PHYS 100 Midterm 3, November 18, 2005

Version 3A

Last Name	Key	
First Name		
Student ID		
Signature		

Part 1: Multiple Choice (2x5=10 marks)

For each of the following five questions, please circle one answer only.

- A tennis racket exerts a force of 24 N on a 55 g tennis ball to change its velocity from 15 m/s north to 25 m/s south. Over what period of time does this change of momentum take place?
 - (A))0.092 s
 - B) 0.023 s
 - C) 92 s
 - D) 23 s
 - E) 10.9 s
- F. 1 = 2P St = mav = 0.055 kg. [25-(-15)] m/s
 - = 0.0925.
- (2) A car of mass 2000 kg traveling east at 15 m/s collides at an intersection with a truck of 8000 kg traveling north at 5 m/s. The car and truck stick together. What is the speed of the wreckage just after the collision? (Ignore friction between the road and tires).

A) 10 m/s
B) 40 m/s (onservation of momentum. $(F_{net} = 0)$ C) 20 m/s
D) 5 m/s
E) 14 m/s $P_{T} = \sqrt{p_{1}^{2} + p_{2}^{2}} = 50,000 \text{ kg} \cdot \text{m/s}$ $P_{T} = \sqrt{p_{1}^{2} + p_{2}^{2}} = 50,000 \text{ kg} \cdot \text{m/s}$ p, = 2 200 × 15 = 30, 000 kg . m/s

- (3) A satellite is moving in a circular orbit around the earth. Which statement is NOT true?
 - A) The gravitational force is perpendicular to the velocity of the satellite.
 - B) The speed of the satellite is unchanged.
 - (C) The velocity of the satellite is unchanged.
 - D) The gravitational force equals the centripetal force.
 - E) The magnitude of acceleration is unchanged.

- (4) The net force on a moving object is suddenly reduced to zero. As a consequence, the object
 - A) stops abruptly.
 - B) changes velocity in an unknown manner.
 - C) stops during a short time interval.
 - D) changes direction.
 - (E) continues at constant velocity.
- (5) A baseball of mass 0.190 kg moving at 30.0 m/s strikes the glove of a catcher. The glove recoils a distance of 8.00 cm. The magnitude of the average force applied by the ball on the glove is

- C) 0.731 N
- D) 10.7 N
- E) 2.14x10³ N

$$W = \Delta K E$$

$$F \cdot \Delta X = \frac{1}{2} m \left(V_f^2 - V_i^2 \right) = \frac{1}{2} x \cdot 0.19 \left(0 - 30^2 \right)$$

$$F = \frac{|\Delta KE|}{|\Delta X|} = \frac{0.5 \times 0.19 \times 30^2}{0.08 \text{ m}} = 1.07 \times 10^3 \text{ N}$$

Part 2: Written questions (3x5=15 marks):

Please show complete solutions and explain your reasoning, stating any principles that you have used.

Written question 1 (5 marks):

A young hockey player stands at rest on the ice holding a 1.2 kg helmet. The player tosses the helmet with a speed of 6.0 m/s in a direction 11° above the horizontal, and recoils with a speed of 0.20 m/s. What is the mass of the hockey player?

Momentum is conserved.
$$\vec{P}_i = \vec{P}_f = 0$$
 \vec{V}_2
 \vec{M}_2
 \vec{V}_3
 \vec{V}_4
 \vec{V}_4
 \vec{V}_5
 \vec{V}_6
 \vec{V}_7
 \vec{V}_8
 \vec{V}_8

 χ -component of net external force = 0. $F_{\chi} = 0$. i. χ -component of total momentum is conserved. $P_{\chi i} = P_{\chi f} = 0$

$$M_{2} = \frac{m_{1}V_{1}(020 - M_{2}V_{2} = 0)}{M_{2}V_{2}} = \frac{1.2 \times 6 \times (021)^{0}}{0.2} = 35.3 \text{ Kg}$$

Written Question 2 (5 marks):

A car goes around a curve on a road that is banked at an angle of 20.0°. Even though the road is slick, the car will stay on the road without any friction between its tires and the road when its speed is 25.0 m/s. What is the radius of the curve? (show the free-body diagram).

0

$$\chi = component : NSin\theta = m \frac{v^2}{R}$$

 $y = component : N(ord - mg = 0)$

mg

$$\omega$$

from (2):
$$N = \frac{mg}{co20}$$

Substitution: $\frac{mg \sin 0}{co20} = m \frac{v^2}{R}$

$$R = \frac{v^2 \cos \theta}{g \sin \theta}$$

Written Question 3 (5 marks):

A 25- kg block (m₁) is on a horizontal surface, connected to a 5.0- kg block (m₂) by a massless string as shown in the Figure. The pulley is massless and frictionless. A force of 250 N acts on m₁ at an angle of 30°. The coefficient of kinetic friction between m₁ and the surface is 0.20. Determine the upward acceleration of m₂. (Include free-body diagrams)

