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1. A Single-Class Traffic Model

Macroscopic 1-D traffic model assumptions:
• Quantify traffic by car density→ ρ(x, t).
• Conserve number of cars→ Conservation Law (PDE).
• Velocity, v(ρ), modeled as a function of density only.
• Flux, f (ρ) = v(ρ)ρ, cars passing cross-section of road / unit time.
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ρ(x, t) = Density (cars/length)

vm = Maximum velocity = 1

ρm = Maximum density = 1

1.1 Riemann Problem: hyperbolic conservation law with piecewise constant initial condition

ρ(x, 0) =

{
ρL : x ≤ 0

ρR : x > 0

• Characteristic speed λ(ρ) = f ′(ρ) = vm

(
1− 2 ρ

ρm

)
• With convex flux, solution has 1 elementary wave of two types.
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Shock, cars in back move faster
• Speed s from Rankine-Hugoniot condition
(RHC)→ s(ρL − ρR) = f (ρL)− f (ρR)

• Entropy condition→ λ(ρL) > s > λ(ρR)
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Rarefaction, cars in back move slower
• λ(ρL) < λ(ρR).
• Fan of rays in rarefaction zone.

2. A Two-Class Traffic Model

• Different vehicle classes obey different velocity functions.
• ρ1 is the density of fast drivers and ρ2 is the density of slow drivers.

2-Class Equations Cases (I − IV )
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~q =

[
ρ1

ρ2

]
, ~f (~q) =

[
(1− ρ)ρ1

α(1− ρ)ρ2

]
α = ratio of max velocities ≤ 1

ρ = ρ1 + ρ2, total density

λ1 < λ2, eigenvalues of Jacobian of ~f

2.1 Riemann Problem

• 2 elementary waves separated by a constant middle state ~qM → 4 cases.
• Left-most wave determined by λ1; Right-most wave determined by λ2.
• ~qM for shocks satisfy a vector RHC.
• ~qM for rarefactions satisfy a Riemann invarient condition.

• 1-curve: Possible middle states ~qM that connect to ~qL by a 1-rarefaction/shock.
• 2-curve: Possible middle states ~qM that connect to ~qR by a 2-rarefaction/shock.

(a) Determine Case I − IV , α = .5 (b) Determine Middle State Given ~qR, α = .5
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• (a) 1-curve and 2-curve create 4 regions, where position ~qR determines case I − IV .
• (b) Constant middle state ~qM is the intersection of the 1-curve and 2-curve.

3. Finite Volume Method

Single-Class Cartoon
• Qni → Average density in a cell:
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Approximated Riemann Problem

• Fn
i−1/2

→ Average flux across cell edge:

Fn
i−1/2

= f (Qi−1/2)

• Update→ Qn+1
i = Qni +

∆t

∆x
(Fni−1/2 − F

n
i+1/2)︸ ︷︷ ︸

Net change in density in cell xi..............

• Qi−1/2 from an approximate Riemann problem.

3.1 Roe’s Approximate Riemann Solver

• Finding exact f (Qi−1/2) can be expensive 2(b).
• Approximate the 1 and 2 curves in 2(b) by sensible straight lines.
• Roe Linearization→ Lines from eigenvectors of an approximate Jacobian matrix A
• Eigenvalues of A should be consistent with shock speeds.
• A = mean value integral of ∇~q ~f along path ~qL − ~qR.

Approximation of ~qM Using Eigenvectors of A Two-Class Cartoon
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2−Class Exact Riemann Problem
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2−Class Approximate Riemann Problem

4. CLAWPACK Implementation

• CLAWPACK: package using Riemann solvers to compute hyperbolic equations.
• Exact and numerical solutions to Riemann problem for cases (I − IV ).

(I) Shock-Rare, T = 1, α = .5 (II) Shock-Shock
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(IV ) Rare-Rare (III) Rare-Shock
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• Test Roe Solver against benchmark solution from a WENO scheme (2).

Roe Solver WENO
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5. Future work

(1) Extend to N-class traffic flow.
(2) Study different velocity functions.
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