PHYS 102 Midterm Examination #1 (version E)

June 15, 2012

Time: 50 minutes

Last Name :	Key.
First Name :	U
Student No. :	
Computing ID :	
Tutorial Section :	

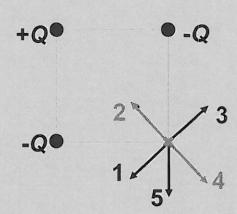
	score	Maximum
Multiple Choice		5
Written # 6		5
Written # 7		5
√Written # 8		5
/Written # 9		5
Total		25

Part I (Multiple choice questions. 1 mark each.)

You are sitting a certain distance from a point charge, and you measure an E electric field of E₀. If the charge is doubled and your distance from the charge is also doubled, what is the electric field strength now?

- A) $2E_0$;
- B) $4E_0$; C) E_0 ;
- D) $E_0/4$;
- E) $E_0/2$.

2. What is the direction of the electric field at the position of x?

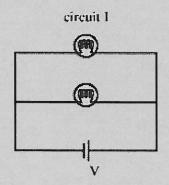

- A) 1
- B) 2
- C) 3

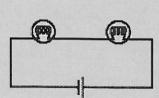
B

C

A

- D) 4
- E) 5

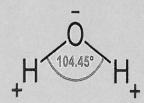



3. The total flux of magnetic field through a closed surface:

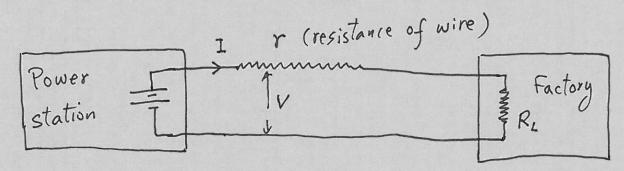
- A) is always positive.
- B) is always negative.
- C) is always zero.
- D) depends on the field.
- E) depends on the closed surface.

4. The lightbulbs in the circuits below are identical with the same resistance R. Which circuit consumes more power?

- A) circuit I
- B) circuit II
- C) both the same
- D) it depends on R
- E) it depends on V



circuit II


5. Does a water molecule carry an electric dipole moment?

- A) No, because the molecule is electrically neutral.
- B) No, because the molecule is symmetrical and the net dipole moment is zero.
- C) Yes, because of the uneven distribution of electron density and the asymmetrical structure.
- D) Can't tell from the structure of the molecule.
- E) It depends on the environment such as the existence of an external field.

Part II (Full solution questions, 5 marks each. SHOW ALL WORK FOR FULL MARKS!)

6. A power station delivers 800 kW of power at 10,000 V to a factory through wires with total resistance 4.0 Ω. How much less power is wasted if the electricity is delivered at 80,000 V rather than 10,000V?

Power wasted in the wire:

Power delivered to the factory:

$$P_f = IV \left(= \frac{V^2}{RL} = R_L I^2 \right)$$

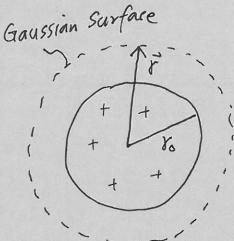
When V = 10,000 V:

$$I = \frac{P_{f}}{V} = \frac{800,000}{10,000} = 80 A$$

Power wasted:

Difference in Pw:

:. 25.2, less power is wasted

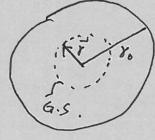

when the voltage is changed from 10,000 V to 80000 V

7. An electric charge Q is distributed uniformly throughout a nonconducting sphere of radius r_0 . For the following two cases, determine the electric field at a point whose distance from the centre of the sphere is r.

(a_{2/5}) outside the sphere $(r > r_0)$;

(b_{3/5}) inside the sphere ($r < r_0$).

$$\overline{\Phi} = \sum_{G.S.} \overrightarrow{E} \cdot \overrightarrow{A} = \frac{Q_{encl.}}{\varepsilon_o}$$



$$E \cdot 4\pi Y^2 = \frac{Q}{4\pi \epsilon_0}$$

$$E = \frac{1}{4\pi \epsilon_0} \frac{Q}{F^2}$$

(b) 8 < 80

$$\bar{\Phi} = \sum_{G.S.} \vec{E} \cdot \vec{A} = \frac{Qencl.}{\epsilon_0}$$

$$P = \frac{Q}{\frac{4}{3}\pi \gamma^3}, \qquad V = \frac{4}{3}\pi \gamma^3.$$

$$\therefore E \cdot 4\pi r^{2} = \frac{1}{\xi_{0}} \cdot \frac{Q}{\frac{4}{3}\pi r_{0}^{3}} \cdot \frac{4}{3}\pi r^{3} = \frac{Q}{\xi_{0}} \frac{r^{3}}{r_{0}^{3}}$$

$$E = \frac{Q}{4\pi \epsilon_0} \frac{r}{r_0^3}$$

$$: E = \frac{Q}{4\pi \epsilon_0} \frac{r}{r^3} . \quad \text{Direction of } \vec{E} : \text{along } \vec{r} .$$

- 8. In the *RC* circuit shown, the battery has fully charged the capacitor. Then at t = 0 the switch is thrown from position a to b. The battery emf is 20.0 V, and the capacitance $C = 1.02 \ \mu\text{F}$. The current *I* is observed to decrease to 20% of its initial value in 40 μs .
- $(a_{1/5})$ What is the value of Q, the charge on the capacitor, at t = 0?
- $(b_{3/5})$ What is the value of R?
- (b_{1/5}) What is the current through R after a long time (as $t\rightarrow\infty$)?

$$\mathcal{E} = +$$
 $20.0 \text{ V} C = 1.02 \mu\text{F}$

(a) . At
$$t=0$$

$$V_{c} = V_{o} = \mathcal{L} = 20.0 \text{ V}$$

$$Q_{o} = V_{o}C = 20 \times 1.02 \times 10^{-6} = 2.04 \times 10^{-5} \text{ C}$$
(b) . $I = I_{o}e^{-\frac{1}{2}}$, $C = RC$.
$$When $t = 4 \times 10^{-5} \text{ s}$, $0.2 I_{o} = I_{o}e^{-\frac{1}{2}}$

$$0.2 = e^{-\frac{1}{2}}$$

$$C = \frac{-1}{2} = \frac{-4.0 \times 10^{-5}}{-1.6094} = 2.485 \times 10^{-5} \text{ s}$$

$$R = \frac{T}{C} = \frac{2.485 \times 10^{-5}}{1.02 \times 10^{-6}} = 24.4 \text{ S} \text{ C}$$$$

(c). as
$$t \rightarrow \infty$$
, $I \rightarrow 0$.

9. Determine the magnitudes of the currents in each resistor shown in the figure . The batteries have emfs of \mathcal{E}_1 =7.2V and \mathcal{E}_2 =8.1V and the resistors have values of R₁=9.0Ω, R₂=18Ω, and R₃=27Ω.

Junction a:
$$I_3 = I_1 + I_2$$

Loop A: $\mathcal{L}_1 - R_1 I_1 - R_2 I_3 = 0$

Loop B: $\mathcal{L}_2 - R_3 I_2 - R_2 I_3 = 0$

Loop B: $\mathcal{L}_2 - R_3 I_2 - R_2 I_3 = 0$

Right Hard For $I_1 + I_2 - I_3 = 0$

Right Hard For $I_3 = I_1$

Right Hard For $I_3 = I_1$

Right Hard For $I_3 = I_2$

OR:
$$\begin{cases} I_1 + I_2 - I_3 = 0 & \text{(1)} \\ I_1 + I_2 - I_3 = 0 & \text{(2)} \\ I_1 + I_3 = 0.8 & \text{(3)} \end{cases}$$

$$\begin{cases} I_1 + I_2 - I_3 = 0 & \text{(1)} \\ I_1 + I_3 = 0.8 & \text{(2)} \\ I_1 + I_3 = 0.9 & \text{(3)} \end{cases}$$

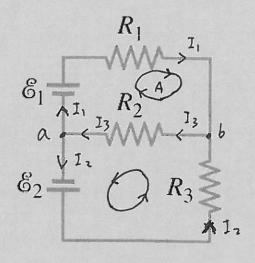
(2) - (0):
$$\begin{cases} -I_2 + 3I_3 = 0.9 & \text{(3)} \\ 3I_2 + 2I_3 = 0.9 & \text{(3)} \end{cases}$$

(4) X_3 :
$$-3I_2 + 9I_3 = 2.4$$

$$3I_2 + 2I_3 = 0.9$$
 (3)

(4) X_3 :
$$-3I_2 + 9I_3 = 2.4$$

$$3I_2 + 2I_3 = 0.9$$
 (3)


(5):
$$-3I_3 + 2I_3 = 0.9$$
 (6)

(7):
$$-3I_3 + 2I_3 = 0.9$$
 (7)

(8):
$$-3I_3 + 2I_3 = 0.9$$
 (9)

(9):
$$-3I_3 + 2I_3 = 0.9$$
 (9)

(1):
$$-3I_3 + 2I_3 = 0.9$$
 (1):
$$-3I_3 + 2I_3 = 0.9$$
 (1):
$$-3I_3 + 2I_3 = 0.9$$
 (2):
$$-3I_3 + 2I_3 = 0.9$$
 (3):
$$-3I_3 + 2I_3 = 0.9$$
 (4):
$$-3I_3 + 2I_3 = 0.9$$
 (5):
$$-3I_3 + 2I_3 = 0.9$$
 (7):
$$-3I_3 + 2I_3 = 0.9$$
 (8):
$$-3I_3 + 2I_3 = 0.9$$
 (9):
$$-3I_3 + 2I_$$

Substitute
$$\Theta$$
:

 $1z = 31370.8$
 $= 3 \times 0.3 - 0.8$
 $= 0.1 A$.

Substitute Θ :

 $1_1 = 1_2 - 1_2$
 $= 0.3 - 0.1$
 $= 0.2 A$
 $1_2 = 0.1 A$
 $1_3 = 0.3 A$