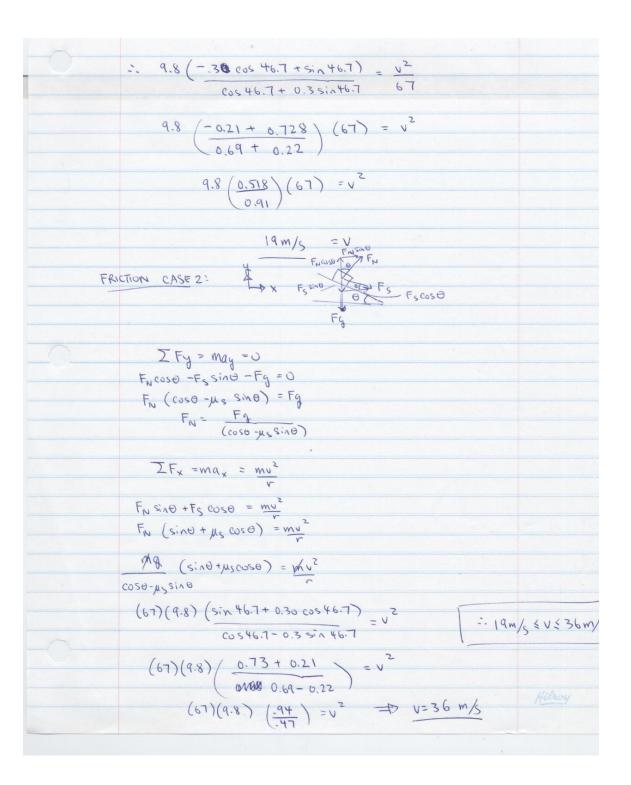
Phys101 Assignment Cover Sheet

First Name:	Last Name:	Mark:
Student ID:	Date:	


Phys101 Written Assignment #4

Due Wed/Thur. Feb 2/3, 2011, at the end of tutorial

Textbook (Giancoli, 6th edition) page 134 problem #76.

76. A curve of radius 67 m is banked for a design speed of $95\,\mathrm{km/h}$. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely handle the curve?

	0
PIOI WRITTEN ASSIGNMENT#4	
76) a surve of radius 67m is bear 95 km/hr. If the sofficient (wet pavement), at what range safely handle the surve?	nked for a design speed of of static frution is 0.30 of speeds can a car
$\frac{95 \text{km}}{\text{hr}} \times \frac{1000 \text{m}}{1 \text{km}} \times \frac{1 \text{hr}}{60 \text{min}} \times \frac{1 \text{min}}{60 \text{s}} = 2$	26.4 m/s
NO FRICTION: FRICTION	$ZF_{x} = Mq_{x} = Mv^{2}$ $F_{y} \sin \theta = Mv^{2}$ $Mq \sin \theta = Mv^{2}$ $\cos \theta = mv^{2}$
CASE 1: The sine File File Sine File Sine File Sine File File Sine File Sine File File File File File File File Fil	$g \tan \theta = \frac{v^2}{r}$ $\theta = \tan^{-1} \left(\frac{v^2}{gr} \right)$
FS SIND FS CORD OF	$0 = \tan^{-1}\left(\frac{26.4^2}{9.8(61)}\right)$
FN COSO + FS Sino - Fg = 0 FN COSO + AS FN AMO = Fg	0= 46.7°
$F_{N} \left(\cos \theta + \mu_{S} \sin \theta \right) = F_{g}$ $F_{N} = F_{g}$ $\left(\cos \theta + \mu_{S} \sin \theta \right)$	
$\sum F_{x} = ma_{x} = \frac{mu^{2}}{r}$ $-F_{S} = \frac{8000}{100} + F_{N} = \frac{mu^{2}}{r}$	
$F_{N} \left(-M_{S} \cos \theta + F_{N} \sin \theta = M v^{2} \right)$ $F_{N} \left(-M_{S} \cos \theta + S \sin \theta \right) = M v^{2} $ $M_{N} \left(-M_{S} \cos \theta + B \sin \theta \right) = M v^{2}$ $\left(\cos \theta + M_{S} \sin \theta \right) = M v^{2}$	Hilmosy
(cose + Ws 31ve) = NV	

