Anatomy of a Snowstorm

Large-Scale Data Visualization Computational Meteorology

www.emc.ncep.noaa.gov/mmb/research/blizz2000

Torsten Möller & Dave Muraki

 ∇

Fuqing Zhang (NCAR, Boulder)

 ∇

North Carolina, 24-25 January, 2000.

A Forecasting Disaster

- ∇ Rayleigh/Durham: 20+" of snow (a Jan monthly record!)
- forecasts tracked storm too far east

www.emc.ncep.noaa.gov/mmb/research/blizz2000

 ∇ NCAR: why did the forecast models go wrong?

Weather Forecasting Models.

Supercomputing & Supersized Data

- ∇ 3 space dimensions (x,y,z) on sphere) & time (t)

many physical quantities (winds, temperature, humidity . . .)

 ∇

 ∇ many physical processes -> complex interactions

Midlatitude Meteorology 101

The Jetstream, Ridges & Troughs

- $\,
 hd$ strong west-to-east flow at pprox 10km
- primary mechanism of weather movement
- ▷ ridges = high pressure, troughs = low pressure

Midlatitude Meteorology 101

Norwegian Cyclone Model

Bjerknes & Solberg (1926)

 ∇

low pressure cells & counter-clockwise (cyclonic) flow

 ∇

Carlson

Midlatitude Meteorology 101

Fronts

- ∇ warm air rises, moisture condenses \rightarrow precipitation

Conway

Graphical Visualation -

Storm as a 3D Event

- vis5d: specialized meteorological graphics tool
- matlab: computing & graphical environment
- ∨tk: visualization API

Carlson

Your Mission . . .

Graphical Storm Chasing

- $hd ext{observe } \& ext{ identify basic atmospheric processes}$
- sequence the events of the storm development