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Phys101 Lectures 16, 17, 18

Rotational Motion

Key points:

• Rotational Kinematics

• Rotational Dynamics; Torque and Moment of Inertia

• Rotational Kinetic Energy

• Angular Momentum and Its Conservation

Ref: 8-1,2,3,4,5,6,8,9.
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Angular Quantities

In purely rotational motion, all 

points on the object move in circles

around the axis of rotation (―O‖). 

The radius of the circle is R. All 

points on a straight line drawn 

through the axis move through the 

same angle in the same time. The 

angle θ in radians is defined:

where l is the arc length.
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Angular displacement:

The average angular velocity is 

defined as the total angular 

displacement divided by time:

The instantaneous angular 

velocity:

Angular Quantities



The angular acceleration is the rate at which the 

angular velocity changes with time:

The instantaneous acceleration:

Angular Quantities



Every point on a rotating body has an angular 

velocity ω and a linear velocity v. 

They are related:

Angular Quantities
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Only if we use radians!



Angular Quantities

Objects farther

from the axis of 

rotation will move 

faster.



Angular Quantities

If the angular velocity of a 

rotating object changes, it 

has a tangential

acceleration:

Even if the angular velocity is constant, 

each point on the object has a centripetal

acceleration:



Angular Quantities

Here is the correspondence between linear

and rotational quantities:

x represents 

arc length



Example: Angular and linear velocities and 

accelerations.

A carousel is initially at rest. At t = 0 it is given 

a constant angular acceleration α = 0.060 

rad/s2, which increases its angular velocity for 

8.0 s. At t = 8.0 s, determine the magnitude of 

the following quantities: (a) the angular 

velocity of the carousel; (b) the linear velocity 

of a child located 2.5 m from the center; (c) the 

tangential (linear) acceleration of that child; (d) 

the centripetal acceleration of the child; and (e) 

the total linear acceleration of the child.
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Angular Quantities

The frequency is the number of complete 

revolutions per second:

Frequencies are measured in hertz: 

The period is the time one revolution takes:



Constant Angular Acceleration

The equations of motion for constant angular 

acceleration are the same as those for linear

motion, with the substitution of the angular

quantities for the linear ones.



Example: Centrifuge acceleration.

A centrifuge rotor is accelerated from rest to 20,000 rpm in 30 s. (a) 

What is its average angular acceleration? (b) Through how many 

revolutions has the centrifuge rotor turned during its acceleration 

period, assuming constant angular acceleration?
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Torque
To make an object start rotating, a force is needed; 

both the position and direction of the force matter. 

The perpendicular distance from the axis of rotation to 

the line along which the force acts is called the lever 

arm.

Axis of rotation
In a FBD, don’t shift the forces sideways!



Torque

A longer lever 

arm is very 

helpful in 

rotating objects.



Torque

Here, the lever arm for FA is the distance from 

the knob to the hinge; the lever arm for FD is 

zero; and the lever arm for FC is as shown.



Torque

The torque is defined 

as:

Also:
 FR

That is,
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Two thin disk-shaped wheels, of radii 

RA = 30 cm and RB = 50 cm, are attached 

to each other on an axle that passes 

through the center of each, as shown. 

Calculate the net torque on this 

compound wheel due to the two forces 

shown, each of magnitude 50 N.

Example: Torque on a compound wheel.

CCW:  +

CW:  -

[Solution]
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Rotational Dynamics; Torque and 

Rotational Inertia

Knowing that , we see that

This is for a single point 

mass; what about an 

extended object?

As the angular acceleration 

is the same for the whole 

object, we can write:
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Rotational Dynamics; Torque and 

Rotational Inertia

The quantity is called the rotational

inertia (moment of inertia) of an object.

The distribution of mass matters here—these two 

objects have the same mass, but the one on the 

left has a greater rotational inertia, as so much of 

its mass is far from the axis of rotation.



Rotational 

Dynamics; Torque 

and Rotational 

Inertia

The rotational inertia of an 

object depends not only on 

its mass distribution but also 

the location of the axis of 

rotation—compare (f) and 

(g), for example.
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Example: Atwood’s machine.

An Atwood machine consists of two masses, mA and 

mB, which are connected by a cord of negligible mass 

that passes over a pulley. If the pulley has radius R0

and moment of inertia I about its axle, determine the 

acceleration of the masses mA and mB. 

[Solution]  FBD for each object

• Don’t use a point to represent a rotating object;

• Don’t shift forces sideways.  
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Rotational Kinetic Energy

The kinetic energy of a rotating object is given by 

By substituting the rotational quantities, we find that the 

rotational kinetic energy can be written as:

An object in both translational and rotational motion has 

both translational and rotational kinetic energy:
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Example (Old final exam, #19): 
A pencil, 16 cm long (l=0.16m), is released from a vertical position 

with the eraser end resting on a table. The eraser does not slip. Treat 

the pencil like a uniform rod.

(a) What is the angular acceleration of the pencil when it makes a 30°

angle with the vertical?

(b) What is the angular speed of the pencil when it makes a 30°angle 

with the vertical?

(a) Rotational dynamics (about o) 
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(b) Mechanical energy is conserved because there is no non-

conservative work (friction does not do work here). 
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Rotational Work

The torque does work as it moves the wheel 

through an angle θ:

  RFFlW



Rotational Plus Translational Motion; Rolling

In (a), a wheel is rolling without 

slipping. The point P, touching 

the ground, is instantaneously 

at rest, and the center moves 

with velocity   .

In (b) the same wheel is seen 

from a reference frame where C 

is at rest. Now point P is 

moving with velocity – .

The linear speed of the wheel is 

related to its angular speed:
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Demo: Which one reaches the bottom first? Why?

Wnc=0,  ME is conserved 

(ignore energy loss due to 

rolling friction).
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The hoop:  

• mass is distributed away    

from the axis of rotation 

(large I).

• Large I means large 

rotational KE,

• which means small 

translational KE (since 

KER+KET=mgH=const.),

• which means slow v.



Angular Momentum—Objects Rotating 

About a Fixed Axis

The rotational analog of linear momentum 

is angular momentum, L:

Then the rotational analog of Newton’s 

second law is:

This form of Newton’s second law is valid 

even if I is not constant.



Conservation of Angular Momentum

In the absence of an external torque, 

angular momentum is conserved:

The total angular momentum of a system 

remains constant if the net external 

torque is zero.

0 and constant.
dL

L I
dt

  



This means:

Therefore, a figure skater can increase her 

angular speed by reducing her moment of 

inertia.
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Demo

http://www.youtube.com/watch?v=AQLtcEAG9v0


i-clicker question 18-1

The condition for angular momentum to be conserved is

(A) It’s a closed system.

(B) The net external force is zero.

(C) No non-conservative work.

(D) The net external torque is zero.

(E) The angular momentum is always conserved.



Example: Object rotating on a string of changing length. 

A small mass m attached to the end of a string revolves in a circle on 

a frictionless tabletop. The other end of the string passes through a 

hole in the table. Initially, the mass revolves with a speed v1 = 2.4 m/s 

in a circle of radius R1 = 0.80 m. The string is then pulled slowly 

through the hole so that the radius is reduced to R2 = 0.48 m. What is 

the speed, v2, of the mass now?

[Solution]   Net torque = 0. Angular 

momentum is conserved.
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Given:  v1, R1, R2;

Want:   v2.



Angular Momentum of a Moving Particle

You could open a door by throwing a large piece of play-

doh at the door.  
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Example:  A bullet of mass m moving with velocity v strikes and 

becomes embedded at the edge of a cylinder of mass M and radius R0. 

The cylinder, initially at rest, begins to rotate about its symmetry axis, 

which remains fixed in position. Assuming no frictional torque, what is 

the angular velocity of the cylinder after this collision? Is kinetic energy 

conserved?

[Solution]   Net external torque = 0. 

Angular momentum is conserved.
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Kinetic energy is not 

conserved.  As the bullet being 

embedded into the cylinder, 

some kinetic energy is 

converted into heat.  

Internal forces can change the 

kinetic energy of the system!



Vector Nature of Angular Quantities*

The angular velocity vector points along the axis of 

rotation, with the direction given by the right-hand rule. If 

the direction of the rotation axis does not change, the 

angular acceleration vector points along it as well.


