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Abstract

Maximization of utility implies that consumer demand systems have a Slutsky matrix

which is everywhere symmetric. However, previous non- and semi-parametric approaches

to the estimation of consumer demand systems do not give estimators that are restricted

to satisfy this condition, nor do they o¤er powerful tests of this restriction. We use non-

parametric modeling to test and impose Slutsky symmetry in a system of expenditure share

equations over prices and expenditure. In this context, Slutsky symmetry is a set of nonlinear

cross-equation restrictions on levels and derivatives of consumer demand equations. The key

insight is that due to the di¤ering convergence rates of levels and derivatives and due to the

fact that the symmetry restrictions are linear in derivatives, both the test and the symme-

try restricted estimator behave asymptotically as if these restrictions were (locally) linear.

We establish large and �nite sample properties of our methods, and show that our test has

advantages over the only other comparable test. All methods we propose are implemented

with Canadian micro-data. We �nd that our nonparametric analysis yields statistically sig-

ni�cantly and qualitatively di¤erent results from traditional parametric estimators and tests.
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1 Introduction

This paper considers the rationality restriction of Slutsky symmetry on a consumer demand system

in a nonparametric setting. We provide a nonparametric test for Slutsky symmetry and derive

its asymptotic distribution. In addition, we provide a local polynomial estimator of the Slutsky

matrix under this restriction. Micro-level consumer surplus computed from a demand system

is unique (path-independent) if and only if the Slutsky matrix is everywhere symmetric. Thus,

Slutsky matrices which satisfy symmetry may be used for welfare analysis, such as consumer

surplus and cost-of-living index calculations. We use nonparametric methods in order to avoid

bias due to parametric misspeci�cation, and to avoid confounding the test of symmetry with a

test of parametric speci�cation. This point can hardly be overemphasized, as we �nd evidence of

both parametric misspeci�cation and confounding of the test in our empirical work. The obvious

price one has to pay for the bene�t of not having to rely on functional form assumptions is the

curse of dimensionality. However, in our application we do not �nd this to be a major problem. In

addition, the analysis here can be seen as a building block for testing of and imposing symmetry

in semiparametric and structured nonparametric models.

The Slutsky symmetry restriction is comprised of a set of nonlinear cross-equation restrictions

on the levels and derivatives of expenditure-share equations. In parametric demand system es-

timation, the complexity of these restrictions and the complexity of share equations seem to go

together � in complex demand systems, Slutsky symmetry is similarly complex.1 Surprisingly,

we �nd that in the nonparametric case, where share equations can be arbitrarily complex, Slutsky

symmetry is relatively easy to test and impose. Because the estimated derivatives converge more

slowly than estimated levels, and because the symmetry restrictions are linear in the derivatives,

Slutsky symmetry behaves asymptotically like a linear restriction on the derivatives. Based on

this insight, we provide a new test for symmetry and its asymptotic distribution, show the validity

of the bootstrap, and develop an approach to restricted estimation under symmetry.

Our test statistic is based on unrestricted estimators. It is the sum of L2 distances between all

the Slutsky terms which are equal under symmetry. When we turn to our empirical example, we

�nd that symmetry is strongly rejected by this test, which contrasts sharply with a rather weak

rejection from a parametric quadratic almost ideal (QAI) test. In addition, we are able to reject

1In demand systems with nonlinear Engel curves, Slutsky symmetry is usually imposed with
nonlinear cross-equation restrictions. Some demand systems, such as the Almost Ideal and its
quadratic extension, have approximate forms in which symmetry is a set of linear restrictions.
In addition, Blundell and Robin (1999) show that these same nonlinear demand systems may be
estimated exactly under symmetry by iterative linear methods.
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the QAI parametric model of expenditure share equations against a nonparametric alternative.

Taken together, these results suggest the parametric test of symmetry does indeed confound the

test of parametric speci�cation with the test of the symmetry restriction.

We show that the nonlinear Slutsky symmetry restriction may be imposed via a Lagrangian,

and develop both a direct and an easy-to-implement two-step locally linear procedure (where

the restriction is linear) that is asymptotically equivalent to the Lagrangian approach. As with

the imposition of homogeneity, the imposition of symmetry does reduce the number of local

parameters to be estimated (see Kim and Tripathi 2003). However, in contrast to the imposition

of homogeneity, the imposition of symmetry does not reduce the dimensionality of the problem,

increase the speed of convergence or change the required smoothness assumptions for estimation.

In the empirical part, we estimate expenditure-share equations over prices and expenditure,

and compensated (Hicksian) price semi-elasticities of these share equations under the restric-

tion of Slustky symmetry. Estimated nonparametric expenditure-share equations are statistically

signi�cantly di¤erent from, but qualitatively similar to, QAI parametric estimates. However, esti-

mated nonparametric compensated price semi-elasticities are also qualitatively di¤erent from QAI

parametric estimates. For example, the nonparametric estimate of the compensated rent share

own-price semi-elasticity is strongly increasing with expenditure, but the QAI estimate lies outside

the con�dence band of the nonparametric estimate and is essentially independent of expenditure.

Although techniques for testing and estimating under the Slutsky symmetry conditions are

well-developed in parametric consumer demand models, they are less well-developed in nonpara-

metric models. Lewbel (1995) develops a nonparametric test for symmetry. The test proposed

in our paper invokes much weaker assumptions. Blundell, Duncan and Pendakur (1998) and

Pendakur (1999) estimate nonparametric Engel-curve systems under symmetry, and Lewbel and

Pendakur (2008) and Pendakur and Sperlich (2008) consider semiparametric consumer demand

systems under symmetry. However, nonparametric estimation of the full consumer demand sys-

tem under symmetry has not been considered.

A closely related literature considers testing and imposing other rationality restrictions that are

relevant for the nonparametric analysis of demand. Tripathi (1998) considers testing homogeneity,

while Kim and Tripathi (2003) focus on imposing homogeneity. Both of these papers apply to more

general settings whereas in an earlier version of this paper (Haag, Hoderlein and Pendakur (2004))

we discuss testing and imposing homogeneity in the same setting as in this paper. Pointwise

testing of the symmetry hypothesis is discussed in Hoderlein (2002, 2008), which also covers the

case of endogenous regressors. A bootstrap procedure for testing Slutsky negative semide�niteness

is proposed in Hoderlein (2002, 2008). Finally, Epstein and Yatchew (1985) use nonparametric

least squares and Gallant and Souza (1991) use series estimators to consider testing of rationality
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restrictions in a consumer demand setting.

In order to keep the exposition simple and concise, in this paper we focus on testing and im-

posing symmetry. Of course, the same analysis can be performed in connection with homogeneity,

but at the cost of a more involved analysis, see again Haag, Hoderlein and Pendakur (2004).

The paper proceeds as follows. In the second section, we start out by introducing the economic

concepts of this paper on individual level. Moreover, since we work with data from a heterogeneous

population, we explain how unobserved heterogeneity may be handled in this paper, and we also

discuss the important issue of endogeneity in income or prices. In the third section, we propose a

test for symmetry and analyze its asymptotic and �nite sample behavior. In the fourth section, we

discuss the imposition of symmetry on a locally linear model. Finally, we conclude by implementing

this model using Canadian price and expenditure data.

2 Testing Symmetry

2.1 Economic Background

For every individual, de�ne the cost function C(p; u) to give the minimum cost to attain utility level

u facing the M -vector of log-prices p. The Slutsky symmetry restriction comes from the fact that

the Hessian of the cost function is a symmetric matrix. De�ne the Marshallian demand function

for an individual as w = m(p; x), where w denotes the vector of expenditure shares commanded by

each good, x denotes the log of total expenditure on all goods, and z = (p0; x)0. The expenditure

share vector sums to one (�adding up�), so the M -th share is completely determined by the �rst

M � 1 shares. We consider Slutsky symmetry for a (M � 1)� (M � 1) submatrix of the Hessian
of the cost function (if that is symmetric, the last row and column satisfy symmetry from adding

up). For any demand function m; this submatrix (henceforward, the �Slutsky matrix�) is denoted

S(z) = (sjk(z))1�j�M�1;1�k�M�1 and is de�ned as the (submatrix of the) Hessian of the cost

function with respect to (unlogged) prices. The o¤-diagonal elements may be expressed in terms

of log-price and log-expenditure (rather than utility) as

sjk(z) = @km
j(z) +mk(z)@xm

j(z) +mj(z)mk(z) + �j(k)mk(z); (2.1)

where �j(k) denotes the Kronecker function to indicate a diagonal element and @x =
@
@x
and

@k =
@
@pk

are used for abbreviation (Mas-Colell, Whinston and Green 1995). (Diagonal elements,

which are not implicated in symmetry tests, are the same except that they subtract mj(z)2 from

sjj(z) de�ned above.) If the Slutsky matrix is continuously symmetric over a region of the z space,

then Young�s Theorem guarantees the existence of a cost function whose derivatives could produce
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the observed demand system over this region (see, e.g., Mas-Colell, Whinston and Green 1995).

If this cost function is increasing in prices, then S must also be negative semide�nite, though we

do not consider that restriction in this paper2.

In our data, we are given observations on the 2M -dimensional random vector Y = (W;Z)0

where W 2 RM�1 is an (M � 1)-vector of expenditure shares and Z = (P 1; : : : ; PM ; X)0 is the

vector of log-prices P = (P 1; : : : ; PM)0 and household log-expenditure X. We will de�ne m to

be the mean regression function, i.e. m(z) = (m1(z); : : : ;mM�1(z))0 = E(W j Z = z)). For

clarity of exposition, in the theoretical part of this paper we do not consider observable household

covariates. It would be easy to include them in our analysis in a completely general fashion by

simply conditioning all analysis on it, but we omit them to make the notation less cumbersome.

Endogeneity in both prices (as appears in empirical IO), and total expenditure (as sometimes

appears in demand analysis) could also be tackled in a control function fashion by adding control

function residuals, so the same remark applies (see Hoderlein (2008) on this issue, as well as

on unobserved heterogeneity). In the following sections, we show how to use the nonparametric

regression function m(z) and its nonparametric derivatives to assess whether or not S(z) is a

symmetric matrix.

2.2 The Test Statistic and the Asymptotic Distribution

To test for symmetry, we propose a test using the L2 distance of those elements of the Slutsky

matrix which are the same under symmetry. That is, we add up and integrate the squared distance

between S(z) and S(z)0 (the other option would be to use a pointwise test). The null hypothesis

is

H0 : P(sjk(Z) = skj(Z);8 j 6= k) = 1

and the alternative is that there is at least one pair (j; k) with sjk(z) 6= skj(z) over a signi�cant

range. We may express the alternative asH1 : P(sjk(Z) = skj(Z);8 j 6= k) < 1: The null hypothesis

is equivalent to the condition that the L2-distance of these functions is zero. Using a nonnegative

and bounded weighting function a(z) this can be written as

�S = E
�X
j<k

(sjk(Z)� skj(Z))2a(Z)
�
= 0:

Of course this is only equivalent to the null hypothesis if a(z) is nonzero over the whole support of

Z. However the weighting function allows to restrict the test to certain regions of the explanatory

2Dealing with negative semidefniteness is di¢ cult, and beyond the scope of the present paper. However, Hoder-

lein (2007) proposes and implements a pointwise test for negative semide�niteness.
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variables. Secondly, assuming that the support of a(z) is strictly contained in the support of the

density, boundary problems can be avoided.

A test statistic may be constructed by the analogy principle. Observing a sample of n indepen-

dent and identically distributed random vectors (W1; Z1); : : : ; (Wn; Zn) we replace the unknown

functions mj(z) by their Nadaraya-Watson estimators m̂j
h(z) =

P
iKh(z�Zi)W j

i =
P

iKh(z�Zi);
where K(�) is a M + 1-variate kernel function and Kh(u) = (detH)

�1=2K(H�1=2u) with a band-

width matrix H1=2. For simplicity of notation we assume that the bandwidth matrix is diagonal

with identical bandwidth h in each direction and that the kernel is a product kernel with proper-

ties de�ned in detail in appendix 1 below. The derivatives of the estimator @km̂
j
h(z) are used as

estimators for the derivatives @kmj(z). We then obtain

�̂S =
1

n

M�2X
j=1

M�1X
k=j+1

nX
i=1

(@km̂
j
h(Zi) + m̂k

h(Zi)@xm̂
j
h(Zi)� @jm̂

k
h(Zi)� m̂j

h(Zi)@xm̂
k
h(Zi))

2Ai (2.2)

where Ai = a(Zi). This test statistic is a nonlinear combination of the function and its derivatives.

However, since the estimator of the derivative converges more slowly than the estimator of the

function, the asymptotic distribution is dominated by the derivative estimator and the function

can be treated as if it were known.

To de�ne the expected value and variance of the test statistic we de�ne the covariance matrix

(�ij(z))1�i;j�M�1 = E((W �m(Z)(W �m(Z)0 j Z = z) and introduce the following notation:

�jkj
0k0

S = ~�jj
0jj0 + ~�kk

0kk0 + ~�kj
0kj0 + ~�jk

0jk0 � 2~�jj0jk0 � 2~�jj0kj0 +2~�jj0kk0 +2~�jk0kj0 � 2~�jk0kk0 � 2~�kj0kk0

with

~�l1l2l3l4 =

Z
�l1l2(z)�l3l4a(z)2K l1l2l3l4(z)dz

Kjkj0k0(z) =

ZZ
Kk(z; v)Kj(z; v � u)dv �

Z
Kk0(z; w)Kj0(z; w � u)dwdu

and Kj(z; v) = @K
@vj
(v) +mj(z)@K

@x
(v): Similarly de�ne

bjkS =

Z
�jj(z)a(z)

Z
(Kk(z; u))2dudz +

Z
�kk(z)a(z)

Z
(Kj(z; u))2dudz

� 2
Z
�jk(z)a(z)

Z
Kj(z; u)Kk(z; u)dudz:

The asymptotic distribution is given in the following

Theorem 1. Let the model be as de�ned above and let assumptions 1�5 hold. Under H0,

��1S (nh
(M+5)=2�̂S � h�(M+1)=2BS)

D�! N (0; 1) (2.3)
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where

�2S = 2
�X
j<k

�jkjkS + 2
X
j<k

X
j0<k0

(j;k)<(j0;k0)
3

�jkj
0k0

S

�
BS =

X
j<k

bjkS

Remarks. 1. Simplifying the proofs in the appendix to one line, the test statistic can be

written as

�̂H = �S + Un +�n

where �S is 0 under H0, �n depends upon the uniform rate of convergence of the estimators

and Un is a degenerate U-statistic. This U-statistic converges at the rate nh(M+1)=2, which

might be faster than n1=2 depending on the choice of the bandwidth sequence. Under the

alternative �S is a positive constant and after multiplying the test statistic with nh(M+1)=2

this term tends to in�nity. Therefore we obtain consistency of the test against alternatives

with �S > 0.

2. Another test for Slutsky symmetry based on kernel regression has been proposed by Lewbel

(1995). This test procedure is based on the integrated conditional moment (ICM) test of

Bierens (1982), which uses the fact that the alternative hypothesis is equivalent to

E(sjk(Z)� skj(Z))w(�0Z) j � = �) 6= 0

for a set of � with nonzero Lebesgue-measure, where the weighting function has to be chosen

appropriately (see Bierens and Ploberger, 1997). Lewbel (1995) uses a Kolmogorov-Smirnov-

type test-statistic and derives the asymptotic distribution under stringent smoothness as-

sumptions. Assuming that the unknown function and the density are r+1-times continuously

di¤erentiable (see assumption in the appendix), Lewbel (1995) requires r > 2(M+1) whereas

our test requires only r > 3
4
(M +1). Although the smoothness class of an unknown function

is di¢ cult to establish in practice, this is a substantial relaxation of assumptions.

More importantly, the test of Lewbel (1995) is not exactly a full test of symmetry, because it

only tests every single restriction at a time (e.g., s12 = s21; then s23 = s32 etc), and it is not

clear how a test of all restrictions holding jointly. In addition, it requires selecting a large

number of parameters and choosing a number of objects (eg, bandwidths, the test functions

and squeezing functions), and it is not clear how to determine those. In addition, one of

the required object is an in�nite order kernel which is known to work poorly in practise.

In contrast, our test just only requires the selection of bandwidths (discussed below), as

3The ordering is in a lexicographic sense.
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well as standard kernels. Finally, Lewbel (1995) derives critical values for his test from

the asymptotic distribution, which has to be simulated because the distribution depends on

nuisance parameters. In contrast, we suggest in the next section to implement a bootstrap

procedure, which allows to better approximate the unknown distribution in a �nite sample.

This summarizes the advantages of our tests.

3. In nonparametric regression analysis the advantages of local polynomial estimators over

Nadaraya-Watson estimators are well known, especially in derivative estimation (see Fan

and Gijbels, 1996). The asymptotic properties of the test statistic using Nadaraya-Watson

estimators are derived, because this makes the proofs more tractable. We sketch major di¤er-

ences in the proof in the appendix and thereby justify the extension to the local polynomial

case in the application. If we use higher order local polynomial estimators for m and its

�rst partial derivatives, our results continue to hold when K(�) is replaced by its equivalent
kernel. The rate of convergence of the test statistic remains the same; only kernel constants

arising in bias and variance expressions will change. In our application the advantages of the

local polynomial based test is clear. For M = 4, we need r > 3:75. Using Nadaraya-Watson

estimators, a kernel of order 4 has to be implemented. Using a local quadratic estimator, for

example, the order only has to be 2, while the smoothness assumptions remain unchanged.

2.3 Implementation via The Bootstrap

Implementation of our test statistic requires the choice of a a kernel and a bandwidth. Although

we discuss these issues in more detail in the Appendix in section 7.2, we brie�y state those

results here. We require the order of the kernel, r, to satisfy r > 3
4
(M + 1): Consequently, for

M = 4, a fourth-order kernel, for example a local quadratic estimator with a Gaussian kernel,

is required. In addition, as n ! 1, we require that the bandwidth sequence h = O(n�1=�)

satis�es 2(M + 1) < � < (M + 1)=2 + 2r. Consequently, the optimal rate for estimation, given by

�opt = (M + 1) + 2r is excluded as a bandwidth for testing. Here, a smaller bandwidth is needed

to obtain the asymptotic distribution. To implement, we calculate a data-driven bandwidth by

cross-validation, and adjust it by n1=�opt�1=�, letting � equal the midpoint of its bounds. Given this

choice of kernel and bandwidth, the direct way to implement the test is to estimate the expected

value BS and the variance �2S. This requires the estimation of integrals likeZ
�jj(z)a(z)

Z
(Kk(z; u))2dudz (2.4)
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or even more complex combinations in the variance parts. Therefore estimators of the conditional

variances and covariances are needed. A Nadaraya-Watson-type estimator is given by

�̂jj
0

h (z) =

Pn
i=1Kh(z � Zi)(W

j
i � m̂j

h(Zi))(W
j0

i � m̂j0

h (Zi))Pn
i=1Kh(z � Zi)

Given the large number of bias and variance components in theorem 1, the asymptotic approach

to the test is di¢ cult to implement. Moreover, these asymptotic approximations can work very

poorly in a �nite sample, as was pointed out by Hjellvik and Tjøstheim (1995). To avoid the

problems noted above, one might instead use a bootstrap procedure to derive critical values. To

bootstrap the test statistic, note that the estimator of the derivative can be written as a weighted

average

@km̂
j
h(z) =

nX
i=1

~V k
ni(z)W

j
i (2.5)

where ~V k
ni, i = 1; : : : ; N is a set of weights giving the k0th price derivative of the j�th expenditure

share at z when applied to the data W j
i . Using this in the de�nition of �̂S we obtain

�̂S =
1

n

M�2X
j=1

M�1X
k=j+1

nX
i=1

� nX
l=1

V k
nl(Zi)W

j
l � V j

nl(Zi)W
k
l

�2
Ai

with V k
nl(Zi) =

~V k
nl(Zi)+m̂

k
h(Zi)

~V x
nl(Zi). Next we exploit the fact that the estimator of the function

converges faster than the estimator of the derivative. Plugging in W j
l = mj(Zl) + "jl and noting

that for large n it holds under the assumption of symmetry that

nX
l=1

V jk
nl (Zi)m

j(Zl)� V kj
nl (Zi)m

k(Zl) �

@km
j(Zi) +mk(Zi)@xm

j(Zi)� @jm
k(Zi)�mj(Zi)@xm

k(Zi) = 0 (2.6)

almost surely. Therefore the test statistic can under H0 be approximated by

�̂S �
1

n

M�2X
j=1

M�1X
k=j+1

nX
i=1

� nX
l=1

V jk
il "

j
l + V kj

il "
k
l

�2
Ai:

The bootstrap is based on this equation and is described as follows

1. Construct (multivariate) residuals "̂i = Wi � m̂h(Zi).

2. For each i randomly draw "�i = ("1�i ; : : : ; "
M�1;�
i )0 from a distribution F̂i that replicates

the �rst three moments of "̂i, i. e. EF̂i "
�
i = 0;EF̂i "

�
i ("

�
i )
0 = "̂i("̂i)

0 and EF̂i "
j;�
i = "̂ji for

j = 1 : : : ;M � 1.
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3. Calculate �̂�S from the bootstrap sample ("�i ; Zi); i = 1; : : : ; n by

�̂�S =
1

n

M�2X
j=1

M�1X
k=j+1

nX
i=1

� nX
l=1
l 6=i

V jk
il "

j�
l � V kj

il "
k�
l

�2
Ai:

4. Repeat this often enough to obtain critical values.

To approximate the distribution by the bootstrap, usually the restriction of the null hypothesis

is imposed in the construction of the residuals. Because symmetry implies a complicated restriction

to the demand function and its derivatives, this is not directly possible. Therefore the restriction

is imposed in the construction of the test statistic by using equation 2.6.

The theoretical result concerning the bootstrap procedure is given in the following

Theorem 2. Let the model be as de�ned above and let assumptions 1�5 and 6 hold. Under H0;

conditional on the data (Wi; Zi); i = 1; : : : ; n;

��1S (nh
(M+5)=2�̂�S � h�(M+5)=2BS)

D�! N (0; 1):

Remark. 1. It is well known in the nonparametric testing literature that the convergence of

the �nite sample distribution of the test statistic to the asymptotic distribution is rather

slow. That the bootstrap overcomes this problem is supported by various theoretical results,

as well as simulation studies, e. g. Hjellvik and Tjøstheim (1995) or Li and Wang (1998).

2. To prove the convergence result of Theorem 2, it is su¢ cient to assume that the Bootstrap

distribution F̂i replicates the �rst two moments of "̂i. Matching the �rst three moments as

suggested in the algorithm should lead to a better approximation in �nite samples. We con-

jecture that this statement can be supported by establishing Theorem 2 with an Edgeworth

expansion of the distribution of �̂�S, and showing that the approximation error is of smaller

order, but this is beyond the scope of this paper.

2.4 Monte Carlo Analysis

Up to this point, our analysis was motivated by asymptotic arguments. In this subsection we

analyze the behavior of our test statistic in a controlled experiment which is designed to replicate

features of our real world application below. We focus on the following issues that are important

for applications: 1) we compare our test with the only other existing alternative, Lewbel�s (1995)

test; 2) we explore how sensitive our test is with respect to the choice of bandwidth, which is

always a sensitive issue in nonparametric econometrics; 3) we explore how sensitive our test is
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with respect to the sample size of the data in order to get an idea of the data requirements in a

typical application; and 4) �nally, we perform some robustness checks by considering other model

speci�cations.

Starting with the �rst issue, although both our L2 test and Lewbel�s (1995) sup-norm test have

power against all alternatives, our symmetry test is far easier to implement than Lewbel�s in part

because it does not require the use of complex squeezing functions. In fact, the implementation

of his test is very cumbersome. Furthermore, as discussed above our test has several theoretical

advantages. For a direct small sample comparison, we perform a small Monte Carlo exercise

assessing the power of these tests. Our data generating process is a 3-good budget-share system

given by a 3-good QAI model based on our data, where the 3 goods are food (pooling both -in

and -out), rent and clothing. Our model for QAI demands (based on estimates on our data for

food, rent and clothing) is given by.(see, eg, Banks, Blundell and Lewbel 1997)

W j
i = aj +

3X
k=1

ajkP ki + bj eXi + qjX i + "ji

eXi = Xi �
3X
k=1

akP ki �
1

2

3X
k=1

3X
l=1

aklP ki P
l
i

X i = exp

 
�

3X
k=1

bkP ki

!� eXi

�2
;

where j = 1; 2; 3,
P

k "
k
i = 0,

P
k a

k = 1,
P

k a
jk = 08j,

P
k b

k = 0, a1 = 0:33, a2 = 0:54,

a11 = 0:05, a12 = �0:02, a22 = 0:06, b1 = �0:01, b2 = �0:09, q1 = 0:05, q2 = �0:11. This
3-good system satis�es homogeneity and adding-up, so that there is only 1 Slutsky restriction:

a12 = a21. Our Monte Carlo (Pi; Xi) data are standard normals which replicates those in our

empirical application: the standard deviation of log-expenditure is 0:55, the standard deviations

of the log-prices of food, rent and clothing are all 0:45. The disturbances "1i ; "
2
i are mean-zero

multivariate normal with variances equal to 0:13 and covariance equal to �0:02, again chosen
to replicate the data in our application. We use a sample size of n = 2000, although we have

many more observations in our empirical application below. For our test, we use a local quadratic

estimator with a gaussian kernel and for Lewbel�s test, we use a local mean estimator with a

gaussian kernel.

We assess power by setting a21 = a12 + d where d is a deviation from symmetry. In this

context, d has a natural scale: in the QAI model ajk is equal to the jk�th compensated cross-price

semi-elasticity for eXi = 0. So, given the sizes of ajk in our exercise and those observed in empirical

work on demand, d starts to �seem large�at an abolute value of 0:05 or more.

Figure 1 gives the results for Monte Carlo power analysis of both our test and Lewbel�s (1995)

11



test using cross-validated bandwidths and n = 2000 in each simulation, and averaging over 100

simulations4. For simplicity, we use the same bandwidth in each equation. Note that for our test,

we shrink the cross-validated bandwidth by n1=�opt�1=�, which equals 0:81 for this Monte Carlo

problem. For Lewbel�s test, we use cross-validated bandwidths. Here we see that although both

tests get the size right on the Null Hypothesis, our test has much greater power to detect small

violations of symmetry. For violations greater in absolute value than 0:06, our test rejects in all

simulations. In contrast, Lewbel�s test rejects only at a rate of about 60% for violations of �0:10.
In our empirical illustration below, we use data which are clustered on a discrete set of 60

price vectors. To check the importance of this, we present our test simulated in an environment

with 2000 independent draws of standard normal price vectors (denoted HHP in the �gure) and

in an environment with 2000 draws from a set of 60 �xed price vectors (denoted HHP_discretep).

In the latter case, the 60 �xed price vectors are drawn from standard normals. One can see

by inspection, that the reduced price variation reduces the power of our test somewhat, but it

still outperforms Lewbel�s test. Since the di¤erence in power between the clustered discrete price

case and the unclustered continuous price case is small, we conduct the rest of the Monte Carlo

simulations in the more familiar environment with prices drawn unclustered from independent

standard normals.

Figure 2 gives results for our test with bandwidths that are either too large or too small relative

to our recommended bandwidth selection rule. The thick black line is reproduced from Figure 1.

The grey line uses a bandwidth that is one-third smaller than our recommended choice. Note that

in a 4-dimensional problem, an one-third reduction in the bandwidth in every direction is a very

substantial change. We �nd that the use of the smaller bandwidth a¤ects the rejection rate of the

test on the Null Hypothesis, with a 10% rejection rate when the size of the test is 5%. That is,

using the wrong bandwidth results in size distortion. However, it does not much a¤ect the power

of the test o¤ the Null Hypothesis. As with the test using our recommended bandwidth selection

rule, the smaller bandwidth test rejects in all the simulations with violations greater in absolute

value than 0:06. Similarly, the thin grey line shows rejection rates for our test using a bandwidth

one-half larger than our recommended choice. Here, we see the same pattern, with over-rejection

on the Null Hypothesis, but power roughly una¤ected o¤ the Null Hypothesis.

Figure 3 gives results for Monte Carlo power analysis of our test with varying sample sizes.

We use samples sizes of 2000, 1000 and 500. Here, we see that sample sizes substantially reduce

4Because each simulation requires about 30 minutes of computer time, we used only 100 simulations for each

experiment in Figures 1 to 3. However, we conduct Monte Carlo experiments with 500 simulations as well for

d = 0 and d = �0:06 and the results are identical to the 100 simulation case for our test (rejection rates of 5.0%
and 100.0% respectively), and very similar to the 100 simulation case for Lewbel�s test.
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the power of the test o¤ the Null Hypothesis, and may distort the size of the test on the Null

Hypothesis. In particular, if n = 1000, the test rejects in all simulations only for violations larger

than �0:08. For n = 500, this occurs only for violations of �0:10. Turning to the size of the test,
the rejection rate is 6% on the Null Hypothesis for n = 1000 and 9% for n = 500. In order to get

greater precision on the estimated size of the test, we rerun Monte Carlo�s on the Null Hypothesis

averaging over 500 simulations. This exercise gives rejection rates of 5:2%, 6:4% and 9:4% on the

Null Hypothesis for n = 2000, n = 1000 and n = 500, respectively. Thus, we conclude that a

moderately large sample is needed (ie, at least n = 1000 in this case) to get acceptable behavior

for our test.

Turning now to how the model speci�cation a¤ects the performance of the test, we conducted

an experiment comparing the results with QAI model to results with an Almost Ideal (AI) model

and to results with homothetic demands. These models were generated by restricting the QAI

model with q1 = q2 = 0 to generated AI demands, and b1 = b2 = q1 = q2 = 0 to generate

homothetic demands. We do not present a Figure showing these results for the sake of brevity,

and because we found that neither the size of the test nor the power of the test were a¤ected by

changing the model.

Our Monte Carlo exercises may be summarized as follows. First, although both our test and

Lewbel�s (1995) test get the size right, the Monte Carlo evidence suggests that our test has greater

power to detect small deviations from symmetry. Second, our recommended bandwidth selection

rule for testing, which shrinks the cross-validated bandwidth, performs well, with larger or smaller

bandwidths resulting in size distortions, but relatively little e¤ect on the power. Third, although

our test has reasonable power with smaller sample sizes, it appears that small samples over-reject

on the Null Hypothesis, and that a larger sample is necessary to get the size right. Fourth,

changing the data-generating process to Almost Ideal or to homothetic preferences did not change

the power or size of the test.

3 Imposing Symmetry

In order to impose symmetry on a nonparametric regression function, we �rst introduce the basic

setup, including notations. Moreover, we brie�y state the main result in exactly the form given

by our multivariate setup, with the intention to serve as reference in the latter part of this section

when we discuss the restricted estimator.
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3.1 The System Locally Linear Estimator

Unrestricted estimators for the coe¢ cients of levels and slopes in a nonparametric demand system

may be obtained by considering the locally linear least squares criterion

min
�(z)2�

n�1
nX
i=1

Ki�
0
i�i (3.1)

with local polynomial residual �i given by

�ji = W j
i �mj(z)�

MX
k=1

�jk(z)
�
P ki � pk

�
� �jx(z) (Xi � x)

= W j
i �mj(z)�

MX
k=1

�
h�jk(z)

� �
P
k

i � pk
�
�
�
h�jx(z)

� �
X i � x

�
;

where overbars denote division by h so that, for example, P
k

i = P ki =h; �i = (�
1
i ; : : : ; �

M�1
i )0; Ki =

Kh(z�Zi) and the functionsmj(z) and �jk(z) give the levels and slopes of the vector-valued regres-

sion at z. Denote the subset of parameters giving levels and slopes as �(z) = (m(z)0; ��(z)0)0; where

m(z) = (m1(z); : : : ;mM�1(z))0; and ��(z) = (�1�(z)
0; : : : ; �M�1

� (z)0)0; �j�(z) = f�jk(z); �
j
x(z)g =

fh�jk(z); h�
j
x(z)g; j = 1; : : : ;M�1; k = 1; : : : ;M; so that ��(z) denotes the level of h scaled slope

coe¢ cients. Finally, denote estimators for these quantities by a hat.

3.2 The Asymptotic Distribution of the Unrestricted System Local

Linear Estimator (SLLE)

In the single equation case, the asymptotic behavior of the parameters maximizing the local

polynomial criterion is well understood, e. g. Härdle and Tsybakov (1997). We give the following

result which establishes the asymptotic behavior of the locally linear estimator in a system of

equations.

Theorem 3. Let the model be as de�ned above, and let assumptions 1�3 hold. Then,

p
nhM+1

�
�̂(z)� �(z)� h2bias(z)

�
D�! N

  
0

0

!
; f(z)�1

 
�(z)�M+1

0 �(z)
 b0

�(z)
 b �(z)
 A

!!
;

where, b is a �xed M + 1 vector given by b = ��12 �M0 �1�M+1, with �M+1 a vector of ones of

length M + 1; and A is a �xed (M + 1)� (M + 1) matrix given by A = ��22 �M0 �2�M+1�
0
M+1, with

�l =
R
ulK2(u)du; l = 0; 1; : : : ; 4. Moreover, bias(z) = (bias�̂(z)0; bias�̂�(z)(z)

0)0 where bias�̂(z) =

�2
�
@2xm(z) +D2

pm(z)
0�M
�
, and bias�̂�(z)(z) = vec

�
bias

�̂
j
k(z)
(z)
�
j=1;:::;M�1
k=1;:::;M;x

,

with bias
�̂
j
k(z)
(z) = h�4

�
@3km

j(z) +
P

l=1;:::;M;x
l 6=k

@k@
2
lm

j(z)
�
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Because this is a straightforward extension of existing results, we transfer the proof to the

author�s webpage: http://webrum.uni-mannheim.de/vwl/stefanho.

3.3 The Asymptotic Distribution of the Symmetry-Restricted SLLE

Theorem 4 is a building block in the asymptotic distribution of the restricted estimator. Specif-

ically, we make use of the fact that the symmetry restrictions are linear in the derivative terms,

and that the derivative terms converge more slowly than the level terms. As a consequence, the

restriction of Slutsky symmetry behaves asymptotically like a set of linear restrictions on the

slope parameters. This result parallels the discussion of the nonparametric test statistic, where

the speed of convergence of the test statistics is also governed by the slower speed of convergence

of estimators for the derivatives.

Let G(�) denote the mapping from R(M+2)(M�1) into R(M�1)(M�2)=2 which maps �(z) into

(M � 1) (M � 2)=2 symmetry restrictions�
�jk(z) + �jx(z)m

k(z)
�
�
�
�kj (z) + �kx(z)m

j(z)
�
= 0; 1 � j < k �M � 1

A one-step symmetry restricted estimator is then given by the solution to the following Lagrangian,

min
�(z)2�

n�1
nX
i=1

Ki�
0
i�i s:t: G(�(z)) = 0: (3.2)

In this minimization problem, the �rst order conditions are nonlinear functions of the parameters

admitting only an implicit solution, denoted as ~�(z) = ( ~m(z)0; ~��(z)0)0, which is di¢ cult to analyze.

Note that under assumptions 2, the unkown function and its derivatives are bounded on a compact

support and therefore � is a compact set. Since the minimising function is continuous, this ensures

existence of a solution, however, uniqeness is not obvious as the restriction is not convex.

Hence, to determine the asymptotic distribution of the nonlinearly restricted Lagrangian es-

timator, we establish that a �linearized�auxiliary two-step procedure yields an estimator which

is asymptotically equivalent in the sense that its distribution di¤ers from the solution to prob-

lem (3.2) only by terms of lower order than the leading bias term. Like in the case of the test

statistic, the result is again driven by the slower convergence of the derivative estimators. The

auxiliary two step procedure has two computational advantages: First, it is clear that an unique

minimum exists. Second, it is computationally straightforward, and hence easy to implement by

applied people. Therefore, this procedure is interesting in its own right. Indeed, in our application

there are virtually no di¤erences between the two estimators, as may be seen from the graphs in

the appendix. Finally, note that the procedure could be iterated, to yield a numerical solution
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to the original nonlinear problem5. But since the various restricted estimators share the same

limiting distribution (only di¤ering by terms of higher order) we do not elaborate on this.

The auxiliary two step procedure looks as follows:

1. Step 1: Solve the unrestricted optimization problem 3.1 to obtain the vector of unrestricted

levels, m̂(z) = (m̂1(z); : : : ; m̂M�1(z))
0:

2. Step 2: Solve the linearly restricted problem

min
��(z)2��

n�1
nX
i=1

Ki�i (m̂(z))
0 �i (m̂(z)) s:t: R(m̂(z))��(z) = 0; (3.3)

over the local slope parameters ��(z) =
�
h�1(z); : : : ; h�M�1(z)

�0
, where the unrestricted �rst

step estimators m̂(z) are plugged in for m(z). Let the solution to problem (3.3) be denoted

by ���(z):

Here, the ((M � 1) (M � 2)=2) � (M � 1) (M + 1) matrix R(m̂(z)) expresses the linearized

symmetry restrictions. It has as �rst column�
0; 1; 0; : : : ; 0; m̂2(z); 0| {z }

M+1

;�1; 0; : : : ; 0;�m̂1(z)| {z }
M+1

;0(M�3)(M+1)

�
;

where 0(M�3)(M+1) is a (M�3)(M+1) vector of zeros, and �i(m̂(z)) =
�
�1i (m̂(z)); : : : ; �

M+1
i (m̂(z))

�0
;

with

�ji (m̂(z)) = W j
i � �̂j(z)�

MX
k=1

�jk(z)
�
P ki � pk

�
h�1 � �jx(z) (Xi � x)h�1; j = 1; : : : ;M � 1:

As mentioned, this two step procedure has the advantage that at each step an unique optimum

exists. In step 1 this is trivial to see, in step 2 it follows from the fact that we optimizing a convex

function under a convex constraint.

The following theorem, whose proof may be found in the appendix, establishes the sense in

which the original nonlinear restriction behaves asymptotically like a linear restriction on the

slopes: the two step estimator have the same asymptotic distribution as the nonlinearly restricted

Lagrangian estimator up to terms of higher order in h than the leading bias term.

Theorem 4. Let the model be as de�ned above, and let symmetry as well as assumptions 1�3

hold. Then,  
~m(z)

~��(z)

!
=

 
m̂(z) + op (h

2)

���(z) + op (h
3)

!
:

5In particular, in a third step an estimator for the levels could be obtained, keeping the derivatives �xed. We

are grateful to a referee for this suggestion.
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Now we are in the position to obtain an explicit distribution for the nonlinearly restricted

estimator ~�(z). To this end, let H(m(z)) = I � Q�1R(m(z))0(R(m(z))Q�1R(m(z))0)�1R(m(z)),

where R is as de�ned above and

Q =

 
IM�1 
 1 IM�1 
 �2�

0
M+1

IM�1 
 �2�M+1 IM�1 
 �2�M+1�
0
M+1

!
:

The following theorem summarizes our result:

Theorem 5. Let the model be as de�ned above, and symmetry as well as assumptions 1�3 hold.

Then,

p
nhM+1

 
~m(z)�m(z)� h2bias�̂(z)

~��(z)� ��(z)� h2H(m(z))bias�̂�(z)

!
D�! N

  
0

0

!
; f(z)�1

 
�(z)�M+1

0 (�(z)
 b0) �0

� (�(z)
 b) � (�(z)
 A) �0

!!

where � =
�
I +Q�1R(m(z))0(R(m(z))Q�1R(m(z))0)�1R(m(z))

�
;and the bias expressions, A; b as

well as �(z) are de�ned as in theorem 5 above.

Remark. Note that the di¤erence between the covariance matrix of the unrestricted and the

restricted estimator is positive semide�nite, so that the estimator is closer to the true parameter

in a MSE sense, at least if undersmoothing is performed.

4 Empirical Implementation

4.1 Data

The data used in this paper come from the following public use sources: (1) the Family Expenditure

Surveys 1969, 1974, 1978, 1982, 1984, 1986, 1990, 1992 and 1996; (2) the Surveys of Household

Spending 1997, 1998 and 1999; and (3) Pendakur and Sperlich (2008). Price and expenditure data

are available for 12 years in 5 regions (Atlantic, Quebec, Ontario, Prairies and British Columbia)

yielding 60 distinct price vectors. Prices are normalized so that the price vector facing residents of

Ontario in 1986 is (ln 100; : : : ; ln 100). The data come with weights, which are incorporated into

the nonparametric estimation and testing via multiplication of data weights with kernel weights.

Table 1 gives (unweighted) summary statistics for 6952 observations of rental-tenure unattached

individuals aged 25-64 with no dependents. Estimated nonparametric densities (not reported, but

available from the authors) for log-prices and log-expenditures are approximately normal, as is
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typically found in the demand literature. Analysis is restricted to these households to mini-

mize demographic variation in preferences. Demographic variation could be added to the model

by conditioning all levels, log-price derivatives and log-expenditure derivatives on demographic

covariates. Rather than pursue this strategy, we use a sample with very limited demographic

variation.

The empirical analysis uses annual expenditure in four expenditure categories: Food at home,

Food Out, Rent and Clothing. This yields three independent expenditure share equations which

depend on 4 log-prices and log-expenditure. These four expenditure categories account for about

half the current consumption of the households in the sample. Estimation of this sub-demand

system is only valid under the assumption of weak separability of the included 4 goods from

all the excluded goods. As is common in the estimation of consumer demand, we invoke weak

separability for the estimation that follows, but do not test it.

Table 1: The Data Min Max Mean Std Dev

Expenditure Shares Food at Home 0.02 0.84 0.23 0.11

Food Out 0.00 0.75 0.11 0.10

Rent 0.01 0.97 0.54 0.14

Clothing 0.00 0.61 0.12 0.09

Total Expenditure 640 40270 8596 4427

Log Total Expenditure 6.46 10.60 8.86 0.57

log-Prices Food at Home 3.19 4.94 4.54 0.45

Food Out 3.15 5.14 4.62 0.50

Rent 3.29 4.97 4.45 0.43

Clothing 3.67 4.95 4.62 0.35

4.2 Bandwidth Selection

The bandwidth matrices are diagonal and apply to standardized data, so that local weights for

the unrestricted model for observations i = 1; : : : ; n for equation j = 1; : : : ;M � 1 are given

by Kh (Zi � z) = K ((Xi � x) =hj�x)
MQ
k=1

K
��
P ki � pk

�
=hj�pk

�
where �z are the standard devia-

tions of each element of z, and where hj are equation-speci�c scalar bandwidth parameters for

j = 1; : : : ;M � 1. The �z are given in Table 1. We cross-validate to �nd �optimal�bandwidth pa-
rameters: bh1 = 1:4, bh2 = 3:3 and bh3 = 2:0. For (unrestricted and symmetry-restricted) estimation
of Slutsky terms, we use cross-validated bandwidths to estimate levels, and bandwidths larger by

a factor of 1:25 to estimate derivatives.
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4.3 Estimation

All estimates and tests are based on local quadratic estimators which are equivalent to Nadaraya-

Watson estimators with 4th order kernels. Each locally weighted estimate is a quadratic form in

log-prices and log-expenditure, and the locally estimated constant terms give the estimated levels.

Estimation of Slutsky terms takes constant terms as given and uses the estimates local derivatives

either imposing symmetry or not.

Figure 4 shows the nonparametric estimated level of expenditure shares for rent in thick black

lines. Unrestricted estimates (without the imposition of symmetry) are shown in thick gray lines.

These may also be interpreted as symmetry-restricted linearised estimates because the restriction

of symmetry does not a¤ect the linearised estimates. For comparison, we also show pararametric

quadratic almost ideal (QAI) estimates (see Banks, Blundell and Lewbel, 1997) with thin black

lines. Estimated expenditure shares for other budget shares are not shown, but are available from

the authors on request. Figures 5-8 show selected nonparametric estimated Slutsky terms in thick

lines, and parametric QAI estimates of Slutsky terms in thin lines. Thick black lines show the

symmetry-restricted nonlinear estimates, thick dark gray lines show symmetry-restricted linearised

estimates and thick light gray lines show unrestricted estimates. For own-price e¤ects (Figure

5), there is one restricted and one unrestricted Slutsky term displayed. For cross-price e¤ects

(Figures 6-8), there are two symmetry-unrestricted Slutsky terms for each symmetry-restricted

Slutsky term.

Simulated con�dence bands are shown in the Figures with crosses, and are given for estimated

expenditure shares and for symmetry-restricted estimated Slutsky terms, see also the appendix

on simulation below6. Pointwise 90% con�dence bands are provided at every 5th percentile from

the 5th to 95th percentile of the observations. All estimated expenditure shares and Slutsky

terms are displayed for the set of observations who live in Ontario 1986. Although the results are

presented for only one price situation, and thus seem like Engel curves, the model incorporates

price variation explicitly through the local quadratic estimators. All 6952 observations are used in

estimating each point. This is quite di¤erent from the standard approach of estimating the Engel

curve in each price situation separately.

The estimated expenditure shares for rent are plausible, and are similar to semiparametric esti-

mates recently found in Lewbel and Pendakur (2008) and Pendakur and Sperlich (2008). However,

much of the estimated QAI expenditure share equation for rent lies outside the pointwise con�-

dence intervals of the nonparametric estimates. This is due to the fact that the QAI expenditure

6Simulated con�dence bands for symmetry-unrestricted Slutsky terms are slightly larger than
those for symmetry-restricted Slutsky terms, and are suppressed to reduce clutter in the Figures.
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share equations have to �t all 60 price vectors in the data with only a few parameters to accommo-

date the price variation. Quadratic Engel curves estimated separately for each price regime �t the

data better than the QAI demand system, but have the disadvantage of not satisfying symmetry

by construction. The nonparametric demand system estimated here has the best of both worlds

� it �ts the data better, and may be restricted so that its Slutsky matrix satis�es symmetry.

We show the estimated own-price Slutsky term for rent in Figure 5 (own-price e¤ects for

other goods are available on request from the authors). The own-price Slutsky term for rent

seems broadly reasonable: it is negative and increasing, as found in Lewbel and Pendakur (2008),

and all pointwise tests show that it is statistically signi�cantly negative. Concavity of the cost

function implies (but is not implied by) weak negativity of own-price Slutsky terms for all goods

at all income levels, and, comfortingly, we we do not �nd any Slutsky term for any good which

is (pointwise) positive anywhere in the entire range of expenditure. These patterns are evident

regardless of whether or not symmetry is imposed.

The estimates given QAI parametric structure are negative, but do not show the strongly

increasing relationship with income. Further, the QAI estimates lie outside the 90% pointwise

con�dence bands of the nonparametric estimates. Slutsky terms given QAI are third order poly-

nomials in log-expenditure, but the higher order terms are very constrained by estimated price

e¤ects in the QAI so that the QAI Slutsky terms in Figure 5 are very close to linear over the

middle of the expenditure distribution. This lack of curvature in the QAI fails to capture the

curvature shown by nonparametric estimates.

Figures 6-8 show estimated cross-price Slutsky terms. Again, the estimates given QAI are

quite distant from the nonparametric estimates. Only for the Food-Out-Rent cross-price Slutsky

term does the QAI estimate lie within the con�dence band of the nonparametric estimate. As

with own-price Slutsky terms, the estimates given QAI do not allow for as much curvature as the

nonparametric estimates suggest. This is especially evident in the Food-in-Food-out cross-price

Slutsky term. Here, the nonparametric estimates are strongly increasing with expenditure, but

the QAI estimate is essentially independent of expenditure.

In Figures 6-8, there are two estimated unrestricted terms and one estimated restricted term

for each cross-price e¤ect. In Figures 6 and 8, we see that the unrestricted cross-price terms are

similar to their symmetric partners, and lie within the con�dence bands of the symmetry-restricted

cross-price terms. This suggests that these cross-price Slutsky terms may in fact be symmetric. In

contrast, in Figure 7, the symmetry-unrestricted estimates of cross-price terms are quite di¤erent

from each other and do not lie within the con�dence bands of the symmetry-restricted estimates.

Slutsky symmetry requires that all symmetric partners match up for all pairs of goods and at all

income levels and price vectors. We test symmetry by asking whether or not the two estimated
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unrestricted terms are very di¤erent from each other, and given the size of estimated con�dence

bands, one might expect the hypothesis that symmetry holds everywhere to be rejected, and it is

indeed massively rejected.

4.4 Testing

For all tests, we use a weighting function to focus the test on the middle of the distribution

of data. The weighting function a(p; x) is equal to 1 for all observations which: (1) are in the

middle 95% of the expenditure distribution for some price vector; and (2) face a price vector

wherein each price lies in the middle 95% of its respective marginal distribution. The weight

function a(p; x) is equal to zero otherwise. Since the prices exhibit covariation, deleting outliers

in the marginal price distributions reduces the sample by about 10%, leaving a(p; x) equal to 1

for about 85% of observations in the sample. Thus, test statistics are summed over only 85% of

the 6952 observations used in the estimation.

4.4.1 Testing the QAI demand system

One may test the hypothesis that the nonparametric estimates are di¤erent from the QAI estimates

using standard methods (see Härdle and Mammen, 1993). We compute a test statistic which sums

the squared di¤erence between the estimated QAI and nonparametric expenditure shares across

all observations across all three equations.

The sample value of this test statistic for the QAI restriction is 4.27. We bootstrap the

sampling distribution of this test statistic under the null that expenditure shares are given by the

estimated QAI equations. The bootstrap 5% and 1% critical values are 1.99 and 5.46, and the

bootstrap p-value for our sample test statistic is 0.013. So, we may reject the hypothesis that

preferences are QAI against a nonparametric alternative at reasonable sizes. That we do not �nd

an overwhelming rejection is consistent with other work testing QAI demands (eg, Banks, Blundell

and Lewbel 1997).

4.4.2 Testing Symmetry

To test symmetry when the number of goodsM is four, we need the order of the local polynomial

equivalent kernel to exceed 3.75 (r > 3
4
(M+1)). The local quadratic with kernel of order 2 satis�es

this condition. As we note in the remark after assumption 5, we calculate a data-driven bandwidth

(by cross-validation) and adjust it by n1=�opt�1=� where �opt = (M + 1) + 2r and � = 5
4
(M + 1) + r

(the midpoint of its bounds). Consequently, in our application, the bandwidths are adjusted to

h = 0:83� ĥ.
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For the symmetry test, we construct �̂S using a(p; x) as above. The value of the test statistic

is 1943. To �nd critical values the bootstrap procedure described in section 2.3 is applied, using

the multivariate smooth conditional moment bootstrap with the number of bootstrap iterations

B = 300. The simulated 5% and 1% critical values are 313 and 886, respectively, so symmetry is

decisively rejected.

We also applied Lewbel�s (1995) test to our data. Because Lewbel�s approach is quite memory-

intensive, we were able to apply it only to a 75% random sample of our data. (Our test also rejects

decisively on this sample at the 1% critical value.) Since Lewbel does not give guidance as to

bandwidth and kernel choice, we implement his test with cross-validated bandwidths and normal

kernels. We use Lewbel�s preferred method for calculating critical values, which is via simulation.

Lewbel�s test applies only to tests of symmetry across pairs of goods, rather than the to entire set

of M(M � 1)=2 joint restrictions which are together su¢ cient for Slutsky symmetry. His test 6
statistics are 0.63, 3.98, 3.35, 0.80, 1.15 and 1.73 and their associated 5% critical values are 5.40,

6.00, 5.36, 6.13, 4.98 and 5.33. Consequently, at the 5% level, Lewbel�s test rejects none of the 6

restrictions which together comprise Slutsky symmetry7. As we demonstrated in our Monte Carlo

simulation, this may be due to the low power of Lewbel�s sup-norm test in �nite samples.

One may also test symmetry under the restriction that the demand system is QAI. The like-

lihood ratio test statistic for the hypothesis that the QAI demand system satis�es symmetry

against an asymmetric QAI alternative is 13.2 with 3 degrees of freedom, and has two-sided 5%

and 1% critical values of 9.3 and 12.8. Thus, the QAI demand system picks up the violation of

symmetry, but the additional restrictions of the QAI result in a much less decisive rejection than

the nonparametric approach.

Why is symmetry rejected by our test in this application? Of course, it might simply be wrong,

or the grouping of goods may violate the separability assumption. Another remaining explanation

is unobserved heterogeneity8, whose impact is noted in Brown and Walker (1989), Lewbel (2001)

7The details on the test are as follows.
Detailed Results for Lewbel�s test

Pair of Goods Test Stat 5% crit 1% crit p-value

foodin, foodout 0.63 5.40 10.09 0.33

foodin, rent 3.98 6.00 8.12 0.85

foodin, cloth 3.35 5.36 8.07 0.86

foodout, rent 0.80 6.13 8.06 0.40

foodout, cloth 1.15 4.98 7.55 0.56

rent, cloth 1.73 5.33 8.40 0.71

8As noted above, in this empirical work, we use a relatively homogeneous subsample with very limited de-

mographic variation. However, the age of the single childless individuals in the sample is observable and does
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and Hoderlein (2005). If the maintained assumptions about unobservables are false then the

symmetry test may reject even if symmetry is true for all members of the underlying heterogeneous

population, which may happen here. An obvious alternative is measurement error, e.g., there might

not be one price for all consumers, but prices might vary. The latter are fundamental problems

that limit the scope of econometric analysis.

5 Conclusions

The Slutsky symmetry restriction is comprised of a set of nonlinear cross-equation restrictions on

the levels and derivatives of the expenditure share vector function. In parametric demand system

estimation, the complexity of these restrictions and the complexity of share equations seem to go

together � only in very simple demand systems is Slutsky symmetry a linear restriction. Surpris-

ingly, we �nd that in the nonparametric case, where share equations can be arbitrarily complex,

Slutsky symmetry is easy to impose. Because the estimated derivatives converge slower than es-

timated levels, and because the restrictions are linear in the derivatives, the Slutsky symmetry

restriction and test become linear in our context. Based on this insight, we provide a new test

of symmetry, its asymptotic distribution, guidance on kernels and bandwidths in implementation,

and a methodology for bootstrap simulation of the sampling distribution of the test statistic.

Monte Carlo analysis suggests that our test has better power than the Lewbel (1995) nonpara-

metric test of symmetry. Further, we provide a two-step linearized nonparametric approach to

estimating the matrix-valued function of Slutsky terms under the restriction of symmetry. Finally,

we implement the model with Canadian data and �nd plausible results.

6 Appendix

6.1 General Assumptions

Assumption 1. The data Yi = (Wi; Zi); i = 1; : : : ; n are independent and identically distributed
with density f(y).

This assumption can be relaxed to dependent data. All proofs can be extended to �-mixing

processes in the case of estimation and �-mixing processes in the case of testing. Changes in the

vary. But, it is only weakly correlated with the nonparametric residuals. Linear regressions of the residuals from

the nonparametric regression on age, log-prices, log-expenditures and all two-way interactions do not have much

explanatory power, with R2 values of 0.04, 0.04 and 0.02 for food-in, food-out and rent shares, respectively. Con-

sequently, we believe that the assumption of no unobserved preference heterogeneity taken in our application is no

more heroic than usual.
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proofs are brie�y discussed below. The validity of the bootstrap is not a¤ected by dependent data,

if we assume that E("t j Yt�1; : : : ; Y1) = 0. Then, the bootstrap works because the residuals are
mean independent and we only use the residuals for resampling (see also Kreiss, Neumann and

Yao, 2002).

Assumption 2. For the data generating process

1. f(y) is r+ 1-times continuously di¤erentiable (r � 2). f and its �rst partial derivatives are
bounded and square-integrable.

2. m(z) is r + 1-times continuously di¤erentiable.

3. f(z) =
R
f(w; z)dw is bounded from below on the compact support A of a(z), i. e. infz2A f(z) =

b > 0.

4. The covariance matrix

�(z) = (�ij(z))1�i;j�M�1 = E((W �m(Z))(W �m(Z))0 j Z = z) (6.1)

is square-integrable (elementwise) on A.

Assumption 3. For the kernel regression
The kernel is aM+1-dimensional function K : RM+1 ! R, symmetric around 0 with

R
K(u)du =

1,
R
jK(u)jdu < 1 and of order r (i. e.

R
ukK(u)du = 0 for all k < r and

R
urK(u)du < 1).

Further kxkM+1K(x)! 0 for kxk ! 1.

Remark. For estimation in isolation, the boundedness on compact support assumption A.4 could
be relaxed. However, this assumption is needed for testing, and hence will be maintained through-
out the paper. Our results hold for arbitrary kernel functions, but since we use product kernels in
our application, we will establish some of the theorems under this additional assumption. In this
case, we use the notation �2 =

R
u2K(u)du, and �l =

R
ulK2(u)du (l = 0; 1; 2) for one-dimensional

kernel functions.

6.2 Assumptions For Testing

For the testing part, we shall need additional assumptions, in particular on the smoothness con-

ditions, order of kernels and rate of bandwidth.

Assumption 4. For the kernel regression

1. For the order r of the kernel, we require r > 3
4
(M + 1).

2. For n!1, the bandwidth sequence h = O(n�1=�) satis�es 2(M + 1) < � < (M + 1)=2 + 2r

Assumption 5. E((W j �mj(Z))2(W k �mk(Z))2) <1 for every 1 � j; k �M � 1.
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Remark. The asymptotic distribution of the test statistic is derived under the above conditions
on the bandwidth sequence. It is important to note that the optimal rate for estimation, given by
�opt = (M + 1) + 2r is excluded. Here, a smaller bandwidth is needed to obtain the asymptotic
distribution. In practice we calculate a data-driven bandwidth (by cross-validation) and adjust
it by n1=�opt�1=�. Although we do not formally address the issue of data-driven bandwidths ĥ we
assume that our results will hold if ĥ=h P�! 1.

Assumption 6. On the bootstrap distribution
The bootstrap residuals "�i ; i = 1; : : : ; n are drawn independently from distributions F̂i, such that
EF̂i"

�
i = 0; EF̂i"

�
i ("

�
i )
0 = "̂i"̂

0
i and that Cramer�s conditions are ful�lled marginally, i. e. there exists

a constant c > 0 such that Ej"j�i jp � cp�2p!E("j�i )
2 < 1 for all p = 3; 4; : : : and for all j =

1; : : : ;M � 1.

Remark. Cramer�s conditions are ful�lled for discrete distributions, distributions with compact
support and among others for the normal distribution, which are the most often used distributions
in practice.

6.3 Proof of Theorems 1 and 2

The proof of Theorem 1 follows the same strategy as the proof of Theorem 1 in Aït-Sahalia, Bickel

and Stoker (2001). In essence, this consists of applying a a functional expansion to �̂S. This leads

to a von Mises expansion where the �rst order term is zero under H0. The second order term is an

in�nite weighted sum of chi-squared distributed random variables. Here, a Feller-type condition

is ful�lled which ensures the asymptotic negligibility of all summands. This condition is stated

a the central limit theorem for degenerate U-statistics by de Jong (1987) (see Lemma 6.1). By

employing this result to derive Theorem 1, we proceed di¤erently than Aït-Sahalia, Bickel and

Stoker (2001) to alleviate the proof of the bootstrap result.

The extension to �-mixing random variables follows by using Theorem 2.1 in Fan and Li (1999)

to obtain the asymptotic distribution. Apart from this, the di¤erence consists in tedious calcula-

tions of covariances where essentially a summability condition of the �-coe¢ cients is necessary.

Preliminary Lemmata

We denote marginal densities the list of the arguments and with a superscript indicating the

element of w which is part of the argument. Kernel density estimators are de�ned in the same

way.

For a density f we de�ne the seminorms

kfkkf = maxfsup
z2A

jf(z)j; sup
z2A

j
Z
wkfk(wk; z)dwkjg

kfkkd = maxf max
p=1;:::;M+1

sup
z2A

j@pf(z)j; max
p=1;:::;M+1

sup
z2A

j@p
Z
wkfk(wk; z)dwkjg:
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Lemma 6.1 (de Jong, 1987). Let Y1; : : : ; Yn be a sequence of independent and identically
distributed random variables. Suppose that the U-statistic Un =

P
1�i<j�n hn(Yi; Yj) with a sym-

metric function hn is centered (i. e. Ehn(Y1; Y2) = 0) and degenerate (i. e. E(hn(Y1; Y2) j Y1) =
E(hn(Y1; Y2) j Y2) = 0; P-a.s.). Then if

max1�i�n
P

j=1;j 6=i Ehn(Yi; Yj)2

varUn
�! 0 and

EU4n
(varUn)2

�! 3 (6.2)

we have that
Unp
varUn

D�! N (0; 1)

Lemma 6.2. Under the assumptions we have that for any k = 1; : : : ;M � 1

kf̂kh � fkkd = OP (h
r�1 + (log n=(nhM+3))1=2)

kf̂kh � fkkf = OP (h
r + (log n=(nhM+1))1=2)

Proof Noting that

sup
z2A

j
Z
y(f̂kh � fk)dyj � kf̂kh (z)k1km̂k

h(z)�mk(z)k1 + kmk(z)k1kf̂kh (z)� fk(z)k1 (6.3)

where k � k1 denotes the supremum-norm. Then the lemma follows from the uniform rates of

convergence for kernel estimators (see Härdle, 1990, or Masry, 1996).

Proof of Theorem 1

For simpli�cation, denote @x = @M+1. We start by expanding the statistic in order to replace

m̂k
h(z) with m(z)

�̂S =
1

n

M�2X
j=1

M�1X
k=1

nX
i=1

(@km̂
j
h(Zi) +mk(Zi)@xm̂

j
h(Zi)� @jm̂

k
h(Zi)�mj(Zi)@xm̂

k
h(Zi))

2Ai

+
1

n

M�2X
j=1

M�1X
k=1

nX
i=1

((m̂k
h(Zi)�mk(Zi))@xm̂

j
h(Zi)� (m̂

j
h(Zi)�mj(Zi))@xm̂

k
h(Zi))

2Ai

+
1

n

M�2X
j=1

M�1X
k=1

nX
i=1

(@km̂
j
h(Zi) +mk(Zi)@xm̂

j
h(Zi)� @jm̂

k
h(Zi)�mj(Zi)@xm̂

k
h(Zi))

� ((m̂k
h(Zi)�mk(Zi))@xm̂

j
h(Zi)� (m̂

j
h(Zi)�mj(Zi))@xm̂

k
h(Zi))Ai

= �̂S1 + �̂S2 + �̂S3 (6.4)

By Chebychev�s inequality, �̂S2 = Op(h
2r+n�1h�(M+1)) = op(n

�1h�(M+5)=2) and an application

of Cauchy-Schwarz shows that the third term is also of op(n�1h�(M+5)=2) provided that �̂S1 has
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the limiting distribution of the theorem. So it is left to derive the asymptotic distribution of �̂S1
has.

To apply the functional expansion, we consider the theoretical version �S1 =
P

j<k �
jk
S1. For

the beginning it su¢ ces to investigate the case j = 1; k = 2 and to note that the other terms can

be treated in the same way.

Consider �12S1 as a functional of two M + 2-dimensional density functions f 1(w1; z); f2(w2; z),

two M + 1-dimensional functions m1(z) and m2(z) and a M + 1-dimensional density f3(z).

�12S1(f1; f2; c1; c2; f3) =

Z
(@2

R
w1f1(w

1; z)dw1

f1(z)
+m2(z)@M+1

R
w1f1(w

1; z)dw1

f1(z)

�@1
R
w2f2(w

2; z)dw2

f2(z)
�m1(z)@M+1

R
w2f2(w

2; z)dw2

f2(z)
)2a(z)f3(z)dz

Then the following functional expansion holds (analogous to Lemma A.1 in Aït-Sahalia, Bickel

ans Stoker, 2001)

Lemma 6.3. Let jg1(w1; z)j; jg2(w2; z)j < b=2 be bounded functions and Gb(RM+2; R) the set of
all such functions. Then under H0 and assumption 2, �12S1 has an extension on G

b � Gb around
(f 1; f2) given by

�12S1(f
1 + g1; f

2 + g2;m
1;m2; f3) = �

12
S1(f

1; f2;m1;m2; f3)+Z �
@2

Z
�1(w; z)g1(w

1; z)dw +m2(z)@M+1

Z
�1(w; z)g1(w

1; z)dw1

� @1

Z
�2(w; z)g2(w

2; z)dw2 �m1(z)@M+1

Z
�2(w; z)g1(w

2; z)dw2
�2
a(z)f3(z)dz

+O(kg1k2dkg1kf + kg2k2dkg2kf ) (6.5)

with �k(w; z) = (wk �mk(z))=f(z).

Let f̂e(z) = n�1
Pn

i=1 1fz=Zig(z) denote the empirical distribution of the sampled data and

extend the test statistic in the following way

�̂12S1 = �
12
S1(f̂

1
h ; f̂

2
h ;m

1;m2; f̂e)

= �12S1(f
1 + f̂ 1h � f 1; f2 + f̂ 2~h � f 2;m1;m2; f) + �12S1(f

1 + f̂ 1h � f 1; f2 + f̂ 2~h � f 2;m1;m2; f̂e � f)

Applying Lemma 6.3 to gi = f̂ ih � f i; i = 1; 2 allows to write

= I1Sn +�
1
Sn +Op(kf̂ 1h � f 1k2dkf̂ 1h � f 1kf + kf̂ 2h � f 2k2dkf̂ 2h � f 2kf ) (6.6)

using that �12S1(f
1; f2;m1;m2; f) = 0 under H0 and where

I12Sn =

Z � nX
i=1

r12Sn(Wi; Zi; z)

�2
a(z)f(z)dz �12

Sn =

Z � nX
i=1

r12Sn(Wi; Zi; z)

�2
a(z)(f̂e(z)� f(z))dz
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with

r12Sn(Wi; Zi; z) = @2�
1(Wi; z)Kh(z � Zi) +m2(z)@M+1�

1(Wi; z)Kh(z � Zi)

� @1�
2(Wi; z)Kh(z � Zi)�m1(z)@M+1�

2(Wi; z)Kh(z � Zi) (6.7)

Here it has also been used that under H0 it holds that
R
�k(w; z)fk(w; z)dwk = 0.

The lower order terms in the extension 6.6 are bounded by Lemma 6.2 and the following

Lemma 6.4. Under the assumptions we have that �12
Sn = op(n

�1h�(M+5)=2).

To obtain the asymptotic distribution we combine the results for �̂jkS1 for all 1 � j < k �M�1,
which leads to

�̂S1 =
X
j<k

�̂jkS1 =
X
j<k

IjkSn + op(n
�1h�(M+5)=2) (6.8)

Introducing the centered random variables

~rjkSn(Wi; Zi; z) = rjkSn(Wi; Zi; z)� ErjkSn(Wi; Zi; z) (6.9)

the following decomposition applies

ISn =
X
j<k

IjkSn

=
X
j<k

Z �
1

n

nX
i=1

rjkSn(Wi; Zi; z)

�2
a(z)f(z)dz

=
2

n2

X
j<k

nX
i1<i2

Z
~rjkSn(Wi1 ; Zi1 ; z)~r

jk
Sn(Wi2 ; Zi2 ; z)a(z)f(z)dz

+
1

n2

X
j<k

nX
i=1

Z
(rjkSn(Wi; Zi; z))

2a(z)f(z)dz

+
2(n� 1)

n2

X
j<k

nX
i=1

Z
~rjkSn(Wi; Zi; z)ErjkSn(Wi; Zi; z)a(z)f(z)dz

� n(n� 1)
n2

X
j<k

Z �
ErjkSn(Wi; Zi; z)

�2
a(z)f(z)dz

= ISn1 + ISn2 + ISn3 + ISn4 (6.10)

These terms are analyzed by the following

Lemma 6.5. Under the assumptions we have that under H0

nh(M+5)=2ISn1
D�! N (0; �2S)

with probability tending to one and nh(M+5)=2ISn2 � h�(M+1)=2BS
P�! 0, nh(M+5)=2ISn3

P�! 0 and
nh(M+5)=2ISn4 �! 0.

Together with equation 6.8 this states the asymptotic result of the theorem.
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Extension to Local Polynomial Estimators

De�ne �̂LPS by replacing the Nadaraya-Watson estimators in the de�nition of �̂S with local poly-

nomial estimators of order p. Recall that any local polynomial estimator (of a function and

of a derivative) can be written as m̂LP
h (z) = Zn(z)=Nn(z) with Zn(z) and Nn(z) appropriately

de�ned. These quantities are explicitly given using the Laplacian extension of the determinant

of the estimator�s density matrix. The main di¤erence in the case of local polynomials is the

proof of Lemma 6.3. It is no longer su¢ cient to derive an expansion of third order of the

functional expansion of �̂12;LPS1 around �12S1. Now, �12;LPS1 has to be regarded as a function of
~K = 1 +

P2p
i=0

�
i+M
M

�
+
P2p

i=0

�
i+M�1
M�1

�
di¤erent functions f1 : : : ; f �K which are given by the proba-

bility limits of the entries in the density matrix. For the proof of Lemma 6.3, the functional has to

expanded up to order p+ 1, where p is the order of the local polynomial (if p is even, up to order

p + 2). Tedious calculations of the higher order derivatives and an investigation of the resulting

terms, show that the leading term is again given by the second derivative. It can be shown that all

other terms are of lower order. The other Lemmata follow by using equivalent kernel arguments.

Proof of Theorem 2

Analogously to equation 6.4 we get

�̂�S = �̂
�
S1 + �̂

�
S2 + �̂

�
S3

where the last two terms are of lower order (use Lemma 6.6). Again we decompose �̂�S1 =
P

j<k �̂
jk�
S1

and investigate wlog the case j = 1; k = 2. Let now f̂ 1�h denote the kernel density estimator of

("1�i ; Zi)i=1;:::;n. Replacing W
1;W 2 with "1�; "2� in the de�nition of �12S1 and applying Lemma 6.3

with gi = f̂ i�h � f i; i = 1; 2 we can decompose

�̂12�S1 = �
12
S1(f̂

1�
h ; f̂

2�
h ;m

1;m2; f̂e)

= �12S1(f
1; f2;m1;m2; f) + I12�Sn +�

12�
Sn +OP (kf̂ 1�h � f 1k2dkf̂ 1�h � f 1kf + kf̂ 2�h � f 2k2dkf̂ 2�h � f 2kf )

As f i("�; z) = f 1("�)f(z), we have that �12S1(f
1; f2;m1;m2; f) = 0. Note that this property allows

to construct the distribution of �̂S under H0 by the bootstrap. Here

I12�Sn =

Z � nX
i=1

r12�Sn ("
�
i ; Zi; z)

�2
a(z)f(z)dz �12�

Sn =

Z � nX
i=1

r12�Sn ("
�
i ; Zi; z)

�2
a(z)(f̂e(z)� f(z))dz

and

r12�Sn ("
�
i ; Zi; z) = "1�i @2

Kh(z � Zi)

f(z)
+ "1�i m

2(z)@M+1
Kh(z � Zi)

f(z)
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�"2�i @j
Kh(z � Zi)

f(z)
� "2�i m

j(z)@M+1
Kh(z � Zi)

f(z)
:

Next, lower order terms are bounded.

Lemma 6.6. Under the assumptions we have that for any k = 1; : : : ;M � 1

kf̂k�h � fkkd = OP (h
r�1 + (log n=(nhM+3))1=2)

kf̂k�h � fkkf = OP (h
r + (log n=(nhM+1))1=2)

Analogous to Lemma 6.4 it holds that �12�
S1 = oP (n

�1h�(M+5)=2) and together we have that

�̂�S1 =
X
j<k

Ijk�Sn + oP (n
�1h�(M+5)=2):

Next, the same decomposition as in 6.10 applies

I�Sn =
X
j<k

Ijk�Sn = I�Sn1 + I�Sn2 + I�Sn3 + I�Sn4:

where I�Sni and ~r
jk�
Sn are de�ned as in equations 6.9 and 6.10 with the di¤erence that all expectations

are replaced with expectations conditional on the data.

Lemma 6.7. Under the assumptions we have that under H0

nh(M+5)=2I�Sn1
D�! N (0; �2S)

with probability tending to one and nh(M+5)=2I�Sn2 � h�(M+1)=2BS
P�! 0, nh(M+5)=2I�Sn3

P�! 0 and

nh(M+5)=2I�Sn4
P�! 0.

This completes the proof.

Proof of the Lemmata

Proof of Lemma 6.3 Consider 	(t) = �12S (f
1 + tg1; f

2 + tg2;m
1;m2; f3) as a function of t and

write the Taylor expansion around t = 0

	(t) = 	(0) + t	0(0) + t2	00(0)=2 + t3	000(#(t))=6

Analogously to Lemma 1 in A"it-Sahalia, Bickel and Stoker (2001) we can show that 	(0) = 0

and 	0(0) = 0 under H0. The leading term is given by

	00(0) = 2

Z
@t (0; z)

2a(z)f3(z)dz

with

 (t) = '21(t; z) +m2(z)'1M+1(t; z)� '12(t; z)�m1(z)'2M+1
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and

'ik(t; z) = @k

R
wi(f i(w; z) + tgi(w; z))dw

i

f i(z) + tgi(z)
:

Finally,

	000(#(t)) = O(kg1k2dkg1kf + kg2k2dkg2kf ):

Evaluating the Taylor expansion at t = 1 gives the statement of the lemma.

Proof of Lemma 6.4 This Lemma is shown using the same combinatoric considerations as

in the proof of Lemma 7 in Aït-Sahalia, Bickel and Stoker (2001) and standard kernel methods.

Therefore we omit the details here.

Proof of Lemma 6.5 Before showing the statements of this lemma, we start by investigating

~rSn(�). Calculating the derivatives we obtain under H0

rjkSn(Wi; Zi; z) = �j(Wi; z)h
�(M+2)Kk(z; (z � Zi)=h)

� �k(Wi; z)h
�(M+2)Kj(z; (z � Zi)=h) + �j(Wi; z)Kh(z � Zi)

�@kf(z)
f(z)

+mk(z)
@M+1f(z)

f(z)

�
� �k(Wi; z)Kh(z � Zi)

�@jf(z)
f(z)

�mj(z)
@M+1f(z)

f(z)

�
(6.11)

Here the last two terms converge faster, as the inner derivative of the kernel brings an extra h to

the �rst two terms. Therefore, further analysis can be restricted to the �rst two terms and we will

omit the lower order terms.

Asymptotic Normality of ISn1 ISn1 can be written as U-Statistic by

ISn1 =
X
i1<i2

hn(Yi1 ; Yi2)

with the centered and degenerated function

hn(Yi1 ; Yi2) =
2

n2

X
j<k

Z
~rjkSn(Wi1 ; Zi2 ; z)~r

jk
Sn(Wi2 ; Zi2 ; z)a(z)f(z)dz:

Asymptotic normality is established by verifying the conditions of Lemma 6.1. We start with

the denominator and note �rst that since we have independent and identically distributed data

we can de�ne �2n = Ehn(Yi; Yj)2. Because hn(�; �) is centered, we have var ISn1 = n(n � 1)�2n=2.
Direct and tedious calculations, which employ standard techniques of change of variables show

that

�2n = Ehn(Y1; Y2)2 =
4

n4hM+5
�2S(1 +O(h)):
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By the assumption of iid data we have that max1�i�n
Pn

k=1
k 6=i
Ehn(Yi; Yk)2 = n�2n. Together with

the result for the denominator, the �rst condition of Lemma 6.1 follows.

To verify the second condition, we need to analyze

EI4Sn1 =
X
i1<i2

Eh4n(Yi1 ; Yi2) + 3
X
i1<i2

X
i3<i4

(i3;i4) 6=(i1;i2)

Ehn(Yi1 ; Yi2)2hn(Yi3 ; Yi4)2

+ 24
X
i1<i2

X
i3 6=i1;i2

Ehn(Yi1 ; Yi2)2hn(Yi1 ; Yi3)hn(Yi2 ; Yi3)

+ 3
X
i1

X
i2 6=i1

X
i3 6=i1;i2

X
i4 6=i1;i2;i3

Ehn(Yi1 ; Yi2)hn(Yi2 ; Yi3)hn(Yi3 ; Yi4)hn(Yi4 ; Yi1) (6.12)

Again, it follows from direct calculations that

Ehn(Y1; Y2)4 = O(n�8h�3M�7)

Ehn(Y1; Y2)2hn(Y1; Y3)2 = O(n�8h�2M�6)

Ehn(Y1; Y2)2hn(Y1; Y3)hn(Y2; Y3) = O(n�8h�2M�6)

Ehn(Y1; Y2)hn(Y2; Y3)hn(Y3; Y4)hn(Y1; Y4) = O(n�8h�M�5)

Using some combinatorics one sees from equation 6.12 that the total contribution of terms of

these kinds to EI4Sn1 is at most O(n
�4h�(M+1)). So EI4n1 is asymptotically dominated by terms

with Ehn(Y1; Y2)2hn(Y3; Y4)2 = (Ehn(Y1; Y 2
2 ))

2. Therefore the second condition from Lemma 6.1

is ful�lled as
EI4Sn1

(var ISn1)2
=
12n�4h�2(M+5)�4H(1 + o(1))

(2n�2h�(M+5)�2H(1 + o(1)))
2
�! 3

and the asymptotic normality of In1 is established.

Stochastic Convergence of ISn2 The expected value of the test statistic is given by

EISn2 =
1

n

X
j<k

ZZ �
�j(w1; z)h

�(M+2)Kk(z; (z � z1)=h)

� �k(w1; z)h
�(M+2)Kj(z; (z � z1)=h)

�2
a(z)f(z)dzf(w1; z1)dw1dz1

= n�1h�(M+3)BS + o(n�1h�(M+5)=2)

Stochastic convergence follows from an application of Markov�s inequality with second mo-

ments, which requires to calculate EI2n2 = O(n�3h�(M+3)). This gives the second statement of the

lemma.
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Stochastic Convergence of ISn3 Because ~rjkn (Wi; Zi; z) are centered functions, we have

that EISn3 = 0. Substituting �z = (z � z1)=h for z1 gives

ErjkSn(W1; Z1; z) = h�1
Z �

�j(w1; z)K
k(z; �z)� �k(w1; z)K

j(z; �z)
�
f(w1; z)dw1d�z +O(hr�1) (6.13)

= O(hr�1)

for every z 2 A and therefore

EI2Sn3 =
4(n� 1)2

n3
E
�X
j<k

Z
~rjkSn(Wi; Zi; z)ErjkSn(W1; Z1; z)a(z)f(z)dz

�2
= O(n�1h2(r�1))

which is of o(n�1h�(M+5)=2) .

Convergence of ISn4 The convergence of the deterministic part follows from 6.13 and the

upper bound of the bandwidth sequence

ISn4 = O(h2(r�1)) = o(n�1h�(M+5S)=2)

which completes the proof of the lemma.

Proof of Lemma 6.6 Note that from equation 6.3 follows that only the �rst part has to be

investigated, since the second part in equation 6.3 concerning the density estimator is unchanged

in the bootstrap sample and has the desired rate.

Uniform convergence of

êk�h (z) =
ĝk�h (z)

f̂h(z)
=

Pn
i=1Kh(z � Zi)"

k�
iPn

i=1Kh(z � Zi)

and its derivative with respect to zk is proofed by standard methods. A chaining argument and the

application of Bernstein�s inequality yield the desired result (See Härdle, 1990, or Masry, 1996).

Proof of Lemma 6.7 De�ne Y �
i = ("

�
i ; Zi). To derive the asymptotic distribution of

I�Sn1 =
X
i1<12

hn(Y
�
i1
; Y �

i2
)

given the data, again Lemma 6.1 has to be applied. This is done by showing that the conditions

hold with probability tending to one, i. e.

max1�i�n
Pn

j=1 E�hn(Y �
i ; Y

�
j )
2

var� I�Sn1

P�! 0
E�(I�Sn1)4

(var� I�Sn1)
2

P�! 3:
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Note, that by construction E�hn(Y �
1 ; Y

�
2 ) = 0 and E�(hn(Y �

1 ; Y
�
2 ) j Y �

1 ) = E�(hn(Y �
1 ; Y

�
2 ) j Y �

2 ) = 0

almost surely. Direct calculations reveal that E�hn(Y �
1 ; Y

�
2 ) has a structure similar to hn(Y1; Y2)

2.

Especially, if expectation is taken, and the appropriate changes of variables are applied, the same

leading term can be derived.

To verify the conditions, we �rst get var� I�n1 =
P

i1<i2
E�hn(Y �

i1
; Y �

i2
)2 because the bootstrap

residuals are independent and hn(Y �
i1
; Y �

i2
) is centered conditional on the data. To bound this in

probability, use Markov�s inequality with the �rst moment

E
��X
i1<i2

E�hn(Y �
i1
; Y �

i2
)2
�� = X

i1<i2

Ehn(Y �
i!
; Y �

i2
)2 = n�2h�(M+5)�2S(1 + o(1))

from which var� I�Sn1
P�! var ISn1 follows. This is now used to show the �rst condition. By the

iid-assumption on the data sample, for the maximum holds

P
�
maxi=1;:::;n

Pn
j=1;j 6=i E�hn(Y �

i ; Y
�
j )
2

var ISn1
> c

�
= nP

�Pn
j=2 E�hn(Y �

1 ; Y
�
j )
2

var ISn1
> c

�
And for the right hand side we use the Markov inequality with second moments and similar

calculations as in lemma 6.5 to obtain

P
�Pn

j=2 E�hn(Y �
1 ; Y

�
j )
2

var ISn1
> c

�
= O(n�2h4) = o(n�1)

For the second condition we again use the convergence of the denominator. Then bounding the

probability with the second moment leads to similar calculations as done in Lemma 6.5. Stochastic

convergence of I�Sn2 and I
�
Sn3 consists of using iterated expectations and repeating there the same

calculations as in this lemma.

6.4 Proof of Theorem 5

Consider for simplicity the case of one constraint and two goods only. After analyzing this in detail,

we will give arguments for why the general case follows directly. Substituting the restriction, the

problem becomes:

min
�(z)2�

n�1
nX
i=1

Ki

�
(�1i )

2 + (�2i )
2
�
;

where

�1i = W 1
i �m1(z)� �11(z)(

�P 1i � �p1)� �12(z)(
�P 2i � �p2)� �1x(z)(

�Xi � �x)

= W 1
i � �Z 0i�

1

�2i = W 2
i �m2(z)� (�12(z) + �1x(z)�

2(z)� �2x(z)m
1(z))( �P 1i � �p1)
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� �22(z)(
�P 2i � �p2)� �2x(z)(

�Xi � �x)

= W 2
i � �Z 0i�

2
r;

where the bars denote division by h and �Zi = (1; �P 1i ��p1; �P 2i ��p2; �Xi��x)0. Moreover, we substituted
for �12(z); and we use an additional subscript r, to denote parameters and estimators which embody

the restriction. Then, the FOC can be written as

nX
i=1

Ki

�
W 1
i � �Z 0i

~�
1� �Zi + nX

i=1

Ki

�
W 2
i � �Z 0i

~�
2

r

��
�P 1i � �p1

�
~ 1 = 0

nX
i=1

Ki

�
W 2
i � �Z 0i

~�
2

r

�
�Zi +

nX
i=1

Ki

�
W 2
i � �Z 0i

~�
2

r

��
�P 1i � �p1

�
~ 2 = 0;

where ~ =
�
~ 
0
1;
~ 
0
2

�0
=
�
(�~�2x(z); 0; 1; ~m2(z)); (~�

1

x(z);�1; 0;� ~m1(z))
�
. Note that the sixth equation

is obtained by the trivial equality

nX
i=1

Ki

�
W 2
i � �Z 0i

~�
2

r

��
�P 1i � �p1

�
�

nX
i=1

Ki

�
W 2
i � �Z 0i

~�
2

r

��
�P 1i � �p1

�
= 0:

Inserting W j
i =

�Z 0i�
j + Bj( �Zi) + U ji ; j = 1; 2, where B

j( �Zi) denotes the second order bias terms,

we obtain

nX
i=1

Ki
�Zi �Z

0
i

�
�j � ~�j

�
+ ~ j

nX
i=1

Ki

�
�P 1i � �p1

�
�Z 0i
�
�2 � ~�2r

�
+

nX
i=1

Ki
�Zi
�
Bj( �Zi) + U ji

�
+ ~ j

nX
i=1

Ki

�
�P 1i � �p1

��
B2( �Zi) + U2i

�
= 0;

where j = 1; 2. This system of equations may be rewritten as

~�
1
(z)� �1(z) = A�1n

nX
i=1

Ki

�
B1( �Zi) + U1i

�
�Zi

+ A�1n
~ 1

nX
i=1

Ki

�
�P 1i � �p1

�
�Z 0i
�
�2r(z)� ~�

2

r(z)
�

(6.14)

+ A�1n
~ 1

nX
i=1

Ki

�
B2( �Zi) + U2i

��
�P 1i � �p1

�
;

for �1(z) =
�
m1(z); �11(z); �

1
2(z); �

1
x(z)

�0
and

~�
2

r(z)� �2r(z) = C�1n A�1n

nX
i=1

Ki

�
B1( �Zi) + U1i

�
�Zi (6.15)

+ C�1n A�1n
~ 2

nX
i=1

Ki

�
B2( �Zi) + U2i

��
�P 1i � �p1

�
;
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for �2r(z) =
�
m2(z); (�12(z) + �1x(z)�

2(z)� �2x(z)�
1(z)); �22(z); �

2
x(z)

�0
: Here,

An =
nX
i=1

Ki
�Zi �Z

0
i and Cn = I � A�1n

~ 2

nX
i=1

Ki

�
�P 1i � �p1

�
�Z 0i:

In equations 6.14 and 6.15 the �rst term gives �̂(z)� �(z), while the other terms can be seen as

additional bias terms. Consider 6.15 �rst. Recall that ~ 2 =
�
~�
1

x(z);�1; 0;� ~m1(z)
�0
and obviously

~ 2 = Op(1); if symmetry is true. Then,

A�1n
~ 2

nX
i=1

Ki

�
�P 1i � �p1

�
�Z 0i = Op(1);

by standard arguments. Thus, Cn = I+Op(1), and the result that ~�
2

r(z)��2r(z) =
�
op(1); op(h); op(h); op(h)

�0
follows from 6.15 by standard arguments.

We will now analyze the behavior of the components ~m1(z)�m1(z) and ~m2(z)�m2(z): Let

gn =
1

nhM+1
~ 1

nX
i=1

Ki

�
�P 1i � �p1

�
�Z 0i
�
�2r(z)� ~�

2

r(z)
�
:

Recall that ~ 1 =
�
�~�2x(z); 0; 1; ~m2(z)

�0
, and note that by the above consistency result we have ~ 1 =�

Op(h); 0; O(1); Op(1)
�0
. Combining this with the last arguments, gn =

�
op(h

2); 0; op(h); op(h)
�0
.

Similarly for

kn = ~ 2
1

nhM+1

nX
i=1

Ki

�
�P 1i � �p1

�
�Z 0i
�
�2r(z)� ~�

2

r(z)
�
;

we obtain kn =
�
op(h

2); 0; op(h); op(h)
�0
: Analogously,

1

nhM+1

nX
i=1

Ki

�
B2( �Zi) + U2i

��
�P 1i � �p1

�
~ 1 =

�
Op(h

4); 0; Op(h
3); Op(h

3)
�0
:

Summarizing,

~m1(z)�m1(z) = e0A�1n

nX
i=1

Ki

�
B1( �Zi) + U1i

�
�Zi + op(h

2)

= m̂1(z)�m1(z) + op(h
2);

where e = (1; 0; 0; 0)0. Noting that ~ 2 =
�
Op(h); O(1); 0; Op(1)

�0
; and not just Op(1) as stated

above, similar arguments produce ~m2(z)�m2(z) = m̂2(z)�m2(z) + op(h
2), and hence

~m(z)�m(z) = m̂(z)�m(z) + op(h
2); (6.16)
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but note that the same is not true for ~��(z)���(z): Substituting 6.16 into the �rst order conditions,
we obtain that  

~�
1

�(z; ~m)� �1�(z)

~�
2

�;r(z; ~m)� �2�;r(z)

!
=

 
~�
1

�(z; m̂)� �1�(z)

~�
2

�;r(z; m̂)� �2�;r(z)

!
+ op(h

2);

where ~�
1

�(z; ~m) =
~�
1

�(z) and ~�
2

�;r(z; ~m) =
~�
2

�;r(z) are the left hand side sub-vectors of h-scaled local

slope coe¢ cients in 6.14 and 6.15, with their dependence on the respective levels made explicit.

This is easy to see, as the ~m enter linearly or quadratically. Since An is asymptotically diagonal,

this means that �up to terms of smaller order than the leading bias term �the same �rst order

conditions on the slopes could have been obtained by the second step of the two step procedure

introduced above.

This argumentation continues to hold with more prices and restrictions as they simply add

constraints which are linearizable in a similar fashion. In particular, as is easily seen the asymptotic

distribution of the m̂ remains unchanged as only additional terms of op(h2) have been added. Hence

the same line of argumentation can be carried through.

6.5 Proof of Theorem 6

Start by noticing that the unrestricted estimator for the h-scaled slopes, �̂�(z), is related to our

two-step auxiliary estimator via

���(z) =
�
I �Q�1n R(m̂(z))0(R(m̂(z))Q�1n R(m̂(z))0)�1R(m̂(z))

�
�̂�(z)

= Hn(m̂(z))�̂�(z);

where

Qn =

 
IM�1 
 ( ~Z 00 ~Z0) IM�1 
 ( ~Z 00~Z)
IM�1 
 (~Z0 ~Z0) IM�1 
 (~Z0~Z)

!
;

~Z = ( ~Z1; : : : ; ~ZM+1), with ~Z0 = (K
1=2
1 ; : : : ; K

1=2
n )0 and ~Zm = (K

1=2
1 (Zm1�zm); : : : ; K1=2

n (Zmn�zm))0

for all m = 1; : : : ;M +1. In order to show the theorem, we need to determine the behavior of the

leading bias and variance terms. As is common in this literature, we consider the leading term in

cov(m̂(z); ���(z) j Z1; : : : ; Zn) and var(���(z) j Z1; : : : ; Zn) and show that this is free of the data.
To this end, consider �rst

var
�
Hn(m̂(z))�̂�(z) j Z1; : : : ; Zn

�
= Hn(m(z))var

�
�̂�(z) j Z1; : : : ; Zn

�
H(m(z))0

+D�Hn(m(z))var
��
(m̂(z)�m(z))
 Idim(��)

�
�̂�(z)

�� Z1; : : : ; Zn�D�Hn(m(z))
0 + �
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where � contains second-order terms evaluated at intermediate positions. At this point note that

the �rst term is Op(n�1h�(M+1)), but the second is Op(n�1h2�(M+1)), due to ��(z) = h�(z): Fur-

ther, rewrite Hn (m(z)) = H(m(z)) + [Hn(m(z))�H(m(z))] ; and D�Hn (m(z)) = D�H(m(z)) +

[D�Hn(m(z))�D�H(m(z))] ; and observe that the respective terms converge uniformly in prob-

ability. Therefore, to determine the behavior of var
�
Hn(m̂(z))�̂�(z) j Z1; : : : ; Zn

�
; we can rewrite

the lhs of as follows:

H(m(z))var
�
�̂�(z) j Z1; : : : ; Zn

�
Hn(m(z))

0

+D�H(m(z))
�
var
�
m̂(z) j Z1; : : : ; Zn

�

 ��(z)��(z)

0�D�H(m(z))
0

+D�H(m(z))var
�
(m̂(z)�m(z))
 (�̂�(z)� ��(z)) j Z1; : : : ; Zn

�
D�H(m(z))

0 + �;

To evaluate the orders of the second and third expression, examine without loss of generality the

�rst element of var
�
(m̂(z)�m(z))
 (�̂�(z)� ��(z)) j Z1; : : : ; Zn

�
,

var
�
(�̂1(z)� �1(z))(�̂�;1(z)� ��;1(z)) j Z1; : : : ; Zn

�
�
�
E((�̂1(z)� �1(z))

4 j Z1; : : : ; Zn)
�1=2 �E((�̂�;1(z)� ��;1(z))

4 j Z1; : : : ; Zn)
�1=2

+ E((�̂1(z)� �1(z))
2 j Z1; : : : ; Zn)E((�̂�;1(z)� ��;1(z))

2 j Z1; : : : ; Zn):

Here, the leading term on the right-hand side is Op(h4r+n�2h�2(M+1)) which is under general con-

ditions op(n�1h2�(M+1)). Higher order terms converge even faster, provided the second derivatives

of H(m(z)) are uniformly bounded. Hence,

nhM+1 var
�
H(m̂(z))�̂�(z) j Z1; : : : ; Zn

�
= nhM+1H(m(z))var

�
�̂�(z) j Z1; : : : ; Zn

�
H(m(z))0+op(1):

By similar arguments

nhM+1 cov
�
m̂(z); H(m̂(z))�̂�(z) j Z1; : : : ; Zn

�
= nhM+1 cov

�
m̂(z); �̂�(z) j Z1; : : : ; Zn

�
H(m(z))0 + op(1);

and

E
�
H(m̂(z))�̂�(z) j Z1; : : : ; Zn

�
�H(m(z))��(z)

= h2H(m(z))bias�̂�(z) + h2D�H(m(z))
�
bias�̂(z)
 Idim(��)

�
��(z) + op(h

2);

where bias�̂(z) and bias�̂�(z) denote the bias terms belonging to the levels and slopes in a locally

linear models respectively. However, note that due to ��(z) = h�(z); the leading bias term is the

term of lowest order. Finally, the theorem follows upon combining these results with theorem 4,

yielding
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p
nhM+1

 
m̂(z)�m(z)� h2bias�̂(z)

���(z)� ��(z)� h2H(m(z))bias�̂�(z)

!
D�! N

  
0

0

!
; f(z)�1

 
�(z)�M+1

0 (�(z)
 b0) �0

� (�(z)
 b) � (�(z)
 A) �0

!!
:

Using the result of theorem 5 on the asymptotic equivalence of the two step and the nonlinearly

restricted Lagrangian estimator, the theorem follows.

6.6 Bootstrap Simulation

Simulation methods extend on the Smooth Conditional Moment bootstrap of Gozalo (1997). In

particular, we match the conditional variance of error terms across equations, and the conditional

third moment of each equation�s error term. We refer to this simulation procedure as the Multi-

Variate Smooth Conditional Moment (MVSCM) bootstrap. The procedure requires estimation

of conditional moments, and then simulation of error terms satisfying these conditional moment

restrictions. Estimation of conditional moments is via local quadratic estimation of squared and

cubed error terms on z, with bhMoments = 3:2, in order to reduce bias in moment estimation.

6.6.1 Multivariate Smooth Conditional Moment Bootstrap

To generate bootstrap residuals the �rst moments of the conditional distribution of Wi given Zi
has to be replicated. In the classical wild bootstrap by Härdle and Mammen (1993) only one

observation ("̂i) is used to estimate these conditional moments. In our context however, it seems

reasonable to assume these moments to change in a smooth fashion. For this case, Gozalo (1997)

proposes to use smoothed estimators of the conditional variance and the conditional third moment

of Wi given Zi. This procedure is called Smooth Conditional Moment (SCM) bootstrap and has

been developed for one-dimensional residuals only. To apply this to our model, we have to extend

it to multivariate SCM bootstrap:

For each i the bootstrap residual "�i is drawn from an arbitrary distribution F̂i such that

EF̂i"�i = 0 and EF̂i"�i ("�i )0 = �̂h(Zi). In addition we restrict the third moments EF̂i("
j�
i )

3 = �̂jh(Zi)

for j = 1; : : : ;M � 1. Here, �̂h(z) = (�̂ijh (z))i;j is the matrix of estimated (co)variances and

�̂h(z) = (�̂
1
h(z); : : : ; �̂

M�1
h (z))0 is the vector of kernel estimators of the third conditional moments

E((W j�mj(Z))3 j Z = z). De�ne Ŝh(z) = (ŝij(z))i;j by Ŝh(z)Ŝh(z)0 = �̂h(z) using an eigenvector

decomposition of �̂h(z).

To �nd distributions F̂i we construct uncorrelated residuals ��i = (�1�i ; : : : ; �
M�1;�
i )0 from a

distribution F̂ �i with EF̂
�
i ��i = 0, EF̂

�
i ��i (�

�
i )
0 = � and EF̂

�
i (�j�i )

3 = �̂
j
(Zi), where

�̂(z) = (�̂
1
(Zi); : : : ; �̂

M�1
(Zi))

0 = �̂(Zi)
�1�̂(Zi)
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with �̂(z) = ((ŝij(z))3)i;j. Then "�i = Ŝh(Zi)�
�
i gives the bootstrap residuals. Simple matrix algebra

shows that "�i has the desired moments. �
�
i can be drawn from classical two-point distributions or

a continuous mixture of normals which we use in our application.

6.6.2 Pointwise Con�dence Intervals

Pointwise con�dence intervals are estimated by a wild bootstrap procedure as described in Härdle

(1990), Theorem 4.2.2. The distribution of m̂h(x) � m(x) is approximated by the distribution

of m̂�
h(x) � m̂h�(x) where m̂�

h(x) is estimated from the bootstrap sample (W �
i ; Z

�
i )i=1;:::;n with

W �
i = m̂h�(x) + "�i . Here "

�
i is drawn from the MVSCM-bootstrap as described above (using

residuals "̂i = Wi � m̂h(Zi)) and h� = 1:25� h.
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Figure 1: Power Comparison: HHP and Lewbel, 
Cross-Validated Bandwidths
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Figure 2: Power Comparison:  Bandwidths
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Figure 3: Power Comparison:  Sample Size
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Figure 4: Rent Shares

0.35

0.4

0.45

0.5

0.55

0.6

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

Log-Expenditure

S
ha

re

90% simulated conf band 90% simulated conf band

unrestricted/restricted linearised QAI

restricted nonlinear



Figure 5: Rent Own-Price Slutsky Terms
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Figure 6: Food in -- Food out Cross-Price Slutsky Terms
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Figure 7: Food in -- Rent Cross-Price Slutsky Terms
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Figure 8: Food out -- Rent Cross-Price Slutsky Terms
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