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1 Introduction

1. Let Yi, Xi, εi be an observed scalar dependent variable, a K−vector of observed inde-
pendent variables and an unobserved scalar error term, respectively, for observations
i = 1, ..., N .

(a) Saying that X is independent and that Y is dependent means that we think X
causes Y but not vice versa.

(b) We can think of εi as an unobserved independent variable. In the linear model
(below), we can think of it as a linear index in a vector of unobserved independent
variables.

(c) Let X be a fixed (nonstochastic) variable unless stated otherwise. Let ε be a
random variable. We can make X a random variable if we wish to. It makes
some things, like consideration of endogeneity and weak instruments, much more
natural. But fixed X makes the math much easier and doesn’t usually change
any results.

2. Suppose there is a relationship which holds for each observation (say each year)

Yi = f(Xi, β, εi)

where β is an unobserved vector of parameters (could be a K−vector)

(a) The parameters β together with the function f govern how X affects Y . We call
such a model ‘parametric’ because we have a priori information on its functional
structure (parametric form). Notice that the function f which depends on the
parameters β does not depend on i.

(b) For every value of Xi, β, εi there is exactly one value of Yi. Since εi is random, Yi
must be random.

3. This may be written in terms of matrices and vectors, too. Let Y,X be the N−vector
of observations Yi, the NxK matrix comprised of the stacked observations of Xi. Let
ε be the vector (of unspecified length) of error terms. Here, rows are observations and
columns (of X) are variables. We may then write

Y = f(X, β, ε).
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4. We typically cannot make much progress on a model this general, so we assume that
the unobserved error term comes in additively:

Y = f(X, β) + ε

(a) The error term N−vector ε has many interpretations. It could be:

i. Unmodeled factors and left-out variables

ii. Measurement error in Y

iii. Unobserved heterogeneity

iv. It could be the sum of random stuff which is independent of X.

v. You could think of this as random shifters (like business cycles or the weather),
or

vi. As left-out variables (like the age distribution of the population)

vii. It could be mean-zero measurement error on Y

viii. It could be true indeterminacy in the relationship

5. We often have trouble estimating a model so general, so we further specify that Y is
linear in X

Y = Xβ + ε,

where β is an unobserved K−vector.

(a) Given that we know X, if we knew β, then we would know everything predictable
about Y . That is, our ignorance would only be about the error term, which given
its definition above, is perfectly acceptable.

(b) Equivalently, we may say that Y is linear in β.

(c) A simple function of X is desirable, but why linear? Linear functions with additive
errors have the property that the derivative of Y with respect to X is β. So, if
we learn β, we immediately have something useful that we can interpret.

6. Let the word estimator denote a function of observed variables Y,X that provides an
estimate of β. If we had an estimator β∗ which yielded an estimate β̂, then we could
write

Y = Xβ̂ + e

where e is the N−vector of residuals.

(a) Note that the word estimator describes a tool that gives an estimate. The
estimator β∗ is a function of the data, and the estimate β̂ is the value of that
function.

(b) A residual is an empirical quantity; an error is a feature of the true model.

(c) Here, Xβ̂ is the prediction of Y givenX (more on this later), and e is the prediction
error. (If e were 0 then, the prediction is exactly right.) Given an estimate of β,
we can define the prediction error in reverse:

e = Y −Xβ̂

7. How do you estimate β? What would characterise a good estimator β∗? (Kennedy)
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2 Nice Things About Estimators

2.1 Computational ease

1. Used to be much more important when computers were tiny (actually really large, but
weak).

2. Linear estimators can be computed in one (or maybe two) steps. Nonlinear estimators
typically require more steps. Nonlinear parametric models used to be time-consuming
to estimate, but now they aren’t.

2.2 Motivation 1 for OLS: Minimising Prediction Error

1. If prediction error is bad, then one might wish to minimise its (weighted) sum, which
is the (weighted) sum of residuals: obtain β∗ via

min
β̂

N∑
i=1

ωi|ei|,

where ωi is a weight for each residual.

(a) We minimize a function of the within sample residuals.

(b) Focusing on prediction error/residuals has some features:

i. This is not a statistical criterion.

ii. It minimises a function of the absolute value of residuals. This implies that
the investigator feels the same about negative and positive errors—she doesn’t
like either kind.

iii. It should yield a good predictor.

iv. But, it is a predictor of something you already have: the sample values of Yi.

(c) weighting by the size of the residual gives ordinary least squares

min
β̂

N∑
i=1

|ei| · |ei| = min
β̂

N∑
i=1

|Yi −Xiβ̂| · |Yi −Xiβ̂|

= min
β̂

N∑
i=1

(
Yi −Xiβ̂

)2
.

i. Here, big residuals are very important. If one residual is twice as large as
another, it gets twice the weight. This means that outliers, defined as big
residuals in Y , can drag the β̂ around.

ii. Consider a model where Xi = 1, so that we minimize

= min
Ŷ

N∑
i=1

(
Yi − Ŷ

)2
.
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The first-order condition is

2
N∑
i=1

(
Yi − Ŷ

)
= 0

2
N∑
i=1

Yi = 2NŶ

Ŷ =
1

N

N∑
i=1

Yi

Here, Ŷ is the mean of Yi. For this reason, OLS is often called mean regres-
sion. If we threw in conditioning variables, it would be conditional mean
regression.

(d) Weighting with unitary weights gives least absolute deviations (LAD):

min
β̂

N∑
i=1

1 · |ei| = min
β̂

N∑
i=1

|Yi −Xiβ̂|,

and if we consider the case where Xi = 1, we have

min
Ŷ

N∑
i=1

|Yi − Ŷ |

with a first-order condition of

N∑
i=1

(
2I(Yi − Ŷ > 0)− 1

)
= 0

N∑
i=1

(
I(Yi − Ŷ > 0)

)
=
N

2

where I is the indicator function. Here, we select Ŷ so that half (N/2) of the

observations are above Ŷ (so that I(Yi − Ŷ > 0) = 1). For this reason, least
absolute deviations is often called median regression. If we threw in conditioning
variables, it would be conditional median regression.

(e) Weighting with asymmetric weights will push the errors to one side or the other
of the regression curve. Quantile regression is analogous to median regression,
except that it picks a quantile different from the 0.5 quantile (that is, the median).
So, for the τ ’th quantile regression, we define the weight function to give a first-
order condition that puts τ of the data below the regression line and 1 − τ of it
above:

min
β̂

N∑
i=1

ω (τ, ei) · |ei|,
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where

ω (τ, ei) = τ if ei ≥ 0,

= 1− τ if ei < 0.

or, equivalently,
ω (τ, ei) = τ − (2τ − 1) I(Yi − Ŷ < 0)

Here ω (τ, ei) · |ei| = ρτ (ei) from Koenker and Hallock. For τ = 0.1, for example,
we put 9 times as much weight on negative errors as on positive ones. This puts
the regression line way down in the Y direction in the data cloud.

i. if we consider the case where Xi = 1, we have

min
β̂

N∑
i=1

ω
(
τ, Yi − Ŷ

)
· |Yi − Ŷ |,

with a first-order condition of

N∑
i=1

(
I(Yi − Ŷ < 0)

)
= τN

where I is the indicator function. Here, we select Ŷ so that a fraction τ of
the observations are below Ŷ (so that I(Yi − Ŷ > 0) = 1).

ii. expectile regression is a cute mix of quantile and mean regression. In expectile
regression, we use the same weight function from, e.g. Koenker and Hallock,
and minβ̂

∑N
i=1 ω (τ, ei) · e2i ,

(f) Computation

i. OLS computation is one-step:

min
β̂

N∑
i=1

(
Yi −Xiβ̂

)2
,

or, in matrix notation,

min
β̂

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
,

leading to a FOC:

2X ′
(
Y −Xβ̂

)
= 0,

leading to a solution

X ′Y −X ′Xβ̂ = 0

X ′Xβ̂ = X ′Y

β̂ = (X ′X)
−1
X ′Y.
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ii. For both LAD and QR, we solve the model via linear programming rather
than by using the one-step OLS solution (because the indictor function uses
inequalities). However, with modern computers, this is no big deal. QR
computation is a linear programming problem, that is a problem of satisfying
many inequalities. With a finite number of inequalities, such problems often
can be solved in a finite number of computations.

(g) For all these estimators based on prediction error/residuals:

i. draw the weight function;

ii. draw the first-order condition;

iii. show how the estimator treats residuals and outliers.

(h) None of these estimators use a model for Y . That is, none requires us to know the

true relationship between Y,X, ε. One therefore think about Xiβ̂ from a linear
regression as the best linear unbiased predictor of Y given X, even when Y is in
fact a nonlinear function of X. Here, best-ness is in a mean-squared error sense.

2. Interpretation of the regression function as a conditional mean function works as follows
(see Angrist and Pischke Ch3):

(a) The conditional mean function always exists for the random variables X, Y , it is

m(Xi) = E [Yi|Xi
] .

Causility is irrelevant here: this just requires the existence of a joint distribution
of X, Y , and such a distribution exists regardless of the support and discreteness
of either Y or X.

(b) We can try to estimate this thing. If m(Xi) is linear in X, then the linear
regression function estimated on the population of X, Y will pick it up exactly.
That is,

Xiβ̂ = E [Yi] |Xi
,

subject to the restriction that the conditional expectation function E [Yi] |Xi
is

linear in X.

(c) This interpretation carries through even when E [Yi] |Xi
is not a linear function of

X, that is, when the linear regression is misspecified. In this case, the estimated
linear regression function will give the smallest mean-squared error,

E

[(
m(Xi)−Xiβ̂

)2]
,

of any linear function of X.

3. Saturation and Nonparametrics

(a) A model is called saturated if the regressors are discrete, and the model contains
a parameter for every combination of regressors observed in the data.
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i. For example, if sex=1, 2 and province=1, ..., 10, and if persons of both sex are
observed in every province and nothing else is observed, the saturated model
has 20 parameters.

ii. A saturated regression model estimated on the population of data will pick
up the conditional mean function m exactly.

(b) Nonparametric models are the analogue to saturated models when the regressors
are continuous. They pick up the conditional mean function m as the population
size gets infinite.

i. The idea of nonparametric estimation is to let the data determine the shape
of the function, rather than priors. However, the way we do this is to make
the model incredibly highly parametric (a funny use of the prefix non!). In
particular, nonparametric estimators let the number of parameters grow with
the sample size, which means that asymptotically, you have an infinite number
of parameters, so that asymptotically, you can pick up any shape at all.

(c) With samples from the population, both saturated and nonparametric models
provide estimates of the conditional mean function, which can in principle be
computed exactly.

2.3 Unbiasedness and Efficiency

1. Mean, Variance, Unbiasedness and Efficiency are concepts related to how the estimated
values of an estimator behave across repeated samples. Consider the sample mean

Ŷ =
1

N

N∑
i=1

Yi.

Here, it is computed off of a sample i = 1, ..., N . But, what if it had been computed off
of a different sample, eg, i = N + 1, ..., 2N? What can we say about the distribution
of Ŷ over repeated samples of size N?

2. unbiasedness : Bias is defined as

bias
[
β̂
]

= E
[
β̂
]
− β

if in repeated samples of a given size the mean value of the estimated parameters β̂ is

equal to β, so that E
[
β̂
]

= β, then we say that the estimator β∗ is unbiased.

3. efficiency : if in repeated samples of a given size the variance of the estimated parame-
ters β̂ is the lowest of any estimator, then we say that the estimator β∗ is efficient. If it
is the lowest of any estimator in a particular class (for example, the class of estimators
linear in X), then we say that it is efficient in that class.

(a) for any random variable z, the variance of z is

V (z) = E[z]2 − E[z2],
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or, equivalently,
V (z) = E[z − E[z]]2.

(b) If z is a random T−vector, then we may express it in matrix notation as the TxT
symmetric matrix

V (z) = E[z − E[z]]E[z − E[z]]′

the covariance between any two elements of z is given by the appropriate element
of V (z), and the covariance of any two subvectors of z is the appropriate submatrix
of V (z).

4. mean squared error : mean squared error is defined over the difference between an
estimate, β̂, and its target, β. Mean squared error is a KxK matrix given by

MSE = E[(β̂ − β)(β̂ − β)′] = bias[β̂]bias[β̂]′ + V [β̂]

5. You don’t always want both unbiasedness and low variance. If an estimator is efficient
and biased, but only a little biased, then one might prefer it to an inefficient unbiased
estimator because it would be closer to the target (β) in most of the repeated samples.

(a) minimising mean squared error, MSE=squared bias+variance, provides another
measure of goodness of the estimator β*.

2.4 Asymptotic characteristics (very large samples)

1. although you work with data of a given finite size, we often can’t say much about the
behaviour of estimators in small samples.

2. the analogue to unbiasedness in small samples is consistency as the sample size grows
to infinity.

3. we call an estimator consistent if it is unbiased in the limit as the sample size goes to
infinity.

the analogue to efficiency is asymptotic variance. For any sample size N , the asymptotic
variance is usually defined as AV = NV (β̂) as N goes to infinity. Thus, although V (β̂) goes
to zero as N goes to infinity, the asymptotic variance may converge to something nonzero.

2.5 Motivation 2 for OLS: Exogeneity and the Method of Mo-
ments

1. Method of moments is a strategy for making estimators. The strategy is:

(a) Take an expectation from theory.

(b) Insert sample values and remove expectation operator

(c) create the estimator by replacing parameters with estimates.
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2. Consider a model
Y = Xβ + ε

(Kennedy Assumption 1: linear model) where

E [X ′ε] = 0K

(exogeneity)

3. Implement the Method of Moments Estimator

(a) Expectation from theory is E [X ′ε] = 0K

(b) Sample values to insert are: Xi for X and ei for the error term εi. Here, the
residual is the sample analog of the error term

E [X ′ε] = 0K

X ′e = 0K

X ′ [Y −Xβ] = 0

(c) Solve

X
[
Y −Xβ̂

]
= 0

X ′Y = X ′Xβ̂

β̂ = (X ′X)
−1
X ′Y

4. Ordinary Least squares. Again. Here, we did not invoke any conditions on the bias or
variance of the estimator. All we did was take the exogeneity restriction as seriously
as possible, and substitute residuals for errors in that restriction.

2.6 Motivation 3 for OLS: Efficiency and a Familiar Result

Ordinary Least Squares is the efficient estimator in the class of linear unbiased estimators
(Best Linear Unbiased Estimator) for estimation of β in models whose data generating
process (DGP) is

1.
Y = Xβ + ε

(Kennedy Assumption 1: linear model) where

E [X ′ε] = 0K

(exogeneity), and X includes a column of ones, and

E [εε′] = σ2IN

where I is the identity matrix.
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2.
E [X ′ε] = 0K

implies E [1′ε] = E [εi] = 0: the errors are mean zero (Kennedy Assumption 2)

3. X and ε are uncorrelated implying X is exogenous (Kennedy Assumption 4)

4. E [εε′] = σ2IN implies (Kennedy Assumption 3)

(a) errors are homoskedastic (diagonals of E [εε′] have the same value)

(b) errors are uncorrelated (off-diagonals of E [εε′] are zero)

5. A unique β̂ exists as a least squares solution if and only if X is of full rank and
N>rank(X). (Kennedy Assumption 5)

6. The OLS estimator has the lowest variance of all unbiased estimators for this model.
This is a statistical assessment of a statistic (the estimated parameter vector β̂).

7. It is a statistical assessment based on what would happen in repeated samples from
the data generating function process above. The idea of repeated samples is weird:
we only have one world, and yet we imagine redrawing the world and estimating the
parameters using the OLS estimator. Then, we consider the statistical properties
(bias, variance) of the estimates over these repeated samples.

2.7 Motivation 4 for OLS: Improbability and the Method of Max-
imum Likelihood

1. If improbability is bad, then one might wish to maximise by choice of parameters the
probability that the observed data could come from the model.

2. You need to specify parametric model as well as the (conditional) distribution of error
terms

3. Let subscripts i = 1 , ...,N index the observations (rows).

4. Consider
Yi = Xiβ + εi, εi˜f(ε)

which states the model for each observation as well as the distribution of the error
term. The function f gives the density of the error at any particular value. Usually,
we assume that this function is high for error values near zero, and low for error values
far from zero.

5. The function f is the probability density function (pdf) for any random variable x.
Probability density functions are related to probabilities. In particular,

P [a < x < b] =

ˆ b

a

f(x)∂x.

10



The integral of the pdf between two values gives the probability of observing the random
variable between those two values. The pdf is related to a primitive, the cumulative
density function (cdf) which gives the integral of the pdf from −∞ to a value. For a
pdf f , we write the cdf F as

F (u) =

ˆ u

−∞
f(x)∂x.

implying
∂F (u)/∂x = f(x).

Here, the cdf is the primitive because the cdf is defined even if is zero, or discontinuous.
In contrast, the pdf is only defined everywhere if the cdf has derivatives everywhere.

6. Since probabilities are defined by integrals of densities, we can write probabilities in
terms of cdfs, too:

P [a < x < b] = F (b)− F (a).

7. pdf’s have the useful feature that, like with probabilities, the pdf for two independent
random variables is the product of their pdf’s.

8. pdf’s can be interpreted similarly to probabilities in the following way: as the span
[a, b] gets very small, the density is approximately equal to the probability of observed
the random variable in the range [a, b]. Of course, when the span is exactly zero (for
a continuous random variable), the probability is exactly zero.

9. The trick with maximum likelihood estimation is to use densities instead of probabilities
for continuous random variables, and to maximize the probability density (by choice of
parameters) of observing the sample we actually saw. (With discrete random variables,
you can actually maximize the probability.)

10. We call the pdf for the entire sample of data, given the parameters, as the likelihood
function:

L (f, β, Y,X) =
N∏
i=1

f (ε(Yi, Xi)) =
N∏
i=1

f (Yi −Xiβ) .

The first equality follows from the fact that the only random variable in the model is
εi, and since each of these is an independent draw from f , the likelihood is the product
of the value of f for each Yi,Xi pair. The second equality follows from the fact that
the value of εi corresponding to each pair is given by the model.

11. Clearly, we cannot easily proceed without knowledge of f . Let f be the normal density
function:

f(ε) =
exp (− (ε− µ) 2/2σ2)√

2πσ2
.

where µ and σ are parameters of the distribution. It turns out that the mean of this
distribution is µ (one of the parameters). Since ε are presumed mean-zero, we can
drop this parameter:

f(ε) = exp
(
−ε2/σ22

)
/σ
√

2π.
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You will see in a moment why an investigator might use this seemingly ugly density
function.

12. Nobody likes products, so we will maximize the log of the likelihood function rather
than its level:

lnL (f, β, Y,X) =
N∑
i=1

ln f (Yi −Xiβ)

= −1

2

N∑
i=1

(
Yi −Xiβ

σ

)2

−N ln
(
σ
√

2π
)

13. The method of maximum likelihood tells us that this equation holds in the model.
Now, we maximize the (log) likelihood by choice of the parameter vector β̂:

max
β̂,σ
−1

2

N∑
i=1

(
Yi −Xiβ̂

σ

)2

−N ln
(
σ
√

2π
)

⇔ min
β̂,σ

1

2σ

N∑
i=1

(
Yi −Xiβ̂

)2
+N ln

(
σ
√

2π
)
.

If we had σ in our pocket already, the right-hand term would drop out of the minimi-
sation, leaving

min
β̂

N∑
i=1

(
Yi −Xiβ̂

)2
,

that is, ordinary least squares.

(a) If we don’t have σ in our pocket, we still get OLS because σ does not interact
with β̂–we can concentrate it out.

14. In many of these contexts, there exists a true parameter vector β, and β̂ may be taken
as an estimator of it. In our MoM, BLUE and ML approaches we assumed the linear
model

Y = Xβ + ε

and exogeneity of fixed (nonstochastic) X

E [X ′ε] = 0K .

Can we say much about the OLS estimator’s relationship to β with just this?

(a) The bias of the estimator is the deviation between its expected value and the

target: E
[
β̂OLS

]
− β .

E
[
β̂OLS

]
− β = E

[
(X ′X)

−1
X ′Y

]
− β
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= E
[
β + (X ′X)

−1
X ′ε
]
− β

= β + E
[
(X ′X)

−1
X ′ε
]
− β

= E
[
(X ′X)

−1
X ′ε
]

= (X ′X)
−1
E [X ′ε] = (X ′X)

−1
0K = 0K

(b) The estimator is unbiased. Its unbiasedness is due entirely to the assumed ex-
ogeneity of X. There’s no distance between the assumption of exogeneity and
the implication of unbiasedness. Assuming exogeneity is equivalent to assuming
unbiasedness.

(c) Another way to see this is to start by assuming that X is not exogenous (aka: is
endogenous), and so assume

Y = Xβ + ε

and
E [X ′ε] = Γ

where Γ is a nonzero K−vector.

(d) By the same reasoning as above, the estimator is now biased, and its bias equals

E
[
β̂OLS

]
− β = (X ′X)

−1
E [X ′ε] = (X ′X)

−1
Γ

(e) Suppose we had the population of data, and that we knew ε, and that we regressed
them on X. The coefficients from this regression would be (X ′X)−1X ′ε. Since
it is for the population, we would get exactly the bias term (X ′X)−1 Γ. For that
reason, I like to think of the bias of OLS in a linear model as the load of ε of X
that is misattributed to X instead of to ε. Much more on this later.

15. Fixed Versus Stochastic X

(a) I often use fixed X to describe stuff. It is easier—less stuff to carry through
expectations.

(b) Consider the model above
Y = Xβ + ε

and
E [X ′ε] = 0K ,

with associated estimator

β̂OLS = (X ′X)
−1
X ′Y.

(c) Here, the fixed X assumption is a bit clunky in the exogeneity condition. It
says that the random variable ε has the property that, for the given data X,
E [X ′ε] = 0K . This is strange. What if we had a different set of X in our data?
That would be a different exogeneity restriction. Nonetheless, we can write down
this restriction and say it to ourselves: ε is orthogonal to X in expectation.
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(d) The fixed X assumption has a payoff: When we calculate the expection of β̂OLS,
it is very straighforward:

E[β̂OLS] = E
[
(X ′X)

−1
X ′Y

]
= β+E

[
(X ′X)

−1
X ′ε
]

= β+(X ′X)
−1
E [X ′ε] = β+(X ′X)

−1
0K = β.

(e) You get to just pull the X’s out of the expectation, and only worry about the
random variable ε.

(f) SupposeX were random. Then, you’d have to consider the covariance of (X ′X)−1and
X ′Y and you’d have to know something about the distribution of X.

(g) When assuming random X, which is more natural than fixed X, we often in-
voke two strong restrictions: 1) Xi ∼ iid and 2) a stricter exogeneity condition
E[εi]|Xi

= 0K for all i = 1, ..., N .

(h) Then, we have

E[β̂OLS] = E
[
(X ′X)

−1
X ′Y

]
= β + E

[
(X ′X)

−1
X ′ε
]
.

We can condition and integrate the right-hand expectation (the matrix expressions
in the left-hand expression are sums over the observations i, so the expectation
of the matrix sums is equal to the sum over the X’s of the elements in the matrix
sums):

E
[
(X ′X)

−1
X ′ε
]

=

ˆ
x

E
[
(X ′iXi)

−1
X ′iεi

]
|Xi=x∂x

=

ˆ
x

(X ′iXi)
−1
E [X ′iεi] |Xi=x∂x =

ˆ
x

(X ′iXi)
−1

0K |Xi=x∂x = 0K

yielding

E[β̂OLS] = E
[
(X ′iXi)

−1
X ′iYi

]
= β + 0K .

So, we typically get to the same place, but with more effort.

(i) Now, consider estimating the same model by ML with random X:

Y = Xβ + ε,

εi ∼ N(0, σ2),

and
Xi ∼ N(µ,Σ).

These assumptions imply that εi⊥Xi and all εi, Xi are iid. The likelihood func-
tion for independent random variables that are iid is the product of each density
producted over the observations:

L (f, g, β, Y,X) =
N∑
i=1

f (Yi −Xiβ) g (Xi − µ)

where f is the density of the N(0, σ2) and g is the density of the N(0K ,Σ).
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(j) If you take the log of this likelihood function, and take a derivative with respect
to β, you get the same first order condition as if Xi were fixed, because the
parameters in the distribution of Xi (µ and Σ) do not show up in the derivative
of the log-likelihood with respect to β.

(k) Consequently, I will mostly use the fixed X approach to get you through this ma-
terial, and will alert you to when random X leads you to substantively different
places (as in the consideration of weak instruments, for example). For your in-
formation, my approach is a bit old-timey, and has been abandoned in textbooks
for roughly a decade.

16. Compare these approaches:

Min. Pred. Error MoM estimator BLUE Estimator ML Estimator
Full DGP known no no no yes
error mean known no yes yes yes
error variance known no no yes yes
error pdf known no no no yes
linear model only no no yes no
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