prove that ((p—1)/2)!* = (p—1)! (mod p).]
Use Exercise 9 to find a solution of each of the following
congruences.

(2) x2 = —1 (mod 13)

(b) x2 = —1 (mod 17).

I

Prove that for each odd prime p and for each a
O=a=p-1),

(2")

Prove that for each prime p (n < p = 2n),

I

(—1)® (mod p).

szv = 0 (mod p),

n

but that
2n
A ’ v % 0 (mod p?).
Is 22~ =1 (mod p?) for p=2? for p=3? for p=5? for

p =T? for p = 11? (After completing Exercise 13 you may
be interested to learn that 212 = ] (mod 10932).)
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14.

15.

16.

17,

18.

For each m greater than 1, how many primes are there in
the closed interval [m!+2,m!+ m]?

Suppose p denotes a prime congruent to 3 modulo 4; use
Wilson’s theorem to prove that

Aﬁfmv _NNHAEOQ 3.
[Hint: See the hint for Exercise 9.]

Find the least positive integer n that satisfies each of the
following congruences.

(a) 3¢ =n (mod 7)
(b) 7*® = n (mod 11)
(c) 728 = n (mod 13).

Decide whether or not 17 is a prime by determining
whether 16! is congruent to —1 modulo 17. Is this an effi-
cient test for determining whether or not 1093 is a prime?

Let A(m) be the least positive integer such that for each
integer a relatively prime to m,

a*™ =1 (mod m).

Compute A(m) foreachm (1 = m = 10). IsA(m) =< ¢(m)
for each m? Is A(m) < ¢(m) for some m?

19.

In 500 B.c. the Chinese seem to have known that 27 =2
(mod p) for each prime p. They also assumed that if
2" = 2 (mod n), then n is prime.

20.

(a) Show that 341 is not a prime.
(b) Show that 2'° = 1 (mod 341).
(c) Show that 2** = 2 (mod 341).

Let @, =2%"+1.

(a) Prove that @, | (22""' —1).

(b) Prove that if a | b, then (22 —1) | (22—1).
(c) Prove that (2:"*' —1) | (22*" —1).

& 2% =y @f\v\v
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(d) Prove that (222" —1) | ( 22%"+1 —2).

(e) Prove that @, | (2%» —2).

(f) P. Fermat observed that &, =5, &, =17, &, = 257,
and &, = 65537 are all primes, and he suggested that

@, is prime for each n. Discuss Fermat’s suggestion
in the light of Exercises 19 and 20(e).

21. Prove that if p denotes an odd prime, then

9T =-1(modp).

22. Prove that if p = 3 (mod 4), then the product of all the odd
integers less than p is congruent either to 1 or to — 1 modulo
p. [Hint: Ifp =2l + 1, then(p — ) = 2N1-1-3-5-.. .-
@2l —1).]

23. Prove that if p = 3 (mod 4), then the product of all the
even integers less than p is congruent either to 1 or to —1
modulo p.

5-3 THE CHINESE REMAINDER THEOREM

Having considered single linear congruences in Section 5-1, we
now turn to the problem of finding solutions of systems of linear con-
gruences. A solution of the system of congruences

a;x = b, (mod m,),

a,x = b, (mod m,),

and

a,x = b, (mod m,)

is an integer that satisfies each congruence in the system.

The simplest examples of such systems arise in the solution of
single linear congruences with large moduli. Let m have the prime
factorization

m=p,'p,** . . . ps;

then, as a consequence of the fundamental theorem of arithmetic,
m | n if and only if p¢i| n for each i. Hence,

5-3 THE CHINESE REMAINDER THEOREM 67
A = B (mod m)
if and only if all of the congruences

A = B (mod p,*),
A = B (mod p,°2),

and
A = B (mod ps)

hold. It follows that the congruence
ax = b (mod m) (5-3-1)

has the same set of solutions as the system of simultaneous con-
gruences

ax = b (mod p,*),

ax = b (mod p,),

e (5-3-2)
and

ax = b (mod ps).

Although there are several congruences to solve in (5-3-2),

their moduli are generally much smaller than m, and, as we shall see,
computations are thus simplified.

Example 5-6: Let us replace the congruence
3x = 11 (mod 2275)

by a system of linear congruences with smaller moduli. Since
2275 =527 - 13, our congruence may be replaced by the system

3x = 11 (mod 25), (5-3-3)

3x =11 (mod 7), (5-3-4)
and

3x = 11 (mod 13), (5-3-5)





