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Abstract

In this paper, we specify the indirect utility function as a partially linear
model, where utility is nonparametric in expenditure and parametric (with
fixed- or varying-coefficients) in prices. Since we start with a model of in-
direct utility, rationality restrictions like homogeneity and Slutsky symmetry
are easily imposed. The resulting model for expenditure shares (as function
of expenditures and prices) is locally given by a fraction whose numerator
is partially linear, but whose denominator is nonconstant and given by the
derivative of the numerator. Our basic insight is that given a local polyno-
mial model for the numerator, the denominator is is given by a lower-order
local polynomial. The model is thus easily estimated using modified versions
of standard local polynomial modeling techniques. We provide Monte Carlo
evidence that the proposed techniques work, and implement the model on
Canadian consumer expenditure and price micro-data.
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1 Introduction

The specification and estimation of consumer demand systems, defined as the re-

lationship between demands, prices and expenditures, presents many long-standing

problems in econometric theory. Recent work has focused on the inclusion of highly

nonlinear relationships between demand and total expenditure into empirical mod-

els of consumer demand. Since typical consumer demand microdata typically have

a large amount of variation in total expenditure across consumers, complex rela-

tionships between demand and expenditure might potentially be identified. Unfor-

tunately, because consumer demand models must satisfy a set of (nonlinear cross-

equation) rationality restrictions known as the Slutsky symmetry restrictions, such

complex relationships have been hard to incorporate. In this paper, we present a

semiparametric approach to the consumer demand problem which allows for the

simple imposition of the Slutsky symmetry restrictions. We use a flexible nonpara-

metric estimation method in the total expenditure direction – where the data provide

a lot of information – to get arbitrarily flexible Engel curves. However, in the price

directions – where the date are less rich – we propose a parametric structure.

Nonparametric approaches to consumer demand started by considering the Engel

curve, defined as the relationship of expenditure-shares commanded by each good

to the total expenditure of the consumer, at fixed vectors of prices. That is, they

considered only 1 nonparametric direction and held the others fixed. Work by [3]

and [2] revealed considerable complexity in the shapes of Engel curves. A fully non-

parametric approach which consider both price and expenditure directions together

and which allows for the imposition of rationality restrictions, has recently been de-

veloped by [5]. Here, the shape of the demand curves is not restricted, but curse of

dimensionality rears its head: in a world with M price directions and 1 expenditure

direction, the researcher faces an M + 1 dimensional problem1.

On the other hand, parametric approaches like the popular Almost Ideal [4], Translog

[9] and Quadratic Almost Ideal [1] demand models typically impose strict limits on

the functional complexity of Engel curves. In these cases, Engel curves must be

linear, nearly linear, or quadratic, respectively. This lack of complexity is driven by

the need for these parametric models to satisfy the Slutsky symmetry restrictions.

In between the fully nonparametric and the fully parametric approaches, we have the

realm of semiparametric econometrics. Two recent papers have explored this area,

accomodating the need for the structural model to satisfy Slutsky symmetry. [11]

1If homogeneity, another rationality condition, is imposed, this drops to an M dimensional
problem and thus not a remedy for the curse of dimensionality.
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propose a fully parametric approach which satisfies rationality restrictions and for

which Engel curves can be arbitrarily complex. Because their model allows for ar-

bitrarily complex – i.e., nonparametric – Engel curves but parametrically restricted

dependence of expenditure shares on prices, it may be interpreted as semiparamet-

ric. However, their approach relies critically on a particular interpretation of the

’error term’ in the regression: it must represent unobserved preference heterogeneity,

and thus cannot be measurement error or any other deviations from optimal choice

on the consumer’s part. [12] propose a semiparametric model which allows for these

latter interpretations of the role of the error term, does not restrict the shape of

Engel curves, and incorporates price effects either parametrically or semiparamet-

rically (via varying coefficients). While potentially appealing, implementation of

their model requires numerical inversions of unknown functions. Both of these semi-

parametric approaches address the curse of dimensionality: they each have just 1

nonparametric dimension rather than M + 1 nonparametric dimensions.

The present paper is a semiparametric contribution, similar in spirit to [12], but

does not require the researcher to undertake numerical inversions of unknown func-

tions. [12] write down a model in which expenditure-shares are nonparametric in

utility, an unobserved regressor, and parametric in log-prices. The familiarity of

this partially linear form makes the model appealing, but the unobserved regressor

(utility) must be constructed under the model via numerical inversion of the (un-

known) cost function. In the present paper, we write down a model in which utility

is nonparametric in log-expenditure and parametric in log-prices. This results in a

model of expenditure-shares with only 1 nonparametic dimension which is locally

nonlinear but has no unobserved or generated regressors.

The local nonlinearity of our model of expenditure-shares is driven by the fact that

we start by modeling indirect utility as partially linear, and since Roy’s Identity

gives expenditure shares as the ratio of derivatives of indirect utility, expenditure

shares in our model are given by a ratio. This ratio has model parameters in both

the numerator and denominator. In particular, the ratio which characterises expen-

diture shares has nonparametric functions in the numerator and their derivatives in

the denominator. Because local estimators have to be evaluated locally at a large

number of points, a locally nonlinear model, which may take a long time to evaluate

at each point, is typically not very useful. Our basic insight is if one models the

numerator as a local polynomial, the denominator – which is comprised of deriva-

tives of the numerator – is just a lower-order local polynomial. This fact suggests a

natural iterative procedure to estimate the model. Our algorithm is computation-

ally efficient and numerically robust. Furthermore, large data sets can be handled

in acceptable time, and the results are readily interpreted.
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For the nonparametric part of the model we use an univariate local linear smoother

on transformed data, a method that can be easily applied in empirical research. To

accomodate the parametric part of the model, we use a profiled estimator. In the

applied part of the paper we show the power of our method in a short simulation

study, and implement the model with Canadian price and expenditure data.

The paper is organised as follows. In section 2 we introduce the model specification.

In section 3 we discuss the basic estimation idea and give the associated algorithm.

The empirical part of the paper can be found in section 4, where we present the

estimation results of the Canadian microdata and the simulation study. Here, we

find that some expenditure–share equations show quite a lot of nonlinearity, i.e.

these are S-shaped or even more complex. Section 5 concludes the present work and

discusses some possible extensions.

2 A Semiparametric Model for Indirect Utility

Define the indirect utility function V (p, x) to give the maximum utility attained by

a consumer when faced with a vector of log–prices p = (p1, . . . , pM) and log–total

expenditure x. Let the expenditure share of a good be defined as the expenditure on

that good divided by the total expenditure available to the consumer. Denote w =

(w1, . . . , wM−1) as the vector of expenditure share functions and note that since ex-

penditure shares sum to 1, wM = 1−∑M−1
j=1 wj. Let {W 1

i , . . . , WM
i , P 1

i , . . . , PM
i , Xi}N

i=1

be a random vector giving the expenditure shares, log–prices and log–total expen-

diture of a population of N individuals.

2.1 A Partial Linear and Varying Coefficient Model for In-

direct Utility

We consider two semiparametric specifications of the indirect utility function. First,

we consider a partially linear (or, fixed-coefficient) specification of the form

V (p, x) = x−
M∑

k=1

fk(x)pk − 1

2

M∑

k=1

M∑

l=1

aklpkpl, (1)

or, in matrix notation,

V (p, x) = x− f(x)′p− 1

2
p′Ap, (2)
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where f = (f 1, . . . , fM)′ are unknown differentiable functions of log–total expen-

diture and A = {akl}M
k,l=1 symmetric parameters, i.e. akl = alk to fulfil Slutsky

symmetry. Second, we consider the varying-coefficient extension of this model:

V (p, x) = x−
M∑

k=1

fk(x)pk − 1

2

M∑

k=1

M∑

l=1

akl(x)pkpl, (3)

or, in matrix notation,

V (p, x) = x− f(x)′p− 1

2
p′A(x)p. (4)

The motivation for these models is as follows. In real-world applications, there is

typically a large amount of observed variation in total expenditures, so one may

reasonably hope to identify a nonparametric component in that direction. However,

typical micro-data sources to not have nearly as much variation in the price direction,

which suggests that partially linear modelling might describe these effects sufficiently

well. If additionally, the researcher feels that more may be identified on the strength

of observed variation, the varying-coefficients model allows prices in the model (3) to

be different at different expenditure levels. This would seem to be a pure advantage

of the varying coefficients approach. However, in practise, this extension seriously

increases the variance and computational cost of the estimates. In particular, the

algorithm for model (3) is about five times slower than the one for model (1). The

important feature here is that dimensionality is still kept to 1 throughout.

2.1.1 Rationality Restrictions: Homogeneity

In both cases, utility is obviously a non–increasing function in prices and for certain

fk non–decreasing in total expenditure. Rationality is comprised of three conditions:

homogeneity, symmetry and concavity. As is common in this literature, we will

deal only with homogeneity and symmetry. First consider homogeneity, which is

sometimes referred to as ’no money illusion’. If consumers do not suffer from money

illusion, then scaling prices and expenditures by the same factor cannot affect utility.

This requires that indirect utility is homogeneous of degree zero in (unlogged) prices

and expenditure, which implies V (p, x) = V (p + λ, x + λ) for all λ. This can be

achieved by dividing all prices and expenditure by the price of the M -th expenditure

category. Note that we use logarithms, so we subtract pM :

V (p, x) = (x− pM)−
M−1∑

k=1

fk(x− pM) · (pk − pM)− 1

2

M−1∑

k=1

M−1∑

l=1

akl(pk − pM)(pl − pM)
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in model (1) and analogously in model (3). The sums go only to M − 1 because

the M -th element of the sums is zero. Using x̃ = x − pM , p̃j = pj − pM and

p̃ = (p̃1, . . . , p̃M−1) we may write

V (p̃, x̃) = x̃−
M−1∑

k=1

fk(x̃) · p̃k − 1

2

M−1∑

k=1

M−1∑

l=1

aklp̃kp̃l. (5)

Given an indirect utility function, Marshallian (uncompensated) expenditure share

equations may be recovered via the logarithmic version of Roy’s Identity: wj(p, x) =

[∂V (p, x)/∂pj] / [∂V (p, x)/∂V x]. In the following we will only think in vectors of

length (M − 1), i.e. skipping the last elements as this will typically be fixed to

wM(p̃, x̃) = 1−
M−1∑
i=1

wi(p̃, x̃),

guaranteeing that
∑M

j=1 wj = 1 for all sets of (p̃, x̃). Then, applying Roy’s identity to

our indirect utility function, we get the uncompensated expenditure share equations

w(p̃, x̃) =
f(x̃) + Ap̃

1−∇x̃f(x̃)′p̃
, (6)

for model (1), and

w(p̃, x̃) =
f(x̃) + A(x̃)p̃

1−∇x̃f(x̃)′p̃− 1
2
p̃′∇x̃A(x̃)p̃

, (7)

respectively, where ∇x̃f(x̃) is the (M − 1) vector of the derivatives of f(x̃), and

∇x̃A(x̃) is the (M − 1)× (M − 1) matrix function equal to the derivatives of A.

These expressions for budget shares have a nice feature in comparison to [12].

Whereas their model for expenditure shares uses a nonparametric function of a

generated regression, the expression above uses only observed regressors. However,

in comparison to [12], which is a partially linear model, the above expression is

partially linear only in the numerator. The presence of the denominator makes it

seem difficult to implement. However, as we show below, use of local polynomial

estimators makes this problem fairly easy to solve.

2.1.2 Rationality Restrictions: Slutsky Symmetry

The imposition of Slutsky symmetry requires that alk = akl (alk (x) = akl (x)) for

all k, l, or equivalently, that A = A′ (A (x) = A (x)′). To see this, start with the

definition of the Slutsky matrix, whose elements are given by

sij =
∂hi

∂bj
=

∂gi

∂y
· qj +

∂gi

∂bj
, (8)
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where hi denotes the Hicksian demand, gi the Marshallian demand, y total expendi-

ture, bj the price, and qj the quantity of good/category j. With qi = gi = wi · y/bi,

where gi and wi are functions of y, b1, . . . , bM , we get

∂gi

∂y
=

∂wi

∂y
· y

bi
+

wi

bi
and

∂gi

∂bj
=

∂wi

∂bj
· y

bi
. (9)

Using the equations in (8) and (9) we can write the difference of sij − sji, for

i, j = 1, . . . , M − 1, as

sij − sji =

(
∂wi

∂y
· wj − ∂wj

∂y
· wi

)
y2

bibj
+

(
∂wi

∂bj
· y

bi
− ∂wj

∂bi
· y

bj

)
. (10)

With the abbreviations T i =
∑

aikp̃k, S = 1 −∑
∂fk/∂x̃ · p̃k and f i = f i(x̃), we

can rewrite (6) in the following way

wi =
f i + T i

S
, (11)

but note that wi depends on x̃ = log y − log bM , log-total expenditure, and p̃j =

log bj − log bM the log-prices for j = 1, . . . , M − 1. Now we can differentiate (11)

w.r.t. total expenditure and the j-th price, and obtain with U =
∑

∂2fk/∂x̃2 · p̃k

∂wi

∂y
=

∂f i

∂x̃
· S + (f i + T i) · U

yS2
and

∂wi

∂bj
=

aijS + (f i + T i) · ∂fj

∂x̃

bjS2
.

Plugging-in these results and equation (11) in (10), we get immediately that sij −
sji = 0 if aij = aji.

3 Estimation of the Models

The main advantage of the above models is the enormous dimension reduction for the

nonparametric part of the estimation procedure. Instead of M +1 or M dimensions

for a fully nonparametric model, we face only functions which are one dimensional

in total–expenditure. Thus, we circumvent the curse of dimensionality.

3.1 Basic Ideas

The basic idea of estimating the unknown nonparametric functions f j and the (po-

tentially varying) coefficients ajk, j, k = 1, . . . , M − 1, consists of iteratively solving

minimization problems, where the iteration is necessary only for the nonparametric

part of the model. We use local linear kernel estimators for the nonparametric part,
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and in case of model (1) restricted (due to the symmetry restriction) least squares

for the parametric coefficients. Clearly, in this case, the method is based on profiled

estimators.

Keeping the dependence on x̃, we may approximate

f(t) ≈ f(x̃) +∇x̃f(x̃)(t− x̃) (12)

≈ α(x̃) + β(x̃)(t− x̃), (13)

where α(x̃) and β(x̃) are the local level and derivative of f(t). Then, for the partial

linear model the local problem is

min
α(x̃),β(x̃),A

N∑
i=1

e′iΩei,

ei ≡ wi − α(x̃) + (x̃i − x̃) β(x̃) + Ap̃i

1− β(x̃)′p̃i

,

where Ω is an (M − 1)× (M − 1) weighting matrix.

Similarly, for the varying coefficient model (7), the local problem in the neighbour-

hood of each given x̃ is

min
α(x̃),β(x̃),Γ(x̃),∆(x̃)

N∑
i=1

e′iΩei,

ei ≡ wi − α(x̃) + (x̃i − x̃) β(x̃) + Γ(x̃)p̃i + (x̃i − x̃)∆(x̃)p̃i

1− β(x̃)′p̃i − 1
2
p̃′i∆(x̃)p̃i

,

where Ω is now a different (M − 1)× (M − 1) weighting matrix.

Here, the imposition of homogeneity is via the use of normalised prices and ex-

penditures (tilda’d quantities). The imposition of Slutsky symmetry is via the

restriction that A = A′, or in the varying-coefficients case, that A (x) = A (x)′

which is achieved by restricting Γ(x̃) = Γ(x̃)′ and ∆(x̃) = ∆(x̃)′.

We could also use higher order approximations (and thus higher-order local poly-

nomials), but for this we would need stronger assumptions on data and model (e.g.

higher order smoothness of functions and densities). The local linear approach how-

ever nests the parametric linear model for any smoothing bandwidth without a bias.

Therefore we confine ourselves to the local linear approximation. We will now be

more specific but we will see that the steps are easily generalised.

3.2 The Estimation Algorithm

Denote ∆i = X̃i − x̃, Ki = K((X̃i − x̃)/h)/h and d = M − 1, where K is some

symmetric kernel function with the usual properties and h a bandwidth that controls
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the smoothness of the estimate.

Le us start with the profiled minimization problem for the partial linear model (1).

As above, the αj are related to the functions f j at point x̃ and the parameters βj

to its first derivatives, while the parameters ajk are fixed for all x̃:

d∑
j=1

N∑
i=1


W j

i −
αj + ∆iβ

j +
d∑

k=1

ajkP̃ k
i

1−
d∑

k=1

βkP̃ k
i




2

Ki −→ Min!
αj ,βj

(14)

In order to minimize, we set the first derivative equal to zero. Taking the derivative

of (14) with respect to αj, and using the notations Si = 1 −∑d
k=1 βkP̃ k

i and T j
i =∑d

k=1 ajkP̃ k
i , we solve

0 =
N∑

i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki

Si

. (15)

This gives immediately (for j = 1, . . . , d)

αj =

N∑
i=1

W j
i Ki/Si − βj

N∑
i=1

Ki∆i/S
2
i −

N∑
i=1

KiT
j
i /S2

i

N∑
i=1

Ki/S2
i

. (16)

On the other hand, by differentiating (14) with respect to βj (again for j = 1, . . . , d),

we get the equations

0 =
N∑

i=1

(
W 1

i −
α1 + ∆iβ

1 + T 1
i

Si

)
Ki · (α1 + ∆iβ

1 + T 1
i )P̃ j

i

S2
i

+ · · ·+

N∑
i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki · ∆iSi + (αj + ∆iβ

j + T j
i )P̃ j

i

S2
i

+ · · ·+

N∑
i=1

(
W d

i −
αd + ∆iβ

d + T d
i

Si

)
Ki · (αd + ∆iβ

d + T d
i )P̃ j

i

S2
i

.

This is equivalent to

0 =
d∑

k=1

N∑
i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki · (αk + ∆iβ

k + T k
i )P̃ j

i

S2
i

+

N∑
i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki

∆i

Si

. (17)
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Unfortunately, we can not solve equation (17) analytically for βj. But, for our

iterative purpose it is enough to consider the following implicit representation:

βj =

[ d∑

k=1

N∑
i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki · (αk + ∆iβ

k + T k
i )P̃ j

i

S2
i

+

N∑
i=1

(
W j

i −
αj + T j

i

Si

)
Ki

∆i

Si

]/ N∑
i=1

Ki∆
2
i

S2
i

. (18)

We use the implicit representation (18) to calculate new values for βj. With them

we get new Si so that we can find new αj:

βj
new =

[ d∑

k=1

N∑
i=1

(
W k

i −
αk

old + ∆iβ
k
old + T k

i,old

Si,old

)
Ki

(αk
old + ∆iβ

k
old + T k

i,old)P̃
j
i

S2
i,old

+

N∑
i=1

(
W j

i −
αj

old + T j
i,old

Si,old

)
Ki

∆i

Si,old

]/ N∑
i=1

Ki∆
2
i

S2
i,old

, (19)

Si,new = 1−
d∑

k=1

βk
newP̃ k

i , (20)

αj
new =

N∑
i=1

W j
i Ki/Si,new − βj

new

N∑
i=1

Ki∆i/S
2
i,new

N∑
i=1

KiT
j
i,old/S

2
i,new

N∑
i=1

Ki/S2
i,new

.

We repeat these steps to convergence. As noted, this is a profiled estimator with

fixed akl. So, the optimal A will be the one that minimizes the least squares problem.

In practice, at the end of each iteration step, we solve the restricted least squares

problem resulting from equation (6). With some algebra, the problem is given by

W j
i · (1−

d∑

k=1

βk
i P̃ k

i )− αj
i =

d∑

k=1

ajkP̃ k
i . (21)

Details are given in the Appendix. Here, we see why we need A to be symmetric

for identification: we can only identify the sum of the symmetric effects.

The modification of the algorithm to take the varying coefficients A(x̃) into account

is quite straightforward, though tedious. With the same local linear approximation

arguments as above, we get the local problem in the neighbourhood of x̃ as

d∑
j=1

N∑
i=1


W j

i −
αj + ∆iβ

j +
d∑

k=1

(γjk + ∆iδ
jk)P̃ k

i

1−
d∑

k=1

βkP̃ k
i − 1

2

d∑
k=1

d∑
l=1

δklP̃ k
i P̃ l

i




2

Ki −→ min
θ

(22)

10



with θ all αj, βj, γjk and δjk. Note that γjk and δjk are symmetric since we consider

a symmetric matrix of functions akl(x̃). The minimization of (22) in the usual way

gives the extended algorithm in analogy to the first step of 3.2. For αj and βj

we proceed as before but with Si = 1 − ∑
βkP̃ k

i − 1/2
∑∑

δklP̃ k
i P̃ l

i and T j
i =∑

(γjk + ∆iδ
jk)P̃ k

i . Furthermore, we obtain

γst =

∑N
i=1

[(
W s

i − Cs
i

Si

)
P̃ t

i +
(
W t

i − Ct
i

Si

)
P̃ s

i 1Is6=t

]
Ki

Si

∑N
i=1

[
(P̃ t

i )
2 + (P̃ s

i )21Is6=t

]
Ki

S2
i

with Cs
i = αs + ∆iβ

s +
∑

∆iδ
skP̃ k

i and

δst =

[
d∑

k=1

N∑
i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki

S2
i

(αk + ∆iβ
k + T k

i )P̃ t
i P̃

s
i +

N∑
i=1

{(
W s

i −
αs + ∆iβ

s + T s,−t
i

Si

)
P̃ t

i +

(
W t

i −
αt + ∆iβ

t + T t,−s
i

Si

)
P̃ s

i 1Is 6=t

}
Ki∆i

Si

]

×
[

N∑
i=1

{
(P̃ t

i )
2 + (P̃ s

i )21Is6=t

} ∆2
i Ki

Si

]−1

with T s,−t
i = T s

i −∆iδ
stP̃ t

i .

3.3 Practical Considerations

One important issue in such iterative procedures is the question of adequate initial

values for the nonparametric part. Here we have a convenient model feature to

exploit: when we normalise prices in the sample such that P̃i = (0, . . . , 0) for some

group of consumers, equation (14) reduces to the well-known local linear case. That

is, since Si = 0, we get the objective function

d∑
j=1

N∑
i=1

(
W j

i − αj + ∆iβ
j
)2

Ki −→ Min!
αj ,βj

Solving this problem on the sample of consumers where P̃i = (0, . . . , 0) gives us

consistent estimates that we can use as starting values for αj and βj. As a natural

choice for the starting values of γjk we use the results of the algorithm in Section

3.2 and zero for all δjk.

For the bandwidth choice, we use the same bandwidth h for all expenditure cate-

gories because the functions refer to the same expenditure data in all equations. As

bandwidth choice criterion one may use the usual cross–validation or plug-in rules
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like Silverman’s (though this was constructed for density estimates rather than re-

gression).

Note finally for the profiled estimator in the fixed-coefficients model 1), we recom-

mend running the whole estimation algorithm twice: first with an undersmoothing

bandwidth in the nonparametric part to keep the possible bias small. The resulting

estimate for the coefficient matrix A is kept, and used in the second run which uses

a larger bandwidth for the nonparametric part to get reasonably smooth function

estimates. This is of course unneccessary in the varying coefficients model (3) where

we face only nonparametric functions.

4 Empirical Analysis

To get an idea about the finite sample performance of the method, before we analyse

household expenditures in Canada, we start with a brief simulation study. After-

wards, we also introduce a wild bootstrap procedure for further inference like the

construction of confidence intervals.

4.1 A Simulation Study

First, to generate some artificial data, we generated 33 distinct price vectors, nor-

mally distributed in each dimension, for each of 6 expenditure categories (i.e. we

have 6 items with different prices in 33 regions). As in typically observed micro-

data, we did not allow for a wide price variety, see [10]. Summary values for these

price vectors can be found in Table 1.

Table 1: Summary of used price vectors in simulation

1 2 3 4 5

Min 3.905 3.449 3.763 0.880 2.794

Max 4.130 3.585 3.919 1.121 3.010

Mean 4.018 3.517 3.841 1.002 2.901

Std. 0.030 0.020 0.020 0.030 0.030

For 32 regions (i.e. price vectors) we uniformly draw 30 log–total expenditure values

from the interval [1, 2]. For the reference region (number 33) we draw 40 uniformly

12



distributed values between one and two. In total, this gives us N = 1000 observa-

tions. These are used to generate expenditure shares using the expenditure functions

shown in Figure 1 (solid lines), the price parameters given in Table 2, and normal

error terms with mean zero and standard deviation 0.01. In order to get shares

which fulfill the conditions W j ∈ [0, 1] and
∑

j W j = 1 we applied the rejection

method.

Next, we estimate the functions αj and the price parameters using our estimation

algorithm introduced in Section 3.2. This is repeated 250 times (using the same

functions, price parameters, and range of log–total expenditure values) to get an

idea of the mean squared errors of our estimators. For the nonparametric part of

the estimation procedure we used the gaussian kernel and a data-adaptive bandwidth

of h ≈ 0.034.

In Figure 1 we have plotted the true functions (solid lines) together with intervals

of 90% coverage probabilities for the estimates (dashed lines) as a result of the 250

simulation runs. On the one hand, we see pretty narrow bands which accurately

capture even those functions with flat plateaus in the intermediate range (category 3)

and with bumps (category 2). Such functions are often hard to estimate in practise.

However, we also see the limits of the method: for example, boundary effects seem

important.

In Table 3 are given the estimated parameter means, together with the standard

deviations. The exactness of our simulation results in a very small total MSE of

only 6.83 · 10−6.

Table 2: Price parameters used in the simulation

1 2 3 4 5

1 −0.150 −0.100 0.150 0.100 0.280

2 0.250 0.100 −0.250 0.170

3 0.320 −0.220 −0.190

4 −0.200 0.150

5 −0.180

4.2 Bootstrap Inference

The “wild bootstrap” draws new artificial responses from the estimated model (1),

so we must first assume that we have semiparametric estimates as described in the
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Table 3: Estimated price parameters and standard deviations (in brackets)

1 2 3 4 5

1 −0.1515 −0.1006 0.1494 0.0997 0.2799

(0.0140) (0.0106) (0.0103) (0.0090) (0.0087)

2 0.2494 0.0999 −0.2497 0.1699

(0.0176) (0.0129) (0.0102) (0.0102)

3 0.3200 −0.2208 −0.1891

(0.0170) (0.0096) (0.0100)

4 −0.1992 0.1490

(0.0117) (0.0079)

5 −0.1803

(0.0117)

previous sections, namely the estimators α̂j, β̂j and âjk, k, j = 1, . . . , d. Denote an

oversmoothed bandwidth g with g > h, and let h is the bandwidth giving us the

desired smoothness in the original sample. The basic idea is now (cf. [6]) to use the

estimated residuals from a estimates with bandwidth g,

ε̂j
i = W j

i −
α̂j(X̃i) +

d∑
k=1

âjkP̃ k
i

1−
d∑

k=1

β̂k(X̃i)

,

to construct a bootstrap sample {Y ∗
i , Xi,Pi}N

i=1 from which we get oversmoothed

residuals ε̂j
i .

Let u be a standard normal random variable and σ̂ε the estimated standard deviation

of the error terms ε̂j
i . Given homoscedasticity, the wild bootstrap errors are defined

by εj∗
i = u · σ̂j

ε. When allowing for heteroscedasticity, we construct bootstrap errors

of type εj∗
i = u · ε̂j

i . The generated bootstrap sample is then (for i = 1, . . . , N) given

by

W j∗
i =

α̂j(X̃i) +
d∑

k=1

âjkP̃ k
i

1−
d∑

k=1

β̂k(X̃i)

+ εj∗
i . (23)

Given this bootstrap sample, we may estimate the model, and take the variance of

estimated model parameters as equal to the variance of model parameters across

the bootstrap samples. When we estimate the nonparametric functions, from the
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Figure 1: Simulation of 6 different budget share functions (solid line) with 90%

coverage probability (dashed lines)

bootstrap or the original sample, we have to use the bandwidth h. Note that we
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should choose the bandwidth g used in the construction of the bootstrap errors in

such a way that it tends to zero at a slower rate than the optimal bandwidth h (cf.

[6]).

A disadvantage of this method is that it may happen that boundaries of the confi-

dence intervals are not in [0, 1], especially when the estimate α̂j at some point x is

close to 0 or 1. Note further that the generated bootstrap samples do not necessarily

fulfill the required constraints, i.e. W j
i ∈ [0, 1] and

∑
j W j

i = 1. In practice, however,

this does not matter very much because neither in the first nor in the second step

of the estimation procedure 3.2 do we control for these conditions. This is also the

reason why we should not force the values W j∗
i to satisfy the constraints. One possi-

ble solution for this problem would be the usage of tail truncated error terms. This

is quite plausible because to get shares between zero and one we cannot allow all

possible error values. In the following simulation study we reconsider this argument.

The other possibility is to respect the constraints in the estimation algorithm, which

may pose an interesting question for further research.

4.3 Analysing Household Expenditures in Canada

In our empirical example we use the same Canadian data as in [11] or [12] which

come from public sources. The price and expenditure data are available for 12 years

in 5 regions: Atlantic, Quebec, Ontario, Prairies and British Columbia. This yields

60 distinct price vectors, where prices are normalised in a way that all prices of

the categories from Ontario in 1986 are one, i. e. p̃O,86 = (0, . . . , 0), so these 189

observations define the base price vector and we use them to get the starting values.

Note further, to achieve homogeneity we subtracted pM , the price of the left–out

expenditure category, from all other prices and total expenditure.

We use 6952 observations of rental–tenure unattached individuals aged between 25

and 64 with no dependence to minimise demographic variation in preferences. Our

analysis includes annual total–expenditure in nine categories: food–in, food–out,

rent, clothing, household operations, household furnishing and equipment, private

transportation, public transportation and personal care. The left–out category in

the given example is personal care, so that we get a system of eight expenditure share

equations which depend on eight (normalised) log–prices and (normalised) log–total

expenditure. These expenditure categories account for about three quarter of the

current consumption of the households in the sample. Summary statistics of the

observations are given in Table 4.

As noted above, when p̃ = (0, . . . , 0) (as it does for observations in Ontario 1986),
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Table 4: The Data

Min Max Mean Std.

expenditure shares food–in 0.00 0.63 0.17 0.09

food–out 0.00 0.64 0.08 0.08

rent 0.01 0.95 0.40 0.13

operations 0.00 0.64 0.08 0.04

furnishing 0.00 0.65 0.04 0.06

clothing 0.00 0.53 0.09 0.06

private trans 0.00 0.59 0.08 0.09

public trans 0.00 0.34 0.04 0.04

log–prices food–in −0.39 0.07 −0.03 0.09

food–out −0.42 0.25 0.05 0.12

rent −0.35 0.14 −0.12 0.15

operations −0.28 0.10 −0.04 0.08

furnishing −0.16 0.21 −0.03 0.09

clothing −0.07 0.44 0.10 0.11

private trans −0.51 0.30 −0.09 0.18

public trans −0.59 0.40 0.01 0.25

log–total expenditure 3.03 6.26 4.61 0.45

the price effects in expenditure shares amount to zero, yielding

w(p, x) = w(p̃, x̃) = f(x̃) = f(x),

which we will refer to as the vector of Engel curves. The estimated Engel curves of

all expenditure categories can be found in Figure 2 and 3 as solid lines. We included

into the graphics also the pointwise 90% confidence intervals which we calculated

as described in Section 4.2 with heteroscedastic error terms and 500 bootstrap it-

erations. To generate the bootstrap samples we used the bandwidth g = 0.9 and

in the estimation of the functions αj the bandwidth h = 0.75. The nonparametric

estimation method, where we estimated over a grid of 30 equispaced points using the

gaussian kernel, converged in our setting on average after 15 iterations. A nonlinear

functional relationship can be observed for example between private transportation

and log–total expenditure in Figure 3. As noted in previous work [12] we find again

that expenditure shares are near by zero for the bottom quintile of the population,

rise through the middle of the population, and fall at the top quintile.

Table 5 gives the estimated symmetric price parameters and in brackets the boot-

17



straped standard deviations.
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Figure 2: Estimates of food-in, food-out, clothing, rent, household operations, fur-

nishing and equipment (solid line) with 90% pointwise confidence intervals
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Figure 3: Estimates of personal care, private and public transportation (solid line)

with 90% pointwise confidence intervals

These estimated price effects are in the plausible range, and are similar to those

found in [12]. However, whereas [12] faced a complex numerical inversion problem

for there generated regressor, our model is evaluated entirely on observables.

The varying-coefficients extension is similarly easy to implement. We use the same

bandwidths (which are driven in the main by the fit for f(x̃)) as in the fixed-

coefficients case. The estimated Engel curves are almost identical to those found in

the fixed-coefficients case, with some small deviations in the tails. For the sake of

brevity, we do not present those results here, but they are available on request from

the authors. The estimated price parameters evaluated at median log-expenditure

are statistically indistinguishable from those of the fixed-coefficients model, but their

estimated variance is much greater. In particular, we see approximately twice the

standard errors for estimated parameters evaluated at median expenditures relative
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Table 5: Estimated symmetric price effects ajk (with bootstrap generated standard

deviations in brackets)

food–in food–out rent oper furn clothing priv tr pub tr

food–in −0.026 0.022 −0.003 −0.002 0.017 0.003 0.034 −0.057
(0.021) (0.016) (0.007) (0.016) (0.014) (0.012) (0.006) (0.006)

food–out −0.050 0.055 0.008 −0.006 −0.078 0.002 −0.045
(0.016) (0.007) (0.012) (0.012) (0.010) (0.006) (0.006)

rent 0.171 0.024 −0.028 −0.015 −0.044 0.093
(0.010) (0.005) (0.005) (0.005) (0.006) (0.004)

oper 0.039 0.007 −0.017 −0.029 0.024
(0.017) (0.012) (0.009) (0.005) (0.005)

furn −0.024 0.017 −0.018 −0.021
(0.019) (0.010) (0.005) (0.006)

clothing 0.002 0.001 −0.016
(0.010) (0.005) (0.004)

priv tr −0.001 0.006
(0.007) (0.004)

pub tr −0.011
(0.004)

to their fixed-coefficients counterparts. Again, we do not present those estimates

here for the sake of brevity, but they are available on request.

5 Conclusions

We propose a model which starts with the indirect utility function and implies a

consumer demand system that has parametric log–price effects and nonparametric

log–total expenditure effects. Furthermore, we avoid the curse of dimensionality

typically associated in fully nonparametric estimation of consumer demand since the

nonparametric part of the model is only one dimensional in log–total expenditure.

The model is easily restricted to satisfy the rationality conditions of homogeneity

and Slutsky symmetry.

A detailed explanation of the estimation procedure shows the working of the method,

and a simulation shows finite sample performance. We provide a bootstrap pro-

cedure for possible further inference, and finally apply our method to Canadian

expenditure data.

20



The application of this model to Canadian price and expenditure data shows not

only the potential of the model but also suggests that some expenditure shares

more complex than the linear ones in the popular AID [4] and Translog [9] demand

models. The simulation study reveals further that it is also possible to estimate

functions which are difficult to estimate [8], such as those with flat plateaus in the

intermediate range or with bumps.

6 Appendix: Restricted Least Squares for a Sym-

metric Matrix A

Recall that to estimate the symmetric parameters ajk, j, k = 1, . . . , d, we use equa-

tion (6) and get, with some algebra, for a single individual i

W j
i · (1−

d∑

k=1

βk
i P̃ k

i )− αj
i =

d∑

k=1

ajkP̃ k
i . (24)

Here, the parameters αj
i = αj(X̃i) are related to the functions f j at the point

X̃i and the parameters βj
i = βj(X̃i) to its first derivatives. Defining (W )ij :=

W j
i · (1−

∑d
k=1 βk

i P̃ k
i )−αj

i , (P )ik := P̃ k
i and (A)kj := akj we can formulate equation

(24) using matrix notation:

W = P ·A, (25)

where W , P are N × d matrices and A a d× d symmetric matrix. Note that it is

not necessary to start in the model description (1) with symmetric parameters ajk.

However, when we start with arbitrary parameters we will end nevertheless in (25)

with a symmetric parameter matrix. More specific, we get for (24):

W j
i · (1−

d∑

k=1

βk
i P̃ k

i )− αj
i = 1/2

d∑

k=1

(ajk + akj)P̃ k
i

and in matrix notation

W =
1

2
P (A + At).

Obviously, A + At is symmetric and we would have an identification problem for

nonsymmetric A. In other words, even if one does not require symmetry from the

beginning, only symmetry of A makes the estimation problem identifiable.

Next, to calculate the unknown matrix A in equation (25) we should not use the

standard least square method but want directly make use of the symmetry of A.

Denote wij = (W )ij and wj the j–th column of W , pij = (P )ij, pi the i–th row
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and pj the j–th column of the price–matrix P and aj also the j–th row of A. Note

that the symmetric matrix A obtains only (d2 +d)/2 different parameters which are

found for example in the lower triangular part, including the diagonal elements

A =




a1 a2 . . . ad

a2 ad+1 . . . a2d−1

. . . . . . . . . . . .

ad a2d−1 . . . a(d2+d)/2


 =




a11 a12 . . . a1d

a21 a22 . . . a2d

. . . . . . . . . . . .

ad1 ad2 . . . add


 .

Let ap be the one–dimensional array formed by these parameters,

ap = (a1, . . . , a(d2+d)/2),

then we have to find the vector ap that minimises

S :=
d∑

j=1

N∑
i=1

(wij − 〈 pi, a
j 〉)2 −→ Min!

ap

(26)

We obtain by differentiation of (26) with respect to all elements of ap the linear

equation system Bap = c which can be solved by standard methods. In detail, we

construct the coefficient matrix B and the constant vector c in the following way.

For the diagonal elements of A we get

∂S

∂all
= −2

N∑
i=1

(wil − 〈 pi, a
l 〉)pil !

= 0

for l = 1, . . . , d. This is equivalent to

N∑
i=1

wilpil =
N∑

i=1

〈 pi, a
l 〉 pil

=
N∑

i=1

d∑
j=1

pijajlpil =
d∑

j=1

N∑
i=1

pijpilajl,

what gives

〈wl, pl 〉 =
d∑

j=1

〈 pj, pl 〉 ajl. (27)

For the off–diagonal elements we obtain

∂S

∂akl
= −2

N∑
i=1

(wil − 〈 pi, a
l 〉)pik − 2

N∑
i=1

(wik − 〈 pi, a
k 〉)pil !

= 0

for k, l = 1, . . . , d and k > l. This is equivalent to

〈wl, pk 〉+ 〈wk, pl 〉 =
d∑

j=1

〈 pj, pk 〉 ajl +
d∑

j=1

〈 pj, pl 〉 ajk. (28)
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The t–th entry in c we get now by the left hand side of (27), when ap(t) corresponds

to a diagonal element of A, or by the left hand side of (28) otherwise. Note that

t = k + (2d − l)(l − 1)/2 for k ≥ l and t = 1, . . . , (d2 + d)/2. The t–th row of

B we obtain by the right hand side of (27) or (28), where obviously the factors of

the ajk are our searched coefficients. So an explicit solution is available such that

no iteration is necessary for estimating A in the partial linear model case. This is

exactly the reason for both, the much smaller variance of the resulting estimates

in practice and the much higher speed of the algorithm for estimating model (1)

compared to the one for estimating the varying coefficients model (3).

Example For the simple case d = 3 we get with ap = (a11, a21, a31, a22, a32, a33)




〈 p1, p1 〉 〈 p2, p1 〉 〈 p3, p1 〉 0 0 0

〈 p1, p2 〉 〈 p2, p2 〉+ 〈 p1, p1 〉 〈 p3, p2 〉 〈 p2, p1 〉 〈 p3, p1 〉 0

〈 p1, p3 〉 〈 p2, p3 〉 〈 p3, p3 〉+ 〈 p1, p1 〉 0 〈 p2, p1 〉 〈 p3, p1 〉
0 〈 p1, p2 〉 0 〈 p2, p2 〉 〈 p3, p2 〉 0

0 〈 p1, p3 〉 〈 p1, p2 〉 〈 p2, p3 〉 〈 p3, p3 〉+ 〈 p2, p2 〉 〈 p3, p2 〉
0 0 〈 p1, p3 〉 0 〈 p2, p3 〉 〈 p3, p3 〉







a1

a2

a3

a4

a5

a6




=




〈w1, p1 〉
〈w1, p2 〉+ 〈w2, p1 〉
〈w1, p3 〉+ 〈w3, p1 〉

〈w2, p2 〉
〈w2, p3 〉+ 〈w3, p2 〉

〈w3, p3 〉




.
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