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1 Panels

Panel data are no different from regular data except that they have an extra subscript (or,
maybe many extras). That is, each observation has an i subscript (i = 1, ..., N) which
indexes the unit number and a t subscript (t = 1, ..., T ) which indexes the time period. (Or,
different subscripts.)

1. In fact, we can use panel-type methods for any data with more than one subscript.
For example, biologists often do multiple treatments on multiple plants, so you’d have
plant numbers i and treatment numbers t. There could be in addition a subscript for
the lab in multi-lab experiments.

2. The data for panels look just like regular data, except that each i, t in the sample has a
variable called UNIT (or something like that) which takes on values from 1, ..., N and
a variable called TIME (or year or something like that) which takes on values from
1, ..., T . (Of course, all that matters here is that we know what values i and t can take
on, eg, t could go from 1950, ..., 2000 as in the Penn World Tables.)

3. The data generating process for a panel is the same old thing

Yit = f(Xit, β, εit)

If we make the εit mean zero and additive, then we get

Yit = f(Xit, β) + εit

and if we make f linear in the parameters, we get the structure that is typically used

Yit = Xitβ + εit

Note that ifX contains a vector of variables interacted with the vector of time dummies,
this is equivalent to

Yit = Xitβt + εit

4. where the coefficients are different in each period. Or, if X contains a vector of variables
interacted with unit dummies, you get

Yit = Xitβi + εit
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(a) In Stata, with I being the unit number:

(b) bysort I: reg Y X

5. We are often concerned about two types of effects on Y : those that vary with t but
not i and those that vary with i but not t. (Those that vary with both are embodied
in εit.)

(a) Unit Effects. What if X contains unit effects, which we will call θi, i = 1, ..., N?
Here,

Yit = Xitβ + θi + εit

is a data generating process where there are unit (time-invariant) effects that
differ across every unit i, and these are embodied in θi.

(b) Time effects. Let δt, t = 1, ..., T be a set of time effects, one for each time period.
Then, the DGP might be

Yit = Xitβ + δt + εit

(c) Naturally, we often think that both might be present:

Yit = Xitβ + θi + δt + εit

6. Fixed Effects vs Random Effects. Models where we do not assume anything about the
distribution of θ are called “fixed effects models”; models where we make assumptions
about this distribution are often called “random effects models”.

(a) A different way to contrast fixed from random effects is to ask whether or not
they are not drawn from a stochastic process. In random effects models, they are
assumed drawn from some distribution. In fixed effects models, they may not be.
Typical candidates for fixed effects are states or provinces. We often use fixed
effects for things like person-identifier in a random sample of people. But, since
these are a draw for each person, we ultimately are not going to be interested
in any particular estimated θi, because we are interested in the features of the
population, not of the particular sample drawn. We would instead be interested
in perhaps the distribution of θi.

7. [Fixed Effects Estimators ] Consider first models that do not impose restrictions on the
distribution of θi. Without loss of (much) generality, just consider the model with unit
effects and with exogenous errors and without time effects:

Yit = Xitβ + θi + εit

and
E[εit]|(Xit θi) = 0.
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(a) In fact, this is too much exogeneity. Writing the model in matrix form, we could
use

Y = Xβ + θ + ε

where Y is the NT−vector of Yit, X is the NTxK matrix comprised of Xit , θ is
the NTx(N−1) matrix comprised of T replications of an Nx(N−1) matrix equal
to the stacked row vectors of θi and ε is the NT−vector of εit, and the regressors
(X θ) are exogenous satisfying

E[ε′ (X θ)] = 0K+N−1.

The restriction E[εit]|(Xit θi) = 0 is sufficient for this, but massively more restric-
tive.

(b) To get estimates of both β and θi, one may use Least Squares with Dummy
Variables (LSDV), where you regress Y on X and dummies for all but one of the
units.

i. Letting D be a vector of N − 1 dummies for unit identifiers, in Stata,

A. reg Y X D

ii. Since E[εit]|(Xit θi) = 0 implies E[ε′ (X θ)] = 0K+N−1, the estimates of β are
unbiased. That is, the true model is linear in X and D, and the regressors
(including D) are exogenous, so the OLS estimates are unbiased.

iii. The estimates of θi are unbiased, but are not N -consistent. That is, as you
increase N , the estimate of any particular θi does not get closer to its true
value. However, the estimates of θi are T -consistent, because as you increase
T , these estimates do get closer to their true values.

iv. The LSDV approach has a severe drawback. It can be hard to estimate. If you
have a panel where N is big, but T is small, then estimating N fixed effects
plus K coefficients for β requires inverting an (N + K)x(N + K) matrix.
If N + K gets really big (say, in the thousands), then this matrix may get
very ill-conditioned and numerically unstable. That is, you might run the
regression on different computers and get different answers, or on different
software and get different answers. You get this problem whenever the RHS
variable matrix is of high rank (has a lot of columns) and sparse (has a lot of
zeroes).

(c) An alternative approach is to difference the data to make the unit effects disap-
pear.

i. If your panel has an uninterrupted sequence of t’s for every i and if there are
at least two t’s for every i, then you could first-difference:

Yit − Yit−1 = (Xit −Xit−1) β + θi − θi + εit − εit−1,

and the unit effect disappears:

∆Yit = ∆Xitβ + ∆εit

where ∆ is the first-difference-over-time operator.
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ii. If the composite error term ∆εit is exogenous, you just use OLS and get β. A
sufficient (and overly strong condition) for exogeneity of this composite error
term is

E[εit]|Xit,θi = 0, E[εisεit]|Xit,Xis,θi = 0∀s 6= t

If we assume that the disturbances εit are mean-zero and uncorrelated with
each other for every value of X and for every i,t, s, then OLS delivers unbiased
estimates of β.

iii. in Stata, we use the difference operator D. as follows:

A. reg D.Y D.X

(d) Or, if your panel has at least two t’s for every i, you could subtract the mean of
Y from the LHS and the mean of X from the RHS:

Yit − Yi =
(
Xit −Xi

)
β + θi − θi + εit − εi

and the unit effect disappears:

Yit − Yi =
(
Xit −Xi

)
β + ε̃it.

i. If the composite error term
ε̃it = εit − εi

is spherical, you just use OLS to get β. This composite error is spherical if
the mean error for any observation i is zero and is uncorrelated with X.

ii. in Stata

A. areg Y X, absorb(D)

8. [Random Effects Estimators ] If you are willing to assume things about the parameters
θi, then other doors open. For example, assume that the unit effects θi are drawn from
some distribution satisfying

E [θi] |Xit
= 0,

E
[
(θi)

2] |Xit
= σ2

θ

(Actually, this is a bit stronger than what is needed: you just need θi orthogonal to
Xit, but the differing subscripts makes that assumption notationally cumbersome.)

(a) The restriction that θi are mean zero no matter what value X takes is strong.
For example, if X includes education and θi is meant to capture smartness, we
would expect correlation between them. We also need the variance of θi to be
independent of X. For example, if half of all people are lazy and lazy people never
go to college, then the variance of θi would covary positively with X observed
post-secondary schooling.
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(b) Given the assumption on θi, we get

Yit = Xitβ + uit

where
uit = θi + εit

is a composite error term which satisfies exogeneity, but does not satisfy the
spherical error term requirement for efficiency of OLS.

(c) One could regress Y on X and get unbiased consistent estimates of β. The reason
is that the nonspherical error term only hurts the efficiency of the OLS estimator;
it is still unbiased.

9. Difference-in-Difference

(a) Let
Yijt = Xitβ + θi + δt + εijt

so that there are many observations (j’s) in each unit i and in each year t. Let Xit

be a binary treatment, and let s = 1, 2 and t = 1, 2 and let εijt be noise. Assume
X22 = 1 and X11 = X12 = X21 = 0 so that only observations in unit 2 in time
period 2 are treated.

(b) Two observations in the same i, t differ only by εijt, which is noise.

(c) Assume that j = 1, .., Jst in each s, t. Let Jst → ∞ for all s, t, so that our
asymptotics can be within each s, t.

(d) Let Ȳit =
∑

jεit Yijt. I can construct a consistent estimate of population-level
analog of this object for each i, t because there are many j’s in each i, t.

(e) The over-time difference for observations in the treated unit
(
Ȳ22 − Ȳ21

)
gives an

estimate of the sum of the treatment effect plus the time effect β + δ2 − δ1.
(f) The over-time difference for observations in the never-treated unit

(
Ȳ12 − Ȳ11

)
gives an estimate of the time effect δ2 − δ1.

(g) The difference in difference estimator of β is
(
Ȳ22 − Ȳ21

)
−
(
Ȳ12 − Ȳ11

)
.

(h) The difference in these two differences gives just the treatment effect β.

(i) Identification here rests crucially on the time effect being the same for treated
and untreated. If it weren’t, you couldn’t difference it out.

10. If you are uncomfortable with the distributional assumptions embodied in random
effects models, then you may prefer more recently developed Mixed Models. Here,

Yit = Xit (β + βi) + θi + εit

where
βi, θi

are distributed jointly normally, with possible conditioning of the distribution on X.
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(a) These models add a distributional assumption (normality), but relax the exogene-
ity assumption and relax the fixed coefficients assumption. They are (sometimes)
estimable via maximum likelihood, and get around the big assumptions of ran-
dom effects models. Of course, mixed models contain as cases the random effects
model, and also the Random Coefficients Model where we assume that the coef-
ficients on X are randomly distributed across the units i.

11. Time Effects

(a) Consider a model where there are both unit effects and time effects. For example,
the LHS variable could be income and year effects might capture the business
cycle.

Yit = Xitβ + δt + θi + εit

where δt are year effects, t = 1, ..., T .

(b) You could use the LSDV approach and regress Y on X with dummies for all but
one of the years and dummies for all but one of the units.

(c) Let T be a vector of T − 1 dummies for each time period (except one).

(d) in Stata

i. reg Y X D T

ii. reg D.Y D.X T

iii. areg Y X T, absorb(D)

A. In the differenced regression, one of the T − 1 dummies for T will be
dropped because it now represents differences in time effects across se-
quential periods.

(e) Usually when we worry about time (eg, in time-series models), we worry about
correlations between errors across time. For example,

Yit = Xitβ + δt + θi + εit

where
εit = ρεit−1 + ηit, ηit˜iid(0)

is an AR(1) error process. If one is using the LSDV approach, then the standard
GLS solution for AR(1) errors can be applied. We will do time-series stuff later.

12. GLS estimation of the Random Effects Model

(a) However, this approach leaves out important information that could improve the
precision of our estimate. In particular, we have assumed that the composite
errors have a chunk which is the same for every t for a given i. There is a GLS
approach to take advantage of this assumption. If we knew the variance of the
θi terms, σ2

θ , and knew the variance of the true disturbances, σ2
ε , we could take

advantage of this fact.
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i. Under the model, we can compute the covariance of errors of any two obser-
vations:

E[(θi + εis)(θj + εjt)] = I[i = j]σ2
θ + I[s = t]σ2

ε

where I[.] is the indicator function. This covariance matrix is block diagonal,
where each block consists of the sum of the two variances σ2

θ and σ2
ε on the

diagonal, and just σ2
θ off the diagonal. These blocks lie on the diagonal of the

big matrix, and the off-diagonal blocks are all zero. (see Green around p 295
for further exposition). So, the model may be written

Y = Xβ + ε̃,

ε̃ = {ε̃it}N,Ti=1,t=1

ε̃it = θi + εit

E [X ′ε̃] = 0

E [ε̃ε̃′] = Ω,

and Ω has diagonal elements equal to σ2
θ + σ2

ε and within-person off-diagonal
elements equal to σ2

θ and across-person off-diagonal elements equal to 0.

ii. The GLS transformation matrix is computed as T = Ω−1/2, which is the
matrix square-root of this composite error covariance matrix. Then, FGLS
regresses transformed Y on transformed X:

TY = TXβ + T ε̃

E [XT ′T ε̃] = 0

E [T ε̃ε̃′T ] = 1N

This GLS approach is only easy to implement with a balanced panel in which
each and every observation is observed for the same number of periods (so
that T is well-defined). But, even with an unbalanced panel, you can still
create the block diagonal matrix and invert it.

iii. FGLS requires an estimate of the two variances. A fixed effects model can be
run in advance to get estimates of these variances. Or, one could run OLS
and construct an estimate of the error covariance matrix directly.
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