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Abstract

A semiparametric model of consumer demand is considered. In the model, the indi-
rect utility function is specified as a partially linear, where utility is nonparametric
in expenditure and parametric (with fixed- or varying-coefficients) in prices. Be-
cause the starting point is a model of indirect utility, rationality restrictions like
homogeneity and Slutsky symmetry are easily imposed. The resulting model for
expenditure shares (as functions of expenditures and prices) is locally given by a
fraction whose numerator is partially linear, but whose denominator is nonconstant
and given by the derivative of the numerator. The basic insight is that given a local
polynomial model for the numerator, the denominator is given by a lower-order
local polynomial. The model can thus be estimated using modified versions of local
polynomial modeling techniques. For inference, a new asymmetric version of the
wild bootstrap is introduced. Monte Carlo evidence that the proposed techniques
work is provided as well as an implementation of the model on Canadian consumer
expenditure and price micro-data.
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1. Introduction

The specification and estimation of consumer demand systems, defined as the rela-
tionship between quantity demands, prices and total expenditures, presents many
long-standing problems in econometric theory. Recent work has focused on the in-
clusion of highly nonlinear relationships between quantity demands (or expenditure
shares) and total expenditures into empirical models of consumer demand. Since
typical consumer demand microdata have a large amount of variation in total expen-
ditures across consumers, complex relationships between demands and expenditure
might potentially be identified. Unfortunately, because consumer demand mod-
els must satisfy a set of nonlinear cross-equation rationality restrictions (see, e.g.,
Deaton and Muellbauer (1980), and Varian (1978)), known as the Slutsky symmetry
restrictions, such complex relationships have been hard to incorporate into semi-
and non-parametric approaches.

This paper presents a semiparametric approach to the consumer demand problem
which allows for the imposition of the Slutsky symmetry restrictions. We use a
flexible nonparametric estimation method in the total expenditure direction – where
the data provide a lot of information – to get demands which are arbitrarily flexible
in total expenditure (ie., arbitrarily flexible Engel curves). However, in the price
directions – where the data are less rich – we propose a parametric structure.

Like most models for consumer demand, our model uses the vector of expenditure
shares commanded by each good as the dependent variable. In this paper, we
introduce a wild bootstrap that accounts for the fact that expenditure shares lie
in [0,1]. The idea is to draw bootstrap residuals from a local adaptive distribution
that respects the boundaries via asymmetry.

Nonparametric approaches to consumer demand started by considering Engel curves,
defined as the relationship between expenditure shares and the total expenditures
of the consumer, at a fixed vector of prices. That is, they considered only 1 non-
parametric direction and held the others fixed. Work by Blundell et al. (1998, 2003)
revealed considerable complexity in the shapes of Engel curves. A fully nonpara-
metric approach which considers both price and expenditure directions together and
which allows for the imposition of rationality restrictions, has been developed by
Haag et al. (2009). Here, the shapes of the demand equations are not restricted, but
curse of dimensionality rears its head: with M price directions and 1 expenditure
direction, the researcher faces an M +1 dimensional problem. Even if homogeneity,
another rationality condition, is imposed, the researcher still faces an M dimensional
problem, which is still very high in typical applications.

Parametric approaches like the popular Almost Ideal (Deaton and Muellbauer,
1980), dynamic Almost Ideal (Mazzocchi, 2006), Translog (Jorgensen et al., 1980)
and Quadratic Almost Ideal (Banks et al., 1997) demand models typically impose
strict limits on the functional complexity of Engel curves. In these cases, they must
be linear, nearly linear, or quadratic, respectively, in the log of total expenditure.
This lack of complexity is driven by the need for these parametric models to satisfy
the Slutsky symmetry restrictions.

A major use of consumer demand systems is in policy analysis: demand systems
are used to assess whether or not indirect tax changes are desirable, and are used
to assess changes in the cost-of-living. In this regard, lack of complexity has costs:
in particular, if the Engel curve is wrong, then all consumer surplus calculations
(including cost-of-living calculations) are also wrong. For example, Banks et al.
(1997) and Lewbel and Pendakur (2009) show that the false imposition of linear
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and quadratic Engel curves, respectively, can lead to very misleading estimates of
behavioural and welfare responses to indirect tax changes.

In between the fully nonparametric and the fully parametric approaches, we have
the realm of semiparametric econometrics. Two recent papers have explored this
area. Lewbel and Pendakur (2009) propose a fully parametric approach which sat-
isfies rationality restrictions and for which Engel curves can be arbitrarily complex.
Because their model allows for arbitrarily complex Engel curves but parametrically
restricted dependence of expenditure shares on prices, it may be interpreted as
semiparametric. However, their approach relies critically on a particular interpre-
tation of the ’error term’ in the regression: it must represent unobserved preference
heterogeneity, and thus cannot be measurement error or any other deviations from
optimal choice on the consumer’s part. Further, Lewbel and Pendakur (2009) do
not allow for a varying-coefficients structure for price effects.

Pendakur and Sperlich (2010) propose a semiparametric model which allows for
these latter interpretations of the role of the error term, does not restrict the shape
of Engel curves, and incorporates price effects either parametrically or semipara-
metrically (through fixed- or varying-coefficients, cf. Sarmiento (2005)). Pendakur
and Sperlich (2010) propose a model in which expenditure-shares are nonparamet-
ric in utility – an unobserved regressor – and (semi-)parametric in log-prices. The
familiarity of this partially linear form makes the model appealing, but the un-
observed regressor (utility) must be constructed under the model via numerical
inversion of the (unknown) cost function. In the present paper, we propose a model
in which utility is nonparametric in log-expenditure and parametric in log-prices.
This results in a model of expenditure-shares which is locally nonlinear but has no
unobserved or generated regressors. All of these semiparametric approaches address
the curse of dimensionality: they each have just 1 nonparametric dimension.

The local nonlinearity of our model of expenditure-shares is driven by the fact that
we start by modeling indirect utility as partially linear, and since Roy’s Identity
(Roy (1947)) gives expenditure shares as the ratio of derivatives of indirect utility,
expenditure shares in our model are given by a ratio. This ratio has nonparametric
functions in the numerator and their derivatives in the denominator. Our basic
insight is if one models the numerator as a local polynomial, the denominator –
which is comprised of derivatives of the numerator – is just a lower-order local
polynomial. This fact suggests a natural iterative procedure to estimate the model.
Our algorithm is computationally efficient and numerically robust such that large
data sets can be handled in acceptable time, and the results are readily interpreted.

In Section 2 we introduce the model. In Section 3 we discuss the basic estimation
idea, give the associated algorithm and describe the bootstrap inference. For the
nonparametric part of the model we use an univariate local linear smoother on
transformed data, a method that can be easily applied in empirical research. To
accommodate the parametric part of the model, we use a restricted (to satisfy the
Slutsky symmetry restrictions) least squares estimator. For inference, we designed
an asymmetric version of the wild bootstrap. To fulfill the constraints that the
(bootstrap) responses must be in [0, 1], we propose a local adaptive χ2-distribution
for the bootstrap errors. A nice feature of our approach is that confidence intervals
created this way are narrower than those based on standard wild bootstrap.

In Section 4 we evaluate our proposed methods and the accuracy of the bootstrap
procedure in a small simulation study, and then we implement the model with
Canadian price and expenditure data. Empirically, we find that some expenditure
share equations show quite a lot of nonlinearity. Section 5 concludes and discusses
extensions.
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2. A Semiparametric Model for Indirect Utility

Define the indirect utility function V (p, x) to give the maximum utility attained
by a consumer when faced with a vector of log–prices p = (p1, . . . , pM ) and log–
total expenditure x. Let the expenditure share of a good be defined as the ex-
penditure on that good divided by the total expenditure available to the con-
sumer. Denote w = (w1, . . . , wM ) as the vector of expenditure share functions
and note that since expenditure shares sum to 1, wM = 1 − ∑M−1

j=1 wj . Let
{W 1

i , . . . , WM
i , P 1

i , . . . , PM
i , Xi}N

i=1 be a random vector giving the expenditure shares,
log–prices and log–total expenditure of a population of N individuals. Note that, as
commonly done in the literature of demand systems, we use the superscript nota-
tion for single elements of vectors or matrices, i.e. for single goods or commodities,
and the subscript for individuals.

2.1. A Partial Linear and Varying Coefficient Model for Indirect Utility

We consider two semiparametric specifications of the indirect utility function. First,
we consider a partially linear (or, fixed-coefficient) specification of the form

V (p, x) = x−
M∑

k=1

fk(x)pk − 1
2

M∑

k=1

M∑

l=1

aklpkpl, (1)

or, in matrix notation,

V (p, x) = x− f(x)′p− 1
2
p′Ap, (2)

where f = (f1, . . . , fM )′ are unknown differentiable functions of log–total expen-
diture and A = {akl}M

k,l=1 are parameters. We impose the normalisation that
akl = alk, or, equivalently, A = A′. This is not a restriction: since pkpl = plpk,
there is a symmetric version of A that yields the same V as any asymmetric version.
Second, we consider the varying-coefficient extension of this model:

V (p, x) = x−
M∑

k=1

fk(x)pk − 1
2

M∑

k=1

M∑

l=1

akl(x)pkpl, (3)

or, in matrix notation,

V (p, x) = x− f(x)′p− 1
2
p′A(x)p, (4)

where akl(x) = alk(x) for all k, l, or, equivalently, A(x) = A(x)′.

Expenditure shares are functions of total expenditure and all prices. Roy’s Identity
relates the expenditure share for good j, wj(p, x), to derivatives of the indirect
utility function: wj(p, x) = − [

∂V (p, x)/∂pj
]
/ [∂V (p, x)/∂x]. Application of Roy’s

Identity to the fixed-coefficients model yields

wj(p, x) =
f j(x) +

∑M
k=1 ajkpk

1−∑M
k=1∇xfk(x)pk

,

with ∇x indicating the derivative (here of fk(x)) with respect to x; or, in matrix
notation,

w(p, x) =
f(x) + Ap

1−∇xf(x)′ p
.
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For the varying-coefficients model we get

wj(p, x) =
f j(x) +

∑M
k=1 ajk(x)pk

1−∑M
k=1∇xfk(x)pk − 1

2

∑M
k=1

∑M
l=1∇xakl(x)pkpl

,

or, in matrix notation,

w(p, x) =
f(x) + A(x)p

1−∇xf(x)′p+ 1
2p

′∇xA(x)p
.

We describe how to estimate these expenditure share equations in Section 3.

The motivation for these models is as follows. In real-world applications, there
is typically a large amount of observed variation in total expenditures, so one may
reasonably hope to identify a nonparametric component in that direction. However,
typical micro-data sources do not have nearly as much variation in the price direc-
tions, which suggests that partially linear modelling might describe these effects
sufficiently well. If in addition, the researcher feels that more may be identified
on the strength of observed price variation, the varying-coefficients model allows
price effects in the model (3) to be different at different expenditure levels. This
would seem to be a pure advantage of the varying coefficients approach. However,
in practise, this extension seriously increases the variance and computational cost of
the estimates. In particular, the algorithm for model (3) is about five times slower
than the one for model (1). The important feature here is that nonparametric
dimensionality is kept to 1 in both models.

2.1.1. Rationality Restrictions

Rationality is comprised of three conditions: homogeneity, symmetry and concavity.
Here we will deal only with symmetry and homogeneity (concavity is a topic of
its own, investigated, e.g. in Millimet and Tchernis (2008)). Slutsky symmetry
relates to the fact that expenditure share equations are derived in terms of the
derivatives of indirect utility, V . Slutsky symmetry (see, e.g., Mas-Colell et al.
(1995)) gives minimal restrictions under which expenditure share equations lead
to a unique indirect utility function. In our context, it is satisfied if and only if
A = A′ in the expenditure share equations (or, in the varying-coefficients case,
if A(x) = A(x)′). In the indirect utility function, restricting these matrices to
symmetry is merely a normalisation. However, in the expenditure share equations,
this restriction has bite. In particular, because each expenditure share equation
could be estimated separately, the estimated matrix could be asymmetric. In our
estimation section below, we use an algorithm which maintains symmetry, and
which is the semiparametric analog to a linearly restricted Seemingly Unrelated
Regression (SUR) estimator.

Homogeneity is sometimes referred to as ’no money illusion’. If consumers do not
suffer from money illusion, then scaling prices and expenditures by the same factor
cannot affect utility. This requires that indirect utility is homogeneous of degree
zero in (unlogged) prices and expenditure. This can be achieved by dividing all
prices and expenditure by the price of the M -th expenditure category. Note that
we use logarithms, so we subtract pM from each log-price and from log-expenditure
in the indirect utility function. For the fixed-coefficients case, this yields

V (p, x) = (x−pM )−
M−1∑

k=1

fk(x−pM ) ·(pk−pM )− 1
2

M−1∑

k=1

M−1∑

l=1

akl(pk−pM )(pl−pM ),
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in model (1) and analogously in model (3). The sums go only to M −1 because the
M -th element of each sum (which multiplies pM−pM ) is zero. Denoting x̃ = x−pM ,
p̃j = pj − pM and p̃ = (p̃1, . . . , p̃M−1) we may write this more compactly as

V (p̃, x̃) = x̃−
M−1∑

k=1

fk(x̃) · p̃k − 1
2

M−1∑

k=1

M−1∑

l=1

aklp̃kp̃l, (5)

with akl depending on x̃ in the varying-coefficients case. We thus estimate only the
first (M − 1) elements of f and w, and the first (M − 1) rows and columns of A. In
matrix notation, this may be written as f = (f1, . . . , fM−1)′ and A = {akl}M−1

k,l=1 as

V (p̃, x̃) = x̃− f(x̃)′p̃− p̃′Ap̃,

for the fixed-coefficient case and

V (p̃, x̃) = x̃− f(x̃)′p̃− p̃′A(x̃)p̃,

for the varying coefficient case. Once again, since expenditures sum to 1 by con-
struction, we have wM (p̃, x̃) = 1 −∑M−1

i=1 wi(p̃, x̃), and we need only consider the
first (M − 1) expenditure share equations.

As before, we get the expenditure share equations

w(p̃, x̃) =
f(x̃) + Ap̃

1−∇x̃f(x̃)′ p̃
, (6)

for the fixed-coefficients model (1), and

w(p̃, x̃) =
f(x̃) + A(x̃)p̃

1−∇x̃f(x̃)′p̃− 1
2 p̃

′∇x̃A(x̃)p̃
, (7)

for the varying-coefficients model (3). Here, ∇x̃f(x̃) is the (M − 1) vector of the
derivatives of f(x̃) with respect to x̃, and ∇x̃A(x̃) is the (M − 1)× (M − 1) matrix
function equal to the derivatives of A with respect to x̃.

These expressions for budget shares have a nice feature in comparison to Pendakur
and Sperlich (2010). Whereas their model for expenditure shares uses a nonpara-
metric function of a generated regressor which must be constructed under the model
using numerical inversion of the unknown cost function, the expression above uses
only observed regressors. However, in comparison to Pendakur and Sperlich (2010),
which is a partially linear model, the above expression is partially linear only in
the numerator. The presence of the denominator seems to complicate things. How-
ever, as we show below, with the use of local polynomials this problem becomes
manageable.

3. Estimation of the Models

In the following sections, we show how to estimate the (M−1) vector w(p̃, x̃) under
the model. Such estimates satisfy ”adding-up” by construction, since wM (p̃, x̃) =
1 −∑M−1

i=1 wi(p̃, x̃). Also they satisfy homogeneity (”no money illusion”) by con-
struction, due to the use of normalised prices and expenditures as regressors. Fi-
nally, they can satisfy Slutsky symmetry, because the matrix A (or A(x̃)) can easily
be restricted to be a symmetric matrix, e.g. with Deschamps (1988).

A more difficult problem is to restrict the estimated budget shares to be everywhere
in the range [0, 1]. This problem is referred to as the ”global regularity” problem in
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the literature on consumer demand. Roughly speaking, demand systems that are
not homothetic – that is, those which have budget shares which respond to total
expenditure – cannot typically be globally regular without restricting either the
domain of p, x or the domain of model error terms in ad hoc ways. See Pollack and
Wales (1991) for a discussion of the former, and Lewbel and Pendakur (2009) for
discussion of the latter. We will judge our estimates in terms of ”local regularity”,
that is, in terms of whether or not estimated budget shares are in the range [0, 1]
in a p, x domain of interest. In particular, under homogeneity and when p = 0M ,
in both the fixed-coefficients and varying-coefficients model, we have

w(p, x) = w(p̃, x̃) = f(x̃) = f(x).

Thus, the estimated functions f(x) characterise budget shares over a domain spanned
by x with log-prices fixed at 0M . If these estimated functions lie within [0, 1], then
we say that our estimates are ”locally regular” in this sense. Note also that the
vast majority of the literature on estimating expenditure systems does not tackle
this problem due to its complexity (an exception is Moral-Arce et al. (2007)).

3.1. Basic Ideas

The basic idea of estimating the unknown nonparametric functions f j and the (po-
tentially varying) coefficients ajk, j, k = 1, . . . , M − 1, consists of iteratively solving
minimization problems, where the iteration is necessary only for the nonparametric
part of the model. We use kernel smoothing for the nonparametric part, and, in
case of the fixed-coefficients model (1), least squares for the parametric coefficients.
Obtaining estimates consistent with Slutsky symmetry is via the use of (linearly)
restricted least squares for the parametric part.

Keeping the dependence on x̃, we may approximate

f(t) ≈ f(x̃) +∇x̃f(x̃)(t− x̃) ≈ α(x̃) + β(x̃)(t− x̃), (8)

where α(x̃) and β(x̃) are the local level and derivative of f(t). Then, for the partial
linear model the local problem is

min
α(x̃),β(x̃),A

N∑

i=1

e′iΩei, with

ei ≡ wi − α(x̃) + (x̃i − x̃) β(x̃) + Ap̃i

1− β(x̃)′p̃i
,

where Ω is an (M − 1)× (M − 1) weighting matrix.

Similarly, for the varying coefficient model (7), the local problem in the neighbour-
hood of each given x̃ is

min
α(x̃),β(x̃), Γ(x̃),∆(x̃)

N∑

i=1

e′iΩei, with

ei ≡ wi − α(x̃) + (x̃i − x̃)β(x̃) + Γ(x̃)p̃i + (x̃i − x̃)∆(x̃)p̃i

1− β(x̃)′p̃i − 1
2 p̃

′
i∆(x̃)p̃i

,

where Ω is now a different (M − 1)× (M − 1) weighting matrix and Γ(x̃) and ∆(x̃)
are the local level and derivative, respectively, of the price coefficients.

Here, the imposition of homogeneity is via the use of normalised prices and expen-
ditures (i.e. x̃ instead of x etc.). The imposition of Slutsky symmetry is via the
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restriction that A = A′, or in the varying-coefficients case, that A (x) = A (x)′

which is achieved by restricting Γ(x̃) = Γ(x̃)′ and ∆(x̃) = ∆(x̃)′. This local linear
approach could easily be extended to higher order local polynomials, but for this
we would need stronger assumptions on the data and model.

3.2. The Estimation Algorithm

Denote ∆i = X̃i − x̃, Ki = K((X̃i − x̃)/h)/h, where K is some symmetric kernel
function with the usual properties and h a bandwidth that controls the smoothness
of the estimate. We omit an extra subscript h in Ki for the sake of notation.

Let us start with the minimization problem for the partial linear model (1). As
above, the αj are related to the functions f j at point x̃ and the parameters βj to
its first derivatives, while the parameters ajk are fixed for all x̃:

min
αj ,βj

M−1∑

j=1

N∑

i=1


W j

i −
αj + ∆iβ

j +
M−1∑
k=1

ajkP̃ k
i

1−
M−1∑
k=1

βkP̃ k
i




2

Ki. (9)

In order to minimize, we set the first derivative equal to zero. Taking the derivative
of (9) with respect to αj , and using the notations Si = 1 − ∑M−1

k=1 βkP̃ k
i and

T j
i =

∑M−1
k=1 ajkP̃ k

i , we solve

0 =
N∑

i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki

Si
. (10)

This gives immediately (for j = 1, . . . , M − 1)

αj =

[
N∑

i=1

W j
i Ki/Si − βj

N∑

i=1

Ki∆i/S2
i −

N∑

i=1

KiT
j
i /S2

i

][
N∑

i=1

Ki/S2
i

]−1

. (11)

On the other hand, by differentiating (9) with respect to βj (again for j = 1, . . . ,M−
1), we get the equations

0 =
N∑

i=1

(
W 1

i −
α1 + ∆iβ

1 + T 1
i

Si

)
Ki · (α1 + ∆iβ

1 + T 1
i )P̃ j

i

S2
i

+ · · ·+

N∑

i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki · ∆iSi + (αj + ∆iβ

j + T j
i )P̃ j

i

S2
i

+ · · ·+

N∑

i=1

(
WM−1

i − αM−1 + ∆iβ
M−1 + TM−1

i

Si

)
Ki

(αM−1 + ∆iβ
M−1 + TM−1

i )P̃ j
i

S2
i

.

This is equivalent to

0 =
M−1∑

k=1

N∑

i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki · (αk + ∆iβ

k + T k
i )P̃ j

i

S2
i

+

N∑

i=1

(
W j

i −
αj + ∆iβ

j + T j
i

Si

)
Ki

∆i

Si
. (12)
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Certainly, we can not solve equation (12) analytically for βj . But, for our iterative
purpose it is enough to consider the following implicit representation:

βj =
[ M−1∑

k=1

N∑

i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki · (αk + ∆iβ

k + T k
i )P̃ j

i

S2
i

+

N∑

i=1

(
W j

i −
αj + T j

i

Si

)
Ki

∆i

Si

]/ N∑

i=1

Ki∆2
i

S2
i

. (13)

We use the implicit representation (13) to calculate new values for βj . With them
we get new Si, so that we can find new αj :

βj
new =

[ M−1∑

k=1

N∑

i=1

(
W k

i −
αk

old + ∆iβ
k
old + T k

i,old

Si,old

)
Ki

(αk
old + ∆iβ

k
old + T k

i,old)P̃
j
i

S2
i,old

+
N∑

i=1

(
W j

i −
αj

old + T j
i,old

Si,old

)
Ki

∆i

Si,old

]/ N∑

i=1

Ki∆2
i

S2
i,old

, (14)

Si,new = 1−
M−1∑

k=1

βk
newP̃ k

i , and (15)

αj
new =

N∑
i=1

W j
i Ki/Si,new − βj

new

N∑
i=1

Ki∆i/S2
i,new −

N∑
i=1

KiT
j
i,old/S2

i,new

N∑
i=1

Ki/S2
i,new

.

We repeat these steps until convergence. The optimal A will be the one that
minimizes the least squares problem. In practice, at the end of each iteration step,
we solve the restricted least squares problem resulting from equation (6). With
some algebra, the problem is given by

W j
i · (1−

M−1∑

k=1

βk
i P̃ k

i )− αj
i =

M−1∑

k=1

ajkP̃ k
i . (16)

The modification of the algorithm to take the varying coefficients A(x̃) into account
is one along ideas of Fan and Zhang (1999), though it is more complex in our
context. With the same local linear approximation arguments as above, we get the
local problem in the neighbourhood of x̃ as

min
θ

M−1∑

j=1

N∑

i=1


W j

i −
αj + ∆iβ

j +
M−1∑
k=1

(γjk + ∆iδ
jk)P̃ k

i

1−
M−1∑
k=1

βkP̃ k
i − 1

2

M−1∑
k=1

M−1∑
l=1

δklP̃ k
i P̃ l

i




2

Ki, (17)

with θ denoting αj , βj , γjk and δjk. Note that γjk and δjk are symmetric since we
consider a symmetric matrix of functions akl(x̃). The minimization of (17) in the
usual way gives the extended algorithm in analogy to the first step of 3.2. For αj

and βj we proceed as before but with Si = 1 −∑
βkP̃ k

i − 1/2
∑∑

δklP̃ k
i P̃ l

i and
T j

i =
∑

(γjk + ∆iδ
jk)P̃ k

i . Furthermore, we obtain

γst =

∑N
i=1

[(
W s

i − Cs
i

Si

)
P̃ t

i +
(
W t

i − Ct
i

Si

)
P̃ s

i 1Is 6=t

]
Ki

Si

∑N
i=1

[
(P̃ t

i )2 + (P̃ s
i )21Is6=t

]
Ki

S2
i

,
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with Cs
i = αs + ∆iβ

s + T s
i − γstP̃ t

i and, defining T s,−t
i = T s

i −∆iδ
stP̃ t

i ,

δst =

[
M−1∑

k=1

N∑

i=1

(
W k

i −
αk + ∆iβ

k + T k
i

Si

)
Ki

S2
i

(αk + ∆iβ
k + T k

i )P̃ t
i P̃ s

i +

N∑

i=1

{(
W s

i −
αs + ∆iβ

s + T s,−t
i

Si

)
P̃ t

i +

(
W t

i −
αt + ∆iβ

t + T t,−s
i

Si

)
P̃ s

i

}
Ki∆i

Si

]

×
[

N∑

i=1

{
(P̃ t

i )2 + (P̃ s
i )21Is 6=t

} ∆2
i Ki

S2
i

]−1

.

3.3. Bootstrap Inference

The “wild bootstrap” draws bootstrap responses based on the estimated model (1)
with given sample {Wi, X̃i, P̃i}N

i=1 and estimates α̂j , β̂j and âjk, k, j = 1, . . . , M−1.
Denote a prior bandwidth g with O(g) > O(h) (obeying the needs of asymptotic
theory, cf. Härdle and Marron (1991)), and let h be the bandwidth giving the desired
smoothness in the original sample. The basic idea is now to use the estimated
residuals from an estimate with bandwidth g,

ε̂j
i = W j

i −
α̂j(X̃i) +

M−1∑
k=1

âjkP̃ k
i

1−
M−1∑
k=1

β̂k(X̃i)P̃ k
i

, (18)

to get wild bootstrap residuals εj∗
i . Given them we create bootstrap samples

{W ∗
i , X̃i, P̃i}N

i=1 by

W j∗
i =

α̂j(X̃i) +
M−1∑
k=1

âjkP̃ k
i

1−
M−1∑
k=1

β̂k(X̃i)P̃ k
i

+ εj∗
i , (19)

for i = 1, . . . , N and j = 1, . . . ,M − 1. Here, εj∗
i are bootstrap residuals that

replicate desired properties of the distribution(s) of ε̂j
i . The WM∗

i are generated
via

∑M
j=1 W j∗

i = 1. Repeating this many times, we get estimates (for f and A) for
each bootstrap sample and can use the bootstrap quantiles to construct point wise
confidence bands for our estimates.

There exists several strategies to obtain bootstrap residuals εj∗
i . Typically, when

no restriction is faced, one may use εj∗
i = ui · ε̂j

i , where ui is a standard normal
random scalar. Under the additional assumption of homoscedasticity, this can even
be simplified to εj∗

i = ui · σ̂j
ε, where σj

ε is estimated from the residuals (18).

In our case, one could argue that such bootstrap errors could cause the bootstrap
values of W j∗

i to lie outside the admissible range of [0, 1] for budget shares. On the
one hand, this may not matter because the estimation algorithm does not control
the constraint that Ŵ j

i ∈ [0, 1]. However, given that actual expenditure shares are
bounded, the bootstrap residuals may poorly reflect the true error distribution and
misrepresent the confidence intervals, for example putting them outside [0, 1].

To address the possibility that inference is hampered by bootstrap budget-shares
lying outside [0, 1], we introduce an alternative formulation of the wild bootstrap.
Because there are many expenditure shares, the main bounding problem is the
lower bound at 0, and this is the problem we deal with. Thus, we are faced with

10



a conditionally asymmetric (to the right) error distribution. We thus consider an
asymmetric distribution for εj∗

i given ε̂j
i as follows. Generate bootstrap errors via

χ2
k√
k
· |ε̂

j
i |√
2
− |ε̂j

i |√
2
·
√

k ≤ |Ŵ j
i |, (20)

where k ≤ b(W j
i /ε̂j

i )
2 ·2c. In the case that k is less than one, we draw the bootstrap

residual εj∗
i from χ2

1 · |Ŵ j
i |− |Ŵ j

i |. Note that this fulfills E[εj∗
i ] = 0 and E[(εj∗

i )2] =
E[(ε̂j

i )
2] for all i and j. From (20), we have that, for positive Ŵ j

i , its bootstrap
analog is always positive, too. This method leads automatically to confidence bands
that lie almost fully inside [0, 1] and are consequently narrower than those based
on a simple normal bootstrap described above. In the simulation study below,
we present empirical evidence that the above introduced asymmetric bootstrap is
accurate.

3.4. Practical Considerations

One issue in such iterative procedures is the question of adequate initial values
for the nonparametric part. Here we have a convenient model feature to exploit:
when we normalise prices in the sample such that p̃i = (0, . . . , 0) for some group of
consumers, say N0, equation (9) reduces to the well-known local linear case. That
is, since for the denominator term we have Si = 1, we get the objective function

min
αj ,βj

M−1∑

j=1

N0∑

i=1

(
W j

i − αj + ∆iβ
j
)2

Ki. (21)

Solving this problem on the sample of consumers where p̃i = (0, . . . , 0) gives us
consistent estimates (though with a possibly large variance depending on the sub-
sample size N0) which be used as starting values for αj and βj . For the varying
coefficient model we also need starting values for the γjk and δjk. As a natural
choice for the γjk we use the results of the algorithm in Section 3.2 and zero for all
δjk (i.e. starting in the first iteration with a simpler model).

For the bandwidth choice, we recommend using the same bandwidth h for all ex-
penditure categories because: (a) the functions refer to the same expenditure data
in all equations; and (b) the economic theory does not suggest that the shares of
some goods would be smoother than those of others. Plug-in bandwidths could
be derived from the asymptotics of f̂ , or, alternatively, one could construct a risk
estimate similar to cross-validation but this time jointly for all elements of f̂ . It
is clear, however, that the first depends on derivatives of the unknown f̂ and the
density of expenditures, while the second approach would be quite computationally
costly. A rough idea of a bandwidth size to start with may be derived from (21).
Run a leave-one-out cross validation for (21) with the subsample of individuals ful-
filling p̃i = (0, . . . , 0), and correct the obtained bandwidth h0 for the size of the full
sample, i.e. h = N−1/5h0N

1/5
0 .

In the fixed-coefficients model (1), we recommend running the estimation algorithm
twice: first with an undersmoothing bandwidth in the nonparametric part to keep
the possible smoothing bias small. The resulting estimate for the coefficient ma-
trix A is kept, and used in the second run which uses a larger bandwidth for the
nonparametric part to get reasonably smooth f̂ . This is unnecessary in the varying
coefficients model (3) where we face only nonparametric functions.

Recall that the M th equation and its Engel curve is simply a result of the homo-
geneity and the adding-up condition

∑M
j=1 W j

i = 1. In practice one might choose
the item with the least variation in expenditure shares across the households.

11



4. Empirical Analysis

4.1. A Simulation Study

First, to generate some artificial data, we generated 33 distinct price vectors, nor-
mally distributed in each dimension, for each of 6 expenditure categories (i.e. we
have 6 items with different prices in 33 regions). As in typically observed micro-
data, we did not allow for a wide price variety, see Lewbel (2000). Summary values
for these price vectors can be found in Table 1.

Table 1: Summary of used price vectors in simulation

1 2 3 4 5
Min 3.905 3.449 3.763 0.880 2.794
Max 4.130 3.585 3.919 1.121 3.010
Mean 4.018 3.517 3.841 1.002 2.901
Std. 0.030 0.020 0.020 0.030 0.030

For 32 regions (i.e. price vectors) we uniformly draw 30 log–total expenditure values
from the interval [1, 2]. For the reference region (number 33) we draw 40 uniformly
distributed values between one and two. In total, this gives us N = 1000 observa-
tions. These are used to generate expenditure shares using the expenditure functions
shown in Figure 1 (solid lines), price parameters given in Table 2, and normal error
terms with mean zero and standard deviation 0.01. In order to get shares which
fulfill the conditions W j ∈ [0, 1] and

∑
j W j = 1 we applied the rejection method

(that is, we dropped and replaced values outside [0, 1]).

Next, we estimate the functions αj and the price parameters using our estimation
algorithm introduced in Section 3.2. This is repeated 250 times (using the same
functions, price parameters, and range of log–total expenditure values) to get an
idea of the mean squared errors of our estimators. For estimating f we used the
Gaussian kernel with h ≈ 0.034, the smallest bandwidth giving smooth estimates.

In Figure 1 we have plotted the true functions (solid lines) together with intervals
of 90% coverage probabilities for the estimates (dotted lines) as a result of the 250
simulation runs. On the one hand, we see pretty narrow bands which accurately
capture even those functions with flat plateaus in the intermediate range (category
3) and with bumps (category 2). Such functions are often hard to estimate in
practise. We also see the limits of the method as for example boundary effects. Our
smoother can estimate without any bias the linear function. In Table 3 we give the
estimated parameter means, together with the standard deviations. The exactness
of our simulation is demonstrated by the small total MSE of only 6.83 · 10−6.

Table 2: Price parameters used in the simulation

1 2 3 4 5
1 −0.150 −0.100 0.150 0.100 0.280
2 0.250 0.100 −0.250 0.170
3 0.320 −0.220 −0.190
4 −0.200 0.150
5 −0.180

12



Table 3: Estimated price parameters and standard deviations (in brackets)

1 2 3 4 5
1 −0.1515 −0.1006 0.1494 0.0997 0.2799

(0.0140) (0.0106) (0.0103) (0.0090) (0.0087)

2 0.2494 0.0999 −0.2497 0.1699
(0.0176) (0.0129) (0.0102) (0.0102)

3 0.3200 −0.2208 −0.1891
(0.0170) (0.0096) (0.0100)

4 −0.1992 0.1490
(0.0117) (0.0079)

5 −0.1803
(0.0117)

To verify the functioning of our new bootstrap procedure we constructed 200 boot-
strap samples (with g = h as N is relatively small) along Section 3.3 for each of
100 simulation runs. We calculated 90% bootstrap confidence intervals around the
estimator for each simulation. The mean of these upper and lower bounds of these
intervals are given in Figure 1 (dashed lines). The fact that the 90% coverage
probability intervals and the means of the 90% bootstrap intervals almost coincide
indicates that our bootstrap procedure is acceptably accurate.

4.2. Analysing Household Expenditures in Canada

In our empirical study we use the same Canadian data as in Lewbel and Pendakur
(2009) and Pendakur and Sperlich (2010) which come from public sources, see also
Pendakur (2002). The price and expenditure data are available for 12 years in
5 regions: Atlantic, Quebec, Ontario, Prairies and British Columbia. This yields
60 distinct price vectors, where prices are normalised in a way that all prices of
the categories from Ontario in 1986 are one, i.e. p̃O,86 = (0, . . . , 0), so these 189
observations define the base price vector and we use them to get the starting values.
Note further, to achieve homogeneity we subtracted pM , the price of the left–out
expenditure category, from all other prices and total expenditure.

We use 6952 observations of rental–tenure unattached individuals aged between 25
and 64 with no dependants to minimise demographic variation in preferences. Our
analysis includes annual total–expenditure in nine categories: food–in, food–out,
rent, clothing, household operations, household furnishing and equipment, private
transportation, public transportation and personal care. The left–out category is
personal care, so that we get a system of eight expenditure share equations which
depend on eight (normalised) log–prices and (normalised) log–total expenditure.
These expenditure categories account for about three-quarters of the current con-
sumption of the households in the sample. Summary statistics of the observations
are given in Table 4.

We note that this choice of commodities is arbitrary: one could divide these goods
into subcategories, or aggregate them up into larger categories. We choose these
categories because they offer the finest gradation consistent with largest possible
time span for the price data (finer gradations of price data are available, but for
shorter periods of time). Another advantage of this choice of commodities is that
they are directly comparable with Pendakur and Sperlich (2010).
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Figure 1: Simulation of 6 different budget share functions (solid line) with 90% coverage probability
(dotted lines) and asymptotic 90% bootstrap confidence intervals (dashed lines)
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Table 4: The Data

Min Max Mean Std.
expenditure shares food–in 0.00 0.63 0.17 0.09

food–out 0.00 0.64 0.08 0.08
rent 0.01 0.95 0.40 0.13
operations 0.00 0.64 0.08 0.04
furnishing 0.00 0.65 0.04 0.06
clothing 0.00 0.53 0.09 0.06
private trans 0.00 0.59 0.08 0.09
public trans 0.00 0.34 0.04 0.04

log–prices food–in −0.39 0.07 −0.03 0.09
food–out −0.42 0.25 0.05 0.12
rent −0.35 0.14 −0.12 0.15
operations −0.28 0.10 −0.04 0.08
furnishing −0.16 0.21 −0.03 0.09
clothing −0.07 0.44 0.10 0.11
private trans −0.51 0.30 −0.09 0.18
public trans −0.59 0.40 0.01 0.25

log–total expenditure 3.03 6.26 4.61 0.45

As noted above, when p̃ = (0, . . . , 0) (as it does for observations in Ontario 1986),
the price effects in expenditure shares amount to zero, yielding

w(p, x) = w(p̃, x̃) = f(x̃) = f(x),

which we will refer to as the vector of Engel curves. The estimated Engel curves of
all expenditure categories can be found in Figure 2 and 3 as solid lines, where the
horizontal axes refer to x̃, i.e. the log total expenditures minus pM .

We include pointwise 90% confidence intervals which we calculated as described in
Section 3.3 with heteroscedastic error terms and 500 bootstrap iterations using our
new conditionally asymmetric wild bootstrap procedure. To generate the bootstrap
samples we used g = h with h = 0.17 being somewhat larger than h0(N0/N)1/5

which would give wiggly estimates f̂ . This was estimated using the Gaussian kernel,
and it converged in our setting after about 15 iterations. In all figures, the resulting
Engel curves are compared to the ones of Banks et al. (1997) and the ones of
Pendakur and Sperlich (2010) when assuming a partial linear cost function with
Slutsky symmetry. In terms of local regularity, the estimated values of budget-
shares lie entirely within [0, 1]. Although we do not assess the global regularity of
our estimates or estimator, it is comforting that estimated budget shares satisfy
this condition locally.

Food-at-home and food-out are strong necessities and luxuries, respectively, with
nearly linear Engel curves in both cases. The near-linearity of these Engel curves
has been observed in a large number of empirical investigations, including Banks et
al. (1997). Some curvature is observed in the rent and clothing equations, especially
near the bottom of the distribution. This curvature is noted in semiparametric work,
such as Pendakur and Sperlich (2010) and Lewbel and Pendakur (2009). The most
curvature is noted in smaller budget shares like household operation, private trans-
portation and public transportation. The curvature in household operation seems
quite strong, and that in private transportation seems decidedly non-quadratic. In
the figures one can see that most of the expenditure-share equations are very similar
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Figure 2: Estimates of food-in, food-out, rent, and clothing (solid line) with 90% pointwise confi-
dence bands (dotted), together with estimates using Banks et al. (1997) (triangles) and Pendakur
and Sperlich (2010) (circles).

between the present approach and the partially linear cost function approach of Pen-
dakur and Sperlich (2010). However, two exceptions are the household-operation
and public-transportation equations. These are estimated about 0.5 percentage
points higher in the present approach. We note that this variation between esti-
mated models is not overwhelmingly large. For example, in some expenditure shares
equations, Pendakur and Sperlich (2010) report a difference of more than 0.5 per-
centage points between symmetry-restricted and symmetry-unrestricted estimates
of their partially linear cost function model. This highlights the fact that although
the two models are similar in spirit, they are not identical in practise.

Table 5 gives the estimated symmetric price parameters and in brackets the boot-
strapped standard deviations. These estimated price effects are in the plausible
range, and are similar to those found in Pendakur and Sperlich (2010).

Thus, the estimated Engel curves are plausible and have some evidence of complex-
ity beyond the quadratic form of Banks et al. (1997). Compared to Pendakur and
Sperlich (2010), the present approach has an important computational advantage:
it is based entirely on observed regressors, and so does not require any numerical
inversions to generate a latent regressor. In comparison with Lewbel and Pen-
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Figure 3: Estimates of household operations, furnishing and equipment, private and public trans-
portation (solid line) with 90% pointwise confidence bands (dashed), together with estimates using
Banks et al. (1997) (triangles) and Pendakur and Sperlich (2010) (circles).

dakur (2009), the present approach has an important interpretational difference:
whereas Lewbel and Pendakur (2009) must interpret model error terms as unob-
served preference heterogeneneity parameters, the present approach is based on the
more standard view of error terms as measurement or other non-behavioural error.

The varying-coefficients extension is similarly easy to implement. The estimated En-
gel curves are almost identical to those found in the fixed-coefficients case, with some
deviations in the tails. Depending on the bandwidth, the estimated price param-
eters evaluated at median log-expenditure are statistically indistinguishable from
those of the fixed-coefficients model, but their estimated variance is much greater.
In particular, we got approximately twice the standard errors for estimated param-
eters evaluated at median expenditures relative to their fixed-coefficients counter-
parts. We found that the varying coefficients estimates of f were very similar to the
fixed-coefficient estimates, and so we do not present them here.
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Table 5: Estimated symmetric price effects ajk (with bootstrap standard deviations in brackets)

food–in food–out rent oper furn clothing priv tr pub tr

food–in −0.026 0.013 −0.006 −0.008 0.009 0.006 0.037 −0.058
(0.036) (0.018) (0.012) (0.019) (0.014) (0.015) (0.007) (0.006)

food–out −0.035 0.047 0.012 −0.002 −0.069 0.001 −0.045
(0.014) (0.007) (0.012) (0.010) (0.009) (0.005) (0.005)

rent 0.186 0.023 −0.026 −0.021 −0.036 0.087
(0.017) (0.007) (0.005) (0.008) (0.006) (0.005)

oper 0.040 0.010 −0.016 −0.029 0.023
(0.017) (0.011) (0.011) (0.004) (0.005)

furn −0.038 0.026 −0.017 −0.024
(0.016) (0.009) (0.004) (0.004)

clothing 0.005 −0.002 −0.014
(0.010) (0.005) (0.004)

priv tr 0.002 0.006
(0.006) (0.003)

pub tr −0.011
(0.003)

5. Conclusions

We propose a model indirect utility which is nonparametric in the expenditure
direction and parametric (with fixed- or varying-coefficients) in the price directions.
This utility function implies a consumer demand system that has parametric log–
price effects and nonparametric log–total expenditure effects. We avoid the curse of
dimensionality typically associated in fully nonparametric estimation of consumer
demand since the nonparametric part of the model is only one dimensional. The
model is easily restricted to satisfy the rationality conditions of homogeneity and
Slutsky symmetry.

We provide a new wild bootstrap procedure that allows for conditional asymme-
tries and guarantees positive shares. We show the finite sample performance of
our estimators in a simulation study, and finally apply our method to Canadian
expenditure data.

The application of this model to Canadian price and expenditure data shows not
only the potential of the model but also suggests that some expenditure shares more
complex than the linear ones in popular parametric demand models. The simulation
study reveals further that it is also possible to capture shapes which are difficult to
estimate (cf. Hastie and Tibshirani (1984)), such as those with flat plateaus in the
intermediate range or with bumps.
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