
Homework #3 • MATH 462 • Vorticity & Flow

• submit your write-up by noon Thursday 09 February (homework box 12A).
• remember that webct is open for discussion.

A) A Patch of Vorticity (3 pages + 1 for plots, 15pts) Consider an incompressible 2D fluid
whose initial condition is characterized by a circular patch of vorticity

ω(~x, 0) =


1
πa2

0 ≤ r < a

0 a < r <∞

where ω is the ẑ-component of vorticity ~ω and r = | ~x |.
i) Solve for the initial streamfunction ψ(~x, 0), and hence, determine the initial flow velocity.
Your task is simplified in this geometry since the Poisson PDE for the streamfunction ψ(~x, 0) is
really just an ODE. Invoke the BC that the flow is bounded at the origin. It is also necessary to
impose continuity on the streamfunction and its associated flow at r = a. Choose the constant
part of the streamfunction to be zero at r →∞. Describe the resulting flow pattern.

ii) Using the vorticity equation, deduce the time evolution of this flow for t > 0. This result,
in turn, makes it easy to determine the pressure field. Invoke the conditions that the pressure
approaches a constant value p∞ as r → ∞ and is continuous at r = a. Explain why the
presssure field is consistent with the flow pattern.

iii) Make a subplot or two showing the important flow quantities as a function of r.

iv) Finally, show that there is a limiting streamfunction as the patch parameter a→ 0

Ψ(~x, t) = lim
a→0

ψ(~x, t) .

This limit is commonly known as the line vortex in 3D flow.

B) Exact Flow Trajectories (3 pages, 15pts) Despite the need for taking many derivatives,
this is really a thought intensive problem. In the partial derivative notation, you will need to
be clear about what is being held constant. There is an old-fashioned type of notation that
makes this issue clear (see also the partial derivative notation link on the class webpage). For
a function F (x, y, t), the usual partial derivative notation

∂F

∂x
is used to mean

(
∂F

∂x

)
y,t

where the subscripts indicate that the derivative is the rate of change in x, but with y and t
held constant. In your write-up of this problem, every partial derivative must indicate
the fixed variables.

In 1802, the Czech-born Franz Joseph von Gerstner discovered a remarkable set of exact flow
trajectories consistent with Euler’s flow equations

x(t, x̄, ȳ) = x̄+
1
k
ekȳ sin k(x̄+ ct)

y(t, x̄, ȳ) = ȳ − 1
k
ekȳ cos k(x̄+ ct)

(1)

where k and c are given constants. All trajectories are circles with radius ekȳ/k and the point
(x̄, ȳ) as its centre. Please read the problems below carefully.



i) The u flow velocity is given by a certain partial time-derivative of x(t, x̄, ȳ), exactly what
needs to be held fixed in this calculation? Give the velocity of the flow as a function of the
variables (x̄, ȳ, t), and clearly state where in the (x, y)-plane this flow velocity is found. Explain
why you cannot give a formula for the flow velocity, ~u(x, y, t), i.e. explicitly as a function of
the usual coordinates.

ii) Despite that we only have an implicit representation of the flow, we can verify that the
velocity field has zero divergence. The calculation requires thoughtful application of the chain
rule. As a first step, you will need the following partial derivatives(

∂x̄

∂x

)
y,t

;
(
∂ȳ

∂x

)
y,t

= −e
kȳ sin k(x̄+ ct)

1− e2kȳ
;

(
∂x̄

∂y

)
x,t

;
(
∂ȳ

∂y

)
x,t

which are derivable from the four relations obtained by taking the x and y partials of the
trajectories (1).

iii) You should now be well-equipped to evaluate the divergence using the chain rule

∇ · ~u =
(
∂u

∂x

)
y,t

+
(
∂v

∂y

)
x,t

.

iv) Lastly, calculate the vorticity. What principle of two-dimensional vorticity dynamics is
illustrated by your result?

*) Almost an Exam Problem (for your personal challenge) Here is a problem that didn’t quite
make it into the perfect for students! list. Solve, using PDE techniques, for a one-dimensional
(incompressible) flow that consists of a fixed-pressure pump filling a cylinder capped with a
frictionless, moving piston. The density of the filling fluid is ρ0. The mass of the piston is Mp.
The cross-sectional area of the cylinder is A.

Denote the location of the piston by L(t). Given that the piston begins from L(0) = 0 with
initial velocity L′(0) = 0, determine a first-order, nonlinear ODE problem that fully determines
the piston motion, L(t).

Some of the boundary conditions are tricky. The easiest is p(0) = ppump, the other two
involve u(L(t)) and p(L(t)). The inside pressure at the piston end is exactly that required
to be consistent with the piston’s acceleration (hence the need for the piston mass). The
x̂-momentum equation eventually becomes the ODE for L(t). (You may neglect the airflow
on the outside of the cylinder — assume it is much less dense than ρ0. No body forces.)
Unfortunately, the first-order ODE has no closed form solution.

patmppump

x

patmppump

x

L(t)

L(0) = 0


