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Chapter 12 
Static Equilibrium; 

Elasticity and Fracture

Presenter
Presentation Notes
Our whole built environment, from modern bridges to skyscrapers, has required architects and engineers to determine the forces and stresses within these structures. The object is to keep these structures static—that is, not in motion, especially not falling down.
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An object with forces acting on it, but with 
zero net force, is said to be in equilibrium.

12-1 The Conditions for Equilibrium

The first condition for equilibrium:

Presenter
Presentation Notes
Figure 12-2. The book is in equilibrium; the net force on it is zero.
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12-1 The Conditions for Equilibrium

Example 12-1: 
Chandelier cord tension.

Calculate the tensions A
 and B

 

in the two cords 
that are connected to the 
vertical cord supporting 
the 200-kg chandelier 
shown. Ignore the mass 
of the cords.

F
r

F
r

Presenter
Presentation Notes
Solution: The forces at the point where the three cords join must add to zero. The vertical component of FA is the weight; the horizontal components of FA and FB cancel. Therefore, FA = 2260 N and FB = 1130 N.
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The second condition of equilibrium is that 
there be no torque around any axis; the choice 
of axis is arbitrary.

12-1 The Conditions for Equilibrium

Presenter
Presentation Notes
Figure 12-4. Although the net force on it is zero, the ruler will move (rotate). A pair of equal forces acting in opposite directions but at different points on an object (as shown here) is referred to as a couple.





Copyright © 2009 Pearson Education, Inc.

12-1 The Conditions for Equilibrium
Conceptual Example 12-2: A lever.

This bar is being used as a lever to pry up a large 
rock. The small rock acts as a fulcrum (pivot point). 
The force required at the long end of the bar can be 
quite a bit smaller than the rock’s weight mg, since it 
is the torques that balance in the rotation about the 
fulcrum. If, however, the leverage isn’t sufficient, and 
the large rock isn’t budged, what are two ways to 
increase the leverage?

Presenter
Presentation Notes
Figure 12-5. A lever can “multiply” your force.

Solution: One way is to lengthen the lever, perhaps with a pipe slid over the end as shown. Another way is to move the small rock closer to the big rock; this increases the ratio of the two lever arms considerably.
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1. Choose one object at a time, and make a free- 
body diagram by showing all the forces on it 
and where they act.

2. Choose a coordinate system and resolve 
forces into components.

3. Write equilibrium equations for the forces.

4. Choose any axis perpendicular to the plane of 
the forces and write the torque equilibrium 
equation. A clever choice here can simplify the 
problem enormously.

5. Solve.

12-2 Solving Statics Problems
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12-2 Solving Statics Problems
Example 12-3: Balancing a 
seesaw.

A board of mass M
 

= 2.0 kg 
serves as a seesaw for two 
children. Child A has a 
mass of 30 kg and sits 2.5 
m from the pivot point, P 
(his center of gravity is 2.5 
m from the pivot). At what 
distance x

 
from the pivot 

must child B, of mass 25 
kg, place herself to balance 
the seesaw? Assume the 
board is uniform and 
centered over the pivot.

Presenter
Presentation Notes
Figure 12-6. (a) Two children on a seesaw. (b) Free-body diagram of the board.

Solution: Choose to take the axis of rotation to be the pivot point. We have two equations, the force equation and the torque equation. The force equation does not give us x, but the torque equation does; x = 3.0 m.
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If a force in your solution comes out negative (as
A

 

will here), it just means that it’s in the 
opposite direction from the one you chose. This 
is trivial to fix, so don’t worry about getting all 
the signs of the forces right before you start 
solving. 

12-2 Solving Statics Problems

F
r

Presenter
Presentation Notes
Figure 12-7. A cantilever. The force vectors shown are hypothetical—one may even have a different direction.
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12-2 Solving Statics Problems
Example 12-4: Force exerted by 
biceps muscle.

How much force must the biceps 
muscle exert when a 5.0-kg ball 
is held in the hand (a) with the 
arm horizontal, and (b) when the 
arm is at a 45° angle? The biceps 
muscle is connected to the 
forearm by a tendon attached 5.0 
cm from the elbow joint. Assume 
that the mass of forearm and 
hand together is 2.0 kg and their 
CG is as shown.

Presenter
Presentation Notes
Solution: a. Calculate torques around the point where FJ acts; this gives FM = 400 N.

b. This situation gives the same torque equation, so FM = 400 N still.
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12-2 Solving Statics Problems
Example 12-5: Hinged beam 
and cable.

A uniform beam, 2.20 m long 
with mass m

 
= 25.0 kg, is 

mounted by a small hinge on 
a wall. The beam is held in a 
horizontal position by a cable 
that makes an angle θ

 
= 30.0°. 

The beam supports a sign of 
mass M

 
= 28.0 kg suspended 

from its end. Determine the 
components of the force H

 that the (smooth) hinge exerts 
on the beam, and the tension 
FT

 

in the supporting cable.

F
r

Presenter
Presentation Notes
Solution: We have three unknowns, FT and the two components of FH. We know the angle of the cable, though, so we really need find only one component of FH. Taking the torque around the point where FT and mg act, and using the force equations, we find FHy = 123 N, FHx = 687 N, and FT = 793 N.
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12-2 Solving Statics Problems

Example 12-6: Ladder.

A 5.0-m-long ladder leans 
against a smooth wall at a 
point 4.0 m above a cement 
floor. The ladder is uniform 
and has mass m

 
= 12.0 kg. 

Assuming the wall is 
frictionless (but the floor is 
not), determine the forces 
exerted on the ladder by the 
floor and by the wall.

Presenter
Presentation Notes
Solution: We have three unknowns, the force exerted by the wall and the two forces exerted by the floor (the normal force and the static frictional force). The normal force equals the weight, 118 N  (from the vertical force equation), and the static frictional force equals the force exerted by the wall; writing the torque equation around the point where the ladder touches the floor gives FW = 44 N.
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If the forces on an object are such that they 
tend to return it to its equilibrium position, it is 
said to be in stable equilibrium.

12-3 Stability and Balance

Presenter
Presentation Notes
Figure 12-11a. Stable equilibrium.



Copyright © 2009 Pearson Education, Inc.

If, however, the forces tend to move it away from 
its equilibrium point, it is said to be in unstable 
equilibrium.

12-3 Stability and Balance

Presenter
Presentation Notes
Figure 12-11b. Unstable equilibrium.
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An object in stable equilibrium may become 
unstable if it is tipped so that its center of 
gravity is outside the pivot point. Of course, it 
will be stable again once it lands!

12-3 Stability and Balance

Presenter
Presentation Notes
Figure 12-13. Equilibrium of a refrigerator resting on a flat floor.
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People carrying heavy loads automatically 
adjust their posture so their center of mass is 
over their feet. This can lead to injury if the 
contortion is too great.

12-3 Stability and Balance

Presenter
Presentation Notes
Figure 12-13. Humans adjust their posture to achieve stability when carrying loads.
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Hooke’s law: the change in 
length is proportional to the 
applied force.

12-4 Elasticity; Stress and Strain

Presenter
Presentation Notes
Figure 12-14. Hooke’s law: The fractional change in length is proportional to the applied force.



Copyright © 2009 Pearson Education, Inc.

This proportionality holds until the force 
reaches the proportional limit. Beyond that, the 
object will still return to its original shape up to 
the elastic limit. Beyond the elastic limit, the 
material is permanently deformed, and it breaks 
at the breaking point.

12-4 Elasticity; Stress and Strain

Presenter
Presentation Notes
Figure 12-15. Applied force vs. elongation for a typical metal under tension.
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The change in length of a stretched object 
depends not only on the applied force, but also 
on its length, cross-sectional area and the 
material from which it is made.

The material factor, E, is called the elastic 
modulus or Young’s modulus, and it has been 
measured for many materials.

12-4 Elasticity; Stress and Strain
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12-4 Elasticity; Stress and Strain
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12-4 Elasticity; Stress and Strain

Example 12-7: Tension in piano wire.

A 1.60-m-long steel piano wire has a 
diameter of 0.20 cm. How great is the 
tension in the wire if it stretches 0.25 cm 
when tightened?

Presenter
Presentation Notes
Solution: The elastic modulus for steel is in the table; F = 980 N.
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12-4 Elasticity; Stress and Strain

Stress is defined as the force per unit 
area.

Strain is defined as the ratio of the 
change in length to the original length.

Therefore, the elastic modulus is equal 
to the stress divided by the strain:
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In tensile stress, forces 
tend to stretch the 
object.

12-4 Elasticity; Stress and Strain

Presenter
Presentation Notes
Figure 12-16. Stress exists within the material.
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Compressional stress is exactly the opposite of 
tensional stress. These columns are under 
compression.

12-4 Elasticity; Stress and Strain

Presenter
Presentation Notes
Figure 12-17. This Greek temple, in Agrigento, Sicily, built 2500 years ago, shows the post-and-beam construction. The columns are under compression.
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The three types of stress for rigid objects:

12-4 Elasticity; Stress and Strain

Presenter
Presentation Notes
Figure 12-18. The three types of stress for rigid objects.
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12-4 Elasticity; Stress and Strain

The shear strain, where G
 is the shear modulus:

Presenter
Presentation Notes
Figure 12-19. The fatter book (a) shifts more than the thinner book (b) with the same applied shear force.
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12-4 Elasticity; Stress and Strain

If an object is subjected to inward forces on 
all sides, its volume changes depending on 
its bulk modulus. This is the only 
deformation that applies to fluids.

or
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If the stress on an object is too great, the 
object will fracture. The ultimate strengths of 
materials under tensile stress, compressional 
stress, and shear stress have been measured.

When designing a 
structure, it is a 
good idea to keep 
anticipated stresses 
less than 1/3 to 1/10 
of the ultimate 
strength.

12-5 Fracture

Presenter
Presentation Notes
Figure 12-20. Fracture as a result of the three types of stress.
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12-5 Fracture
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12-5 Fracture

Example 12-8: Breaking the piano wire.

A steel piano wire is 1.60 m long with a 
diameter of 0.20 cm. Approximately what 
tension force would break it?

Presenter
Presentation Notes
Solution: Using the tensile strength of steel from the table, we find F = 1600 N.
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A horizontal beam will be under both tensile and 
compressive stress due to its own weight. 
Therefore, it must be made of a material that is 
strong under both compression and tension.

12-5 Fracture

Presenter
Presentation Notes
Figure 12-21. A beam sags, at least a little (but is exaggerated here), even under its own weight. The beam thus changes shape: the upper edge is compressed, and the lower edge is under tension (elongated). Shearing stress also occurs within the beam.
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12-5 Fracture
Conceptual Example 12-9: A tragic 
substitution.

Two walkways, one above the other, 
are suspended from vertical rods 
attached to the ceiling of a high hotel 
lobby. The original design called for 
single rods 14 m long, but when such 
long rods proved to be unwieldy to 
install, it was decided to replace each 
long rod with two shorter ones as 
shown. Determine the net force 
exerted by the rods on the supporting 
pin A (assumed to be the same size) 
for each design. Assume each vertical 
rod supports a mass m

 
of each bridge.

Presenter
Presentation Notes
Solution: In the first design, the upward force on pin A is mg, which is the downward force exerted on it by the upper bridge. In the second design, the lower pin still has a force (now downward) on it of mg, but the upper pin, which is supporting both bridges, has a force of 2 mg. This bridge collapsed after it was put into use, resulting in the loss of more than 100 lives.
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12-5 Fracture
Example 12-10: Shear on a beam.

A uniform pine beam, 3.6 m long and 9.5 cm x 14 cm 
in cross section, rests on two supports near its ends, 
as shown. The beam’s mass is 25 kg and two vertical 
roof supports rest on it, each one-third of the way 
from the ends. What maximum load force FL

 

can 
each of the roof supports exert without shearing the 
pine beam at its supports? Use a safety factor of 5.0.

Presenter
Presentation Notes
Solution: Find the shear strength of pine from the table; using the safety factor means that each support can exert a maximum force of 13000 N. This is also equal to the maximum load force from the roof (the mass of the beam is negligible), so the maximum mass is 2600 kg.
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12-6 Trusses and Bridges
One way to span a wide space is to use a 
truss—a framework of rods or struts 
joined at their ends into triangles.

Presenter
Presentation Notes
Figure 12-25. A truss bridge.

Figure 12-26. A roof truss.
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12-6 Trusses and Bridges

Each truss member is under either tension 
or compression; if the mass is small, these 
forces act along the strut.

Presenter
Presentation Notes
Figure 12-27. (a) Each massless strut (or rod) of a truss is assumed to be under tension or compression. (b) The two equal and opposite forces must be along the same line or a net torque would exist. (c) Real struts have mass, so the forces F1 and F2 at the joints do not act precisely along the strut. (d) Vector diagram of part (c).
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12-6 Trusses and Bridges
Example 12-11: A truss bridge.
Determine the tension or 
compression in each of the struts of 
the truss bridge shown. The bridge 
is 64 m long and supports a uniform 
level concrete roadway whose total 
mass is 1.40 x 106 kg. Use the 
method of joints, which involves (1) 
drawing a free-body diagram of the 
truss as a whole, and (2) drawing a 
free-body diagram for each of the 
pins (joints), one by one, and setting 
Σ

 
= 0

 
for each pin. Ignore the mass 

of the struts. Assume all triangles 
are equilateral.

F
r

Presenter
Presentation Notes
Solution: We only need concern ourselves with pins A, B, and C, due to symmetry. As labeled in the figure, FAB = Mg/√3 and FAC = Mg/2√3. Then FBC = FAB. FBD = (FAB + FBC) cos 60° = FAB as well.
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12-6 Trusses and Bridges

On a real bridge, the load will not, in general, 
be centered. The maximum load rating for a 
bridge must take this into account.

Presenter
Presentation Notes
Figure 12-29. (a) Truss with truck of mass m at center of strut AC. (b) Forces on strut AC.
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12-6 Trusses and Bridges

For larger bridges, trusses are too heavy. 
Suspension bridges are one solution; the 
roadway is suspended from towers by 
closely spaced vertical wires.

Presenter
Presentation Notes
Figure 12-30: Suspension bridges (Brooklyn and Manhattan bridges, NY).
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12-6 Trusses and Bridges

Example 12-12: Suspension bridge.

Determine the shape of the cable between the 
two towers of a suspension bridge, assuming 
the weight of the roadway is supported 
uniformly along its length. Ignore the weight 
of the cable.

Presenter
Presentation Notes
Solution: The figure shows a section of cable from one tower to the low point between towers. The weight of the roadway being supported is proportional to the distance x. Setting the sum of forces to zero shows that dy/dx = tan θ = Ax where A is a constant. Integrating gives y = Ax2 + B, the equation of a parabola.
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The Romans developed 
the semicircular arch 
about 2000 years ago. 
This allowed wider 
spans than could be 
built with stone or brick 
slabs.

12-7: Arches and Domes

Presenter
Presentation Notes
Figure 12-32. Round arches in the Roman Forum. The one in the background is the Arch of Titus.
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The stones or bricks in a round arch are mainly 
under compression, which tends to strengthen 
the structure.

12-7: Arches and Domes

Presenter
Presentation Notes
Figure 12-34. Stones in a round arch are mainly under compression.
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Unfortunately, the 
horizontal forces 
required for a 
semicircular arch can 
become quite large. The 
pointed arch was an 
improvement, but still 
needed external 
supports, or “flying 
buttresses.”

12-7: Arches and Domes

Presenter
Presentation Notes
Figure 12-35. Flying buttresses (on the cathedral of Notre Dame, in Paris).
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The pointed arches require considerably less 
horizontal force than a round arch.

12-7: Arches and Domes

Presenter
Presentation Notes
Figure 12-36. (a) Forces in a round arch, compared (b) with those in a pointed arch.
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A dome is similar to 
an arch, but spans a 
two-dimensional 
space.

12-7: Arches and Domes

Presenter
Presentation Notes
Figure 12-37. Interior of the Pantheon in Rome, built almost 2000 years ago. This view, showing the great dome and its central opening for light, was painted about 1740 by Panini. Photographs do not capture its grandeur as well as this painting does.
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• An object at rest is in equilibrium; the study 
of such objects is called statics.

• In order for an object to be in equilibrium, 
there must be no net force on it along any 
coordinate, and there must be no net torque 
around any axis.

• An object in static equilibrium can be in 
stable, unstable, or neutral equilibrium.

Summary of Chapter 12



Copyright © 2009 Pearson Education, Inc.

• Materials can be under compression, tension, 
or shear stress.

• If the force is too great, the material will exceed 
its elastic limit; if the force continues to increase, 
the material will fracture.

Summary of Chapter 12
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