## Probabilistic Models \& Stochastic Differential Equations

Randomness is amenable to a mathematical description when viewed as a probabilistic phenomenon. This course is an introduction to the mathematical and computational tools developed for the understanding of systems that include the feature of randomness. These methods incorporate ideas of probability theory into simple mathematical models of discrete or continuous processes. Many of these models form the basis of those used in the sciences, finance and engineering. The goal is to obtain an understanding of the statistics of model outcomes, or the properties of the random processes.

This course will begin with introductory reviews of the theory of probability and the calculus of mathematical models. The aim is to develop tools for a quantitative understanding of the most basic stochastic systems: Markov models, Brownian motion and stochastic differential equations. The analysis of these models combines ideas of elementary probability, advanced calculus (differential equations and Fourier series) and numerical computing - participants should have previous experience in some, but not necessarily all of these areas. Matlab will be the default computing environment for the class, and most of the numerical work will involve modification of downloaded scripts.

Minimum course prerequisites: Integral calculus (Math 152), linear algebra (Math $232 / 240$ ) and Stat 270. Programming experience (script editing \& debugging).

Text: Stochastic Tools in Mathematics and Science, Chorin \& Hald, Springer (2006).
Further information \& updates: www.math.sfu.ca/~muraki


Two examples of discrete randomness. The pegs of a Galton board deflect balls to the left and right with equal probabilities. The distribution of lateral deflection has a Gaussian profile (left). For the children's game of snakes and ladders (centre), as played with a single six-sided die, the table (right) shows the expected number of rolls remaining to complete the journey to square 100.

