## PHYS 100 Midterm examination #1 (vers. 1A)

Key

Time: 50 minutes

Feb. 9, 2007

Student No. Blue

 $V_{av} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{50 - 0 \text{ (m)}}{5 - 0 \text{ (s)}} = 10 \text{ m/s}$ 

Part I (Multiple choice questions). For each of the following five questions, please circle one answer only.

## CDCEAB .

Please refer to the following position-versus-time graph when answering questions 1-3:



1<sub>(1/20)</sub>. The average velocity over the interval between t=0 and t=5 s is

- Ã) –4 m/s
- B) 0
- (C) 10 m/s
- D) 0.1 m/s
- E) -10 m/s

 $2_{(1/20)}$ . The instantaneous velocity at point C is

- A) Greater than the average velocity over the interval t=0 to t=5 s
- B) Negative
- C) Equal to the average velocity over the interval t=0 to t=5 s
- (D) Smaller than the average velocity over the interval t=0 to t=5 s
- E) Increasing

 $3_{(1/20)}$ . The displacement during the time interval between t=5 and t=10 s is

- A) Increasing
- B) 50 m
- (C) -50 m
- D) 50 m/s
- E) 5 m

ΔX = X2 - X1 = 0 - 50 (m) = - 50 m

A satellite moves around the earth in a circular orbit with a constant speed.

- A) The velocity of the satellite increases.
- B) The velocity of the satellite decreases.
- C) The velocity of the satellite does not change.
- The acceleration of the satellite is constant.
- (E) The acceleration of the satellite is not constant.

5(1/20). A ball is thrown from a roof at a 60° angle above the horizontal with a speed of 20 m/s. 6.0 seconds later, the ball hits the ground. Ignore the air resistance.

When the ball hits the ground, the x-component of the velocity is ax =0 .



Ux = Vxo = Vo colo



 $6_{(1/20)}$ . (refer to the previous question) When the ball hits the ground, the y-component of the velocity is

$$ay = -g$$
.

$$a_y = -g$$
,  $V_y = V_{yo} + a_y t$ 

Part II (Full solution questions).

 $7_{(4/20)}$ . The current of a river is flowing at 4 km/h. A man wants to drive a boat across the river to reach a point on the other bank directly opposite to his starting point. His boat is capable of travelling 5 km/h in still water. At what angle upstream should the man point his boat?



$$0 = \sin^{-1} \frac{V_{W6}}{V_{BW}} = \sin^{-1} \frac{4 \, \text{km/k}}{5 \, \text{km/k}}$$



 $8_{(5/20)}$ . A pendulum is a small bob swinging to and fro on a string, as shown in the figure below. The bob reaches the bottom A with a horizontal velocity of 2.4m/s to the right. 0.50s later, it reaches B with a velocity 0.80m/s at an angle of 30°. Find the average acceleration of the bob over the time interval between A and B.

Set up coordinate system 1 x

when xf = 0.50 5.

$$V_{B \times} = V_{z} co230^{\circ}$$
  
= 0.69 m/s



Average acceleration: 
$$\vec{Q}_{av} = \frac{\vec{v} \vec{v}}{\vec{v} t} = \frac{\vec{v}_B - \vec{v}_A}{\vec{v} t}$$

$$y - component: aavy = \frac{VBy - VAy}{DA} = \frac{0.4 - 0}{0.5} = 0.8 \text{ m/s}^2$$

$$a = \sqrt{(a_{avx})^2 + (a_{avy})^2} = \sqrt{(-3.42)^2 + (0.8)^2} = 3.51 \text{ m/s}^2$$

$$0 = \tan^{-1} \frac{a_{avy}}{a_{avx}} = 167^{\circ}$$



 $9_{(5/20)}$ . John is driving a van on a single-lane section of the Sea-to-Sky highway. In order to pass a bus he crosses the yellow line and speeds up to 120 km/h. At the same time, a truck is coming in the opposite direction with a speed of 90 km/h. When the two vehicles are 100 m apart, both drivers hit the brakes, which results in a constant deceleration of 6.0 m/s<sup>2</sup> for both vehicles.

- A) Draw the v-t and x-t graphs to determine whether or not the two vehicles will collide.
- B) If the two vehicles collide, find their relative velocity at the instant of collision; if they don't collide, find the distance between the two vehicles after they have both come to a complete stop.



$$V_{To} = -90 \, \text{km/h} = -25 \, \text{m/s}$$
 $X_{Vo} = 6$ 
 $X_{To} = 100 \, \text{m}$ 

30 20

10

-10 -20

100

50

x(m)

at 
$$t$$
:  $a_v = -6 \, \frac{m}{s^2}$ ,  $a_T = 6 \, \frac{m}{s^2}$ .

$$Van: V_{v} = V_{vo} + a_{v}t = 33.3 - 6t$$

position: 
$$\chi_V = 33.3 t - \frac{1}{2} \cdot 6 \cdot 1^2 = 33.3 t - 3 t^2$$
  
 $\chi_T = 100 - 25 t + 3 t^2$ 





at 
$$t=2.25$$
:  
 $V_{\nu}=33.3-6\cdot(2.2)=20.1 \text{m/s}$   $V_{\tau}=-25+6(2.2)=-11.8 \text{ m/s}$   
 $v=10.1+11.8=31.9 \text{ m/s}=115 \text{ Km/h}$ .

## PHYS 100 Midterm examination #1 (vers. 1B)

Feb. 9, 2007

Time: 50 minutes

| Name       |       | Key |  |
|------------|-------|-----|--|
| Student No | Green | · · |  |

Part I (Multiple choice questions). For each of the following five questions, please circle one answer only.

DCABBE

Please refer to the following position-versus-time graph when answering questions 1-3:



- 1<sub>(1/20)</sub>. The instantaneous velocity at point C is
  - A) Greater than the average velocity over the interval t=0 to t=5 s
  - B) Negative
  - C) Equal to the average velocity over the interval t=0 to t=5 s
  - Smaller than the average velocity over the interval t=0 to t=5 s
  - E) Increasing
- $2_{(1/20)}$ . The average velocity over the interval between t=0 and t=5 s is
  - A) -4 m/s
  - B) 0
  - (C)) 10 m/s
  - $\overline{D}$ ) 0.1 m/s
  - E) -10 m/s
- 3(1/20). The displacement during the time interval between t=5 and t=10 s is
  - (A) -50 m
  - B) -50 m/s
  - C) -5 m
  - D) 50 m/s
  - E) Increasing

## Page 2 of 4

 $4_{(1/20)}$ . A satellite moves around the earth in a circular orbit with a constant speed.

- A) The acceleration of the satellite is constant.
- The acceleration of the satellite is not constant.
- C) The velocity of the satellite does not change.
- D) The velocity of the satellite increases.
- E) The velocity of the satellite decreases.

 $5_{(1/20)}$ . A ball is thrown from a roof at a  $30^{\circ}$  angle above the horizontal with a speed of 20 m/s. 6.0 seconds later, the ball hits the ground. Ignore the air resistance.

When the ball hits the ground, the x-component of the velocity is



(B) 17m/s.

C) 76m/s.

D) 41m/s.

E) 49m/s.



 $6_{(1/20)}$ . (refer to the previous question) When the ball hits the ground, the *y*-component of the velocity is

- A) -10m/s.
- B) -17m/s.
- C) -76m/s.
- D) -41m/s.
- (E)-49m/s.

Part II (Full solution questions).

 $7_{(4/20)}$ . The current of a river is flowing at 3 km/h. A man wants to drive a boat across the river to reach a point on the other bank directly opposite to his starting point. His boat is capable of travelling 4 km/h in still water. At what angle upstream should the man point his boat?

$$\vec{v}_{BG} = \vec{v}_{BW} + \vec{v}_{WG}$$

$$= \sin^{-1} \frac{3}{4}$$

=



 $8_{(5/20)}$ . A pendulum is a small bob swinging to and fro on a string, as shown in the figure below. The bob reaches the bottom A with a horizontal velocity of 2.5m/s to the right. 0.40s later, it reaches B with a velocity 1.0m/s at an angle of 30°. Find the average acceleration of the bob over the time interval between A and B.

$$\vec{Q}_{av} = \frac{\vec{v}_{B} - \vec{v}_{A}}{\Delta t} = \frac{\vec{v}_{B} - \vec{v}_{A}}{0.40(5)}$$

$$\vec{Q}_{avx} = \frac{\vec{v}_{Bx} - \vec{v}_{Ax}}{\Delta t}$$

$$= \frac{1.0 (\sigma Z_{30}^{\circ} - 2.5)}{0.4}$$

$$= -4.08 \quad m/s^{2}$$

$$v_1$$
 $v_2$ 
 $v_1$ 
 $v_2$ 
 $v_3$ 
 $v_4$ 
 $v_5$ 
 $v_6$ 
 $v_7$ 
 $v_8$ 
 $v_8$ 
 $v_8$ 
 $v_9$ 
 $v_9$ 

$$Q_{avy} = \frac{V_{By} - V_{Ay}}{st} \\
= \frac{1.08 in 30^{\circ} - 0}{0.4} \\
= 1.25 m/s^{2}$$



Magnitude: 
$$a_{av} = \sqrt{a_{avx}^2 + a_{avy}^2}$$
  
=  $\sqrt{(-4.08)^2 + (1.21)^2}$   
= 4. 27 m/s<sup>2</sup>

Rirection 
$$\lambda = \tan^{-1} \frac{|\alpha_{avy}|}{|\alpha_{ax}|} = 17^{\circ}$$

OP:  $\theta = \tan^{-1} \frac{|\alpha_{avy}|}{|\alpha_{ax}|} = 180^{\circ} - 17^{\circ} = 163^{\circ}$ 

 $9_{(5/20)}$ . John is driving a van on a single-lane section of the Sea-to-Sky highway. In order to pass a bus he crosses the yellow line and speeds up to 120 km/h. At the same time, a truck is coming in the opposite direction with a speed of 90 km/h. When the two vehicles are 100 m apart, both drivers hit the brakes, which results in a constant deceleration of 6.0 m/s<sup>2</sup> for both vehicles.

- A) Draw the v-t and x-t graphs to determine whether or not the two vehicles will collide.
- B) If the two vehicles collide, find their relative velocity at the instant of collision; if they don't collide, find the distance between the two vehicles after they have both come to a complete stop.

[Solution]: set up coordinate system.

1-D

van  $\overrightarrow{v}_{v}$ The system is the system i

Given: when t=0. Uvo= 120 km/h = 33.3 m/s

at t:  $a_v = -6 \, m/s^2$ ,  $a_T = 6 \, m/s^2$ 

 $V_{an}: V_{tv} = V_{vo} + a_v t = 33.3 - 6t$ 

Truck: UT = UTO + OT + = -25 +6 1

position:  $\chi_V = 33.3 \pm -\frac{1}{2} \cdot 6 \cdot 1^2 = 33.3 \pm -3 \pm^2$  $\chi_T = 100 - 25 \pm +3 \pm^2$ 



Will decollide at about t=25.



$$6t^2 - 58.3t + 100 = 0$$
  
 $t = 2.2 s$ .  $(1 = 7.5 s replacted. > 5.55 s)$ 

100

20

10

-10 -20

100

50

х(m)

at t= 2.2 5.

$$V_{\nu} = 33.3 - 6.(2.2) = 20.1 \text{m/s}$$
  $V_{\tau} = -25 + 6(2.2) = -11.8 \text{ m/s}$   
 $V_{\tau} = 11.8 \text{ m/s}$   
 $V_{\tau} = 11.8 \text{ m/s}$   
 $V_{\tau} = 11.8 \text{ m/s}$