An Analysis of Handover Performance in Heterogeneous LTE Networks

Nicholas Wooster

ntwooste@sfu.ca

Simon Fraser University | School of Engineering Science ENSC894-G100: Communication Networks Prof. Ljiljana Trajkovic

OUTLINE

Nicholas Wooster

- Motivation
- Literature Review
- Overview of Relevant LTE Components
 - E-UTRAN Architecture
 - Elements of the Handover Process
- Simulation Methodology
- Results
- Discussion
- Future Work
- References

MOTIVATION

- The integration of small-cell network nodes within a conventional cellular network provides a promising solution to increase overall network capacity.
- Offloading users from the macro-cell tier to the small-cell tier frees bandwidth on the macro-cell tier for other more mobile users.
- Handover is a key component of guaranteeing the expected quality of service while effectively managing resources within these heterogeneous networks.

LITERATURE REVIEW

- Significant research and commercial interest in deployment of small-cells and optimization of handover algorithms.
- Multitude of proposed handover algorithms exist.
 - Majority rely on weighting functions to alter behaviour of conventional received signal –based algorithms.
- Drivers are:
 - Self Organizing Networks ^[1, 2]
 - Load / traffic management ^[3, 4]
- Challenges are:
 - Unpredictability of small-cell deployment ^[3, 5]
 - Integration with existing networks ^[5, 6]

E-UTRAN ARCHITECTURE

An Analysis of Handover Performance in Heterogeneous LTE Networks Nicholas Wooster

Figure courtesy of ETSI TS 136 300 V9.4.0

E-UTRAN: Evolved Universal Terrestrial Radio Access Network eNB: E-UTRAN NodeB EPC: Evolved Packet Core MME: Mobility Management Entity S-GW: Serving Gateway

- eNBs are interconnected via X2 interface.
- eNBs connect to EPC via the MME and S-GW over S1 interface.
- LTE supports both S1 and X2 interface –based handover.

ELEMENTS OF THE HANDOVER PROCESS

- 1. Channel Measurement
 - UE measures RSRP and RSSI (at least).
 - RSRQ can be derived from reported RSRP and RSSI: RSRQ = (N_{RB} * RSRP) / RSSI
- 2. Handover Decision
 - UE will report a measurement event to the serving eNB if the appropriate conditions are met.

Selected Measurement Events						
Event A2	Serving cell's RSRQ becomes worse than threshold.					
Event A3	Neighbouring cell's RSRP becomes offset better than serving cell.					
Event A4	Neighbouring cell's RSRQ becomes better than threshold.					

- 3. Handover Preparation, Execution & Completion
 - Tunneling of packets from source to target eNB.
 - Target eNB connection setup, source eNB connection teardown.

eNB: E-UTRAN NodeB UE: User Equipment RB: Resource Block RSRP: Reference Signal Received Power RSRQ: Reference Signal Received Quality RSSI: Reference Signal Strength Indicator

SIMULATION METHODOLOGY

- Use ns-3 LTE Module developed by LENA Project.
- Install a localized small-cell network within a macro-cell hexagonal grid topology.
- All eNBs are connected via an X2 interface, and are connected to the EPC through an S1 interface.

eNB: E-UTRAN NodeB EPC: Evolved Packet Core SINR: Signal to Interference+Noise Ratio

SIMULATION METHODOLOGY (continued)

- Employ RSRP measurement and RSRQ measurement –based handover algorithms.
- Analyze the efficiency of both algorithms at offloading traffic from the macro-cell tier while ensuring acceptable quality of service.
- Analyze effective cell radii and coverage.

RESULTS

Nicholas Wooster

• A2 / A4 measurement event –based handover algorithm.

RESULTS (continued)

• A3 measurement event –based handover algorithm.

RESULTS (continued)

An Analysis of Handover Performance in Heterogeneous LTE Networks

Nicholas Wooster

	Network Tier	Link	Avg. Delay (ms)	Avg. Throughput (Mbps)	Packet Loss	Time as Serving Tier	Coverage Area
	Small coll	UL	5.63	8.43	0.03%	(2,020)	. 470/
A2 / A4	Siliali-celi	DL	35.54	8.27	1.84%	62.02%	~ 47%
High	Macro-cell	UL	5.66	8.42	0.09%	37.98%	
		DL	81.68	8.19	2.83%		
	-						
	Small-cell	UL	5.67	8.43	0.03%	59.18%	~ 51%
A2 / A4		DL	42.49	8.18	3.01%		
Low	Macro-cell	UL	5.72	8.42	0.07%	40.82%	
		DL	95.43	8.02	4.85%		
	Small-cell	UL	5.66	8.43	0.03%	61.77%	~ 35%
A3		DL	50.21	7.99	2.67%		
Low / Short	Macro-cell	UL	5.70	8.42	0.12%	20.220/	
		DL	92.38	8.04	3.66%	58.25%	
	Small-cell	UL	5.80	8.42	0.07%	62.52%	~ 55%
A3		DL	50.21	7.99	5.19%		5570
High / Long	/ Long Macro-cell	UL	5.73	8.42	0.08%	37.48%	
. –		DL	92.38	8.04	4.70%		

Time as Serving Tier is defined as the cumulative time the UE was connected to the associated network tier, expressed as a percentage of the total simulation time.

Coverage Area is defined as the sum over all small-cell nodes of the area bounded by an ellipse fit to all entering and exiting handovers for a given node as a percentage of the allowed range of UE mobility.

DISCUSSION

- High A2 / A4 threshold scheme shows best (by a small margin) small-cell and macro-cell downlink performance. Also shows smallest coverage area.
- High A3 offset, long time-to-trigger scheme shows worst (by a small margin) small-cell uplink performance. Also shows largest coverage area.
- High A2 / A4 threshold and high A3 offset, long time-to-trigger schemes show most effective at offloading users from macrocell tier.

FUTURE WORK

- Examine the effects on handover performance of RSRP and RSRQ –based algorithms by increasing UE and small-cell density.
- Examine the performance of frequency reuse schemes on RSRP and RSRQ –based handover in heterogeneous networks.
- Examine the performance of weighting handover algorithms with factors derived from additional measurements.

REFERENCES

^[1] M. Song, S. Moon and S. Han, "Self-optimization of handover parameters for dynamic smallcell networks," *Wireless Communications and Mobile Computing*, vol. 15, no. 11, pp. 1497-1517, Aug. 2015.

^[2] O. Østerbø, O. Grøndalen, "Benefits of Self-Organizing Networks (SON) for Mobile Operators," Journal of Computer Networks and Communications, vol. 2012, Sept. 2015.

^[3] Y. Li, B. Cao and C. Wang, "Handover Schemes in Heterogeneous LTE Networks: Challenges and Opportunities," *IEEE Wireless Communications*, vol. 23, iss. 2, pp. 112-117, May 2016.

^[4] J. Ruiz Avilés, M. Toril and S. Luna-Ramírez, "A Femtocell location strategy for improving adaptive traffic sharing in heterogeneous LTE networks," *Journal on Wireless Communications and Networking*, vol. 15, no. 38, Dec. 2015.

^[5] G. Gódor et al., "A survey of handover management in LTE-based multi-tier femtocell networks: Requirements, challenges and solutions," *Computer Networks*, vol. 76, pp. 17-41, Jan. 2015.

^[6] D. Xenakis et al., "Mobility Management for Femtocells in LTE-Advanced: Key Aspects and Survey of Handover Decision Algorithms," *IEEE Communications Surveys & Tutorials*, vol. 16, pp. 64-91, Jul. 2013.